Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
Add more filters











Publication year range
1.
Chem Biodivers ; 21(8): e202400678, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086087

ABSTRACT

Neglected Tropical Diseases are a significant concern as they encompass various infections caused by pathogens prevalent in tropical regions. The limited and often highly toxic treatment options for these diseases necessitate the exploration of new therapeutic candidates. In the present study, the lignan methylpiperitol was isolated after several chromatographic steps from Persea fulva L. E. Koop (Lauraceae) and its leishmanicidal and trypanocidal activities were evaluated using in vitro and in silico approaches. The chemical structure of methylpiperitol was defined by NMR and MS spectral data analysis. The antiprotozoal activity of methylpiperitol was determined in vitro and indicated potency against trypomastigote forms of Trypanosoma cruzi (EC50 of 4.5±1.1 mM) and amastigote forms of Leishmania infantum (EC50 of 4.1±0.5 mM), with no mammalian cytotoxicity against NCTC cells (CC50>200 mM). Molecular docking studies were conducted using six T. cruzi and four Leishmania. The results indicate that for the molecular target hypoxanthine phosphoribosyl transferase in T. cruzi and piteridine reductase 1 of L. infatum, the methylpiperitol obtained better results than the crystallographic ligand. Therefore, the lignan methylpiperitol, isolated from P. fulva holds potential for the development of new prototypes for the treatment of Neglected Tropical Diseases, especially leishmaniasis.


Subject(s)
Leishmania infantum , Lignans , Molecular Docking Simulation , Trypanosoma cruzi , Lignans/pharmacology , Lignans/isolation & purification , Lignans/chemistry , Trypanosoma cruzi/drug effects , Leishmania infantum/drug effects , Parasitic Sensitivity Tests , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Animals , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/isolation & purification
2.
Chem Biodivers ; 21(9): e202401076, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38899851

ABSTRACT

This study reports on the chemical composition and antileishmanial and anticandidal activities of volatile oils (VOs) of Schinus molle dried leaves (SM), Cinnamomum cassia branch bark (CC) and their blends. Major constituents of SM were spathulenol (26.93 %), ß-caryophyllene (19.90 %), and caryophyllene oxide (12.69 %), whereas (E)-cinnamaldehyde (60.11 %), cinnamyl acetate (20.90 %) and cis-2-methoxycinnamic acid (10.37 %) were predominant in CC. SM (IC50=21.45 µg/mL) and CC (IC50=23.27 µg/mL) displayed good activity against L. amazonensis promastigotes, besides having good or moderate activity against nine Candida strains, with Minimum Inhibitory Concentration (MIC) values ranging from 31.25 to 250 µg/mL. While the three SM and CC blends were not more active than the VOs tested individually, they exhibited remarkably high antileishmanial activity, with IC50 values ranging between 3.12 and 7.04 µg/mL, which is very similar to the IC50 of amphotericin B (positive control).


Subject(s)
Anacardiaceae , Antifungal Agents , Antiprotozoal Agents , Cinnamomum aromaticum , Microbial Sensitivity Tests , Oils, Volatile , Plant Bark , Plant Leaves , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Plant Leaves/chemistry , Plant Bark/chemistry , Cinnamomum aromaticum/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Anacardiaceae/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Leishmania/drug effects , Candida/drug effects , Parasitic Sensitivity Tests , Animals , Structure-Activity Relationship , Dose-Response Relationship, Drug , Schinus
3.
Phytomedicine ; 128: 155414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503155

ABSTRACT

BACKGROUND: Chagas disease and leishmaniasis affect a significant portion of the Latin American population and still lack efficient treatments. In this context, natural products emerge as promising compounds for developing more effective therapies, aiming to mitigate side effects and drug resistance. Notably, species from the Amaryllidaceae family emerge as potential reservoirs of antiparasitic agents due to the presence of diverse biologically active alkaloids. PURPOSE: To assess the anti-Trypanosoma cruzi and anti-Leishmania infantum activity of five isolated alkaloids from Hippeastrum aulicum Herb. (Amaryllidaceae) against different life stages of the parasites using in silico and in vitro assays. Furthermore, molecular docking was employed to evaluate the interaction of the most active alkaloids. METHODS: Five natural isoquinoline alkaloids isolated in suitable quantities for in vitro testing underwent preliminary in silico analysis to predict their potential efficacy against Trypanosoma cruzi (amastigote and trypomastigote forms) and Leishmania infantum (amastigote and promastigote forms). The in vitro antiparasitic activity and mammalian cytotoxicity were investigated with a subsequent comparison of both analysis (in silico and in vitro) findings. Additionally, this study employed the molecular docking technique, utilizing cruzain (T. cruzi) and sterol 14α-demethylase (CYP51, L. infantum) as crucial biological targets for parasite survival, specifically focusing on compounds that exhibited promising activities against both parasites. RESULTS: Through computational techniques, it was identified that the alkaloids haemanthamine (1) and lycorine (8) were the most active against T. cruzi (amastigote and trypomastigote) and L. infantum (amastigote and promastigote), while also revealing unprecedented activity of alkaloid 7­methoxy-O-methyllycorenine (6). The in vitro analysis confirmed the in silico tests, in which compound 1 presented the best activities against the promastigote and amastigote forms of L. infantum with half-maximal inhibitory concentration (IC50) 0.6 µM and 1.78 µM, respectively. Compound 8 exhibited significant activity against the amastigote form of T. cruzi (IC50 7.70 µM), and compound 6 demonstrated activity against the trypomastigote forms of T. cruzi and amastigote of L. infantum, with IC50 values of 89.55 and 86.12 µM, respectively. Molecular docking analyses indicated that alkaloids 1 and 8 exhibited superior interaction energies compared to the inhibitors. CONCLUSION: The hitherto unreported potential of compound 6 against T. cruzi trypomastigotes and L. infantum amastigotes is now brought to the forefront. Furthermore, the acquired dataset signifies that the isolated alkaloids 1 and 8 from H. aulicum might serve as prototypes for subsequent structural refinements aimed at the exploration of novel leads against both T. cruzi and L. infantum parasites.


Subject(s)
Alkaloids , Amaryllidaceae , Isoquinolines , Leishmania infantum , Molecular Docking Simulation , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Leishmania infantum/drug effects , Amaryllidaceae/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/isolation & purification , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemistry , Antiparasitic Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification
4.
J Ethnopharmacol ; 289: 115054, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35131338

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leishmaniasis are widely distributed among tropical and subtropical countries, and remains a crucial health issue in Amazonia. Indigenous groups across Amazonia have developed abundant knowledge about medicinal plants related to this pathology. AIM OF THE STUDY: We intent to explore the weight of different pharmacological activities driving taxa selection for medicinal use in Amazonian communities. Our hypothesis is that specific activity against Leishmania parasites is only one factor along other (anti-inflammatory, wound healing, immunomodulating, antimicrobial) activities. MATERIALS AND METHODS: The twelve most widespread plant species used against leishmaniasis in Amazonia, according to their cultural and biogeographical importance determined through a wide bibliographical survey (475 use reports), were selected for this study. Plant extracts were prepared to mimic their traditional preparations. Antiparasitic activity was evaluated against promastigotes of reference and clinical New-World strains of Leishmania (L. guyanensis, L. braziliensis and L. amazonensis) and L. amazonensis intracellular amastigotes. We concurrently assessed the extracts immunomodulatory properties on PHA-stimulated human PBMCs and RAW264.7 cells, and on L. guyanensis antigens-stimulated PBMCs obtained from Leishmania-infected patients, as well as antifungal activity and wound healing properties (human keratinocyte migration assay) of the selected extracts. The cytotoxicity of the extracts against various cell lines (HFF1, THP-1, HepG2, PBMCs, RAW264.7 and HaCaT cells) was also considered. The biological activity pattern of the extracts was represented through PCA analysis, and a correlation matrix was calculated. RESULTS: Spondias mombin L. bark and Anacardium occidentale L. stem and leaves extracts displayed high anti-promatigotes activity, with IC50 ≤ 32 µg/mL against L. guyanensis promastigotes for S. mombin and IC50 of 67 and 47 µg/mL against L. braziliensis and L. guyanensis promastigotes, respectively, for A. occidentale. In addition to the antiparasitic effect, antifungal activity measured against C. albicans and T. rubrum (MIC in the 16-64 µg/mL range) was observed. However, in the case of Leishmania amastigotes, the most active species were Bixa orellana L. (seeds), Chelonantus alatus (Aubl.) Pulle (leaves), Jacaranda copaia (Aubl.) D. Don. (leaves) and Plantago major L. (leaves) with IC50 < 20 µg/mL and infection rates of 14-25% compared to the control. Concerning immunomodulatory activity, P. major and B. orellana were highlighted as the most potent species for the wider range of cytokines in all tested conditions despite overall contrasting results depending on the model. Most of the species led to moderate to low cytotoxic extracts except for C. alatus, which exhibited strong cytotoxic activity in almost all models. None of the tested extracts displayed wound healing properties. CONCLUSIONS: We highlighted pharmacologically active extracts either on the parasite or on associated pathophysiological aspects, thus supporting the hypothesis that antiparasitic activities are not the only biological factor useful for antileishmanial evaluation. This result should however be supplemented by in vivo studies, and attracts once again the attention on the importance of the choice of biological models for an ethnophamacologically consistent study. Moreover, plant cultural importance, ecological status and availability were discussed in relation with biological results, thus contributing to link ethnobotany, medical anthropology and biology.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Antiprotozoal Agents/isolation & purification , Brazil , HaCaT Cells , Hep G2 Cells , Humans , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Leukocytes, Mononuclear/parasitology , Medicine, Traditional , Mice , RAW 264.7 Cells , THP-1 Cells
5.
Nat Prod Rep ; 38(12): 2214-2235, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34913053

ABSTRACT

Covering: 2000 up to 2021Natural products are an important resource in drug discovery, directly or indirectly delivering numerous small molecules for potential development as human medicines. Among the many classes of natural products, alkaloids have a rich history of therapeutic applications. The extensive chemodiversity of alkaloids found in the marine environment has attracted considerable attention for such uses, while the scarcity of these natural materials has stimulated efforts towards their total synthesis. This review focuses on the biological activity of marine alkaloids (covering 2000 to up to 2021) towards Neglected Tropical Diseases (NTDs) caused by protozoan parasites, and malaria. Chemotherapy represents the only form of treatment for Chagas disease, human African trypanosomiasis, leishmaniasis and malaria, but there is currently a restricted arsenal of drugs, which often elicit severe adverse effects, show variable efficacy or resistance, or are costly. Natural product scaffolds have re-emerged as a focus of academic drug discovery programmes, offering a different resource to discover new chemical entities with new modes of action. In this review, the potential of a range of marine alkaloids is analyzed, accompanied by coverage of synthetic efforts that enable further studies of key antiprotozoal natural product scaffolds.


Subject(s)
Alkaloids/therapeutic use , Antiprotozoal Agents/therapeutic use , Aquatic Organisms/chemistry , Biological Products/therapeutic use , Malaria/drug therapy , Neglected Diseases/drug therapy , Protozoan Infections/drug therapy , Antiprotozoal Agents/isolation & purification , Biological Products/isolation & purification , Molecular Structure
6.
Chem Biol Interact ; 346: 109581, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34302801

ABSTRACT

Bothrops asper is one of the most important snake species in Central America, mainly because of its medical importance in countries like Ecuador, Panama and Costa Rica, where this species causes a high number of snakebite accidents. Several basic phospholipases A2 (PLA2s) have been previously characterized from B. asper venom, but few studies have been carried out with its acidic isoforms. In addition, since snake venom is a rich source of bioactive substances, it is necessary to investigate the biotechnological potential of its components. In this context, this study aimed to carry out the biochemical characterization of PLA2 isoforms isolated from B. asper venom and to evaluate the antiparasitic potential of these toxins. The venom and key fractions were subjected to different chromatographic steps, obtaining nine PLA2s, four acidic ones (BaspAc-I, BaspAc-II, BaspAc-III and BaspAc-IV) and five basic ones (BaspB-I, BaspB-II, BaspB-III, BaspB-IV and BaspB-V). The isoelectric points of the acidic PLA2s were also determined, which presented values ranging between 4.5 and 5. The findings indicated the isolation of five unpublished isoforms, four Asp49-PLA, corresponding to the group of acidic isoforms, and one Lys49-PLA2-like. Acidic PLA2s catalyzed the degradation of all substrates evaluated; however, for the basic PLA2s, there was a preference for phosphatidylglycerol and phosphatidic acid. The antiparasitic potential of the toxins was evaluated, and the acidic PLA2s demonstrated action against the epimastigote forms of T. cruzi and promastigote forms of L. infantum, while the basic PLA2s BaspB-II and BaspB-IV showed activity against P. falciparum. The results indicated an increase of up to 10 times in antiplasmodial activity, when the Asp49-PLA2 and Lys49-PLA2 were associated with one another, denoting synergistic action between these PLA2 isoforms. These findings correspond to the first report of synergistic antiplasmodial action for svPLA2s, demonstrating that these molecules may be important targets in the search for new antiparasitic agents.


Subject(s)
Antiprotozoal Agents/pharmacology , Phospholipases A2/chemistry , Plasmodium falciparum/drug effects , Snake Venoms/metabolism , Amino Acid Sequence , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Bothrops/metabolism , Drug Synergism , Isoelectric Point , Leishmania infantum/drug effects , Panama , Parasitic Sensitivity Tests , Phospholipases A2/isolation & purification , Phospholipases A2/pharmacology , Protein Isoforms/chemistry , Protein Isoforms/isolation & purification , Protein Isoforms/pharmacology , Sequence Alignment
7.
Z Naturforsch C J Biosci ; 76(5-6): 229-241, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33660490

ABSTRACT

Species of Piperaceae are known by biological properties, including antiparasitic such as leishmanicidal, antimalarial and in the treatment of schistosomiasis. The aim of this work was to evaluate the antileishmania activity, cytotoxic effect, and macrophage activation patterns of the methanol (MeOH), hexane (HEX), dichloromethane (DCM) and ethyl acetate (EtOAc) extract fractions from the leaves of Piper cabralanum C.DC. The MeOH, HEX and DCM fractions inhibited Leishmanina amazonensis promastigote-like forms growth with a half maximal inhibitory concentration (IC50) of 144.54, 59.92, and 64.87 µg/mL, respectively. The EtOAc fraction did not show any relevant activity. The half maximal cytotoxic concentration (CC50) for macrophages were determined as 370.70, 83.99, 113.68 and 607 µg/mL for the MeOH, HEX and DCM fractions, respectively. The macrophage infectivity was concentration-dependent, especially for HEX and DCM. MeOH, HEX and DCM fractions showed activity against L. amazonensis with low cytotoxicity to murine macrophages and lowering infectivity by the parasite. Our results provide support for in vivo studies related to a potential application of P. cabralanum extract and fractions as a promising natural resource in the treatment of leishmaniasis.


Subject(s)
Antiprotozoal Agents/chemistry , Piper/chemistry , Plant Extracts/chemistry , Animals , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Cell Survival/drug effects , Cells, Cultured , Female , Hexanes/chemistry , Leishmania/drug effects , Leishmania/growth & development , Life Cycle Stages/drug effects , Liquid-Liquid Extraction , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Male , Methylene Chloride/chemistry , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Phagocytosis/drug effects , Piper/metabolism , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Leaves/metabolism
8.
Bioorg Med Chem ; 32: 116016, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33493972

ABSTRACT

Three antifungal macrolides cyphomycin (1), caniferolide C (2) and GT-35 (3) were isolated from Streptomyces sp. ISID311, a bacterial symbiont associated with Cyphomyrmex fungus-growing ants. The planar structures of these compounds were established by 1 and 2D NMR data and MS analysis. The relative configurations of 1-3 were established using Kishi's universal NMR database method, NOE/ROE analysis and coupling constants analysis assisted by comparisons with NMR data of related compounds. Detailed bioinformatic analysis of cyphomycin biosynthetic gene cluster confirmed the stereochemical assignments. Compounds 1-3 displayed high antagonism against different strains of Escovopsis sp., pathogen fungi specialized to the fungus-growing ant system. Compounds 1-3 also exhibited potent antiprotozoal activity against intracellular amastigotes of the human parasite Leishmania donovani with IC50 values of 2.32, 0.091 and 0.073 µM, respectively, with high selectivity indexes.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Macrolides/pharmacology , Streptomyces/chemistry , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Dose-Response Relationship, Drug , Macrolides/chemistry , Macrolides/isolation & purification , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
9.
Nat Prod Res ; 35(18): 3120-3125, 2021 Sep.
Article in English | MEDLINE | ID: mdl-31691582

ABSTRACT

Leonotis nepetifolia (L.) Br. (Lamiaceae) is an African shrub popularly known as 'cordão-de-frade' in Brazil, traditionally used to treat infectious diseases, among other uses. This study aimed to investigate the phytochemical composition of hydroethanolic extracts from L. nepetifolia prepared from stems, leaves, roots and glomerulus, as well as their cytotoxicity, antileishmanial and antimicrobial activities. The chemical composition of the extracts was assessed by UPLC-ESI-MS/MS, whereas the antileishmanial activity was evaluated against promastigote and amastigote forms of Leishmania amazonensis. Cytotoxicity was tested on murine macrophages and the antimicrobial activity was investigated by a microdilution assay against several strains of fungi, Gram-positive and Gram-negative bacteria. The flavonoids apigenin, cirsiliol apigenin-7-O-glucoside, luteolin, luteolin-4'-O-glucoside, luteolin-4'-O- glucuronide and luteolin-7-O-glucoside were identified in all tested extracts. Extracts from leaves and roots showed more potent antileishmanial activity (IC50 32.90 µg mL-1 and 57.70 µg mL-1, respectively) against amastigotes forms in comparison to the other extracts. The leaf extract inhibited Bacillus cereus and Staphylococcus aureus growth (125 µg mL-1 and 100 µg mL-1, respectively), and also showed anti-Candida activity (10-125 µg mL-1). The biological effect can be related to the identified flavonoids. Our findings disclose the potential of L. nepetifolia as a source of bioactive compounds for the development of new therapeutic options for treating infectious diseases, especially flavonoids.


Subject(s)
Anti-Infective Agents , Antiprotozoal Agents/pharmacology , Lamiaceae , Plant Extracts/pharmacology , Animals , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antiprotozoal Agents/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lamiaceae/chemistry , Leishmania/drug effects , Mice , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Tandem Mass Spectrometry
10.
J Ethnopharmacol ; 264: 113262, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32818574

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In the Peruvian Amazon as in the tropical countries of South America, the use of medicinal Piper species (cordoncillos) is common practice, particularly against symptoms of infection by protozoal parasites. However, there is few documented information about the practical aspects of their use and few scientific validation. The starting point of this work was a set of interviews of people living in six rural communities from the Peruvian Amazon (Alto Amazonas Province) about their uses of plants from Piper genus: one community of Amerindian native people (Shawi community) and five communities of mestizos. Infections caused by parasitic protozoa take a huge toll on public health in the Amazonian communities, who partly fight it using traditional remedies. Validation of these traditional practices contributes to public health care efficiency and may help to identify new antiprotozoal compounds. AIMS OF STUDY: To record and validate the use of medicinal Piper species by rural people of Alto Amazonas Province (Peru) and annotate active compounds using a correlation study and a data mining approach. MATERIALS AND METHODS: Rural communities were interviewed about traditional medication against parasite infections with medicinal Piper species. Ethnopharmacological surveys were undertaken in five mestizo villages, namely: Nueva Arica, Shucushuyacu, Parinari, Lagunas and Esperanza, and one Shawi community (Balsapuerto village). All communities belong to the Alto Amazonas Province (Loreto region, Peru). Seventeen Piper species were collected according to their traditional use for the treatment of parasitic diseases, 35 extracts (leaves or leaves and stems) were tested in vitro on P. falciparum (3D7 chloroquine-sensitive strain and W2 chloroquine-resistant strain), Leishmania donovani LV9 strain and Trypanosoma brucei gambiense. Assessments were performed on HUVEC cells and RAW 264.7 macrophages. The annotation of active compounds was realized by metabolomic analysis and molecular networking approach. RESULTS: Nine extracts were active (IC50 ≤ 10 µg/mL) on 3D7 P. falciparum and only one on W2 P. falciparum, six on L. donovani (axenic and intramacrophagic amastigotes) and seven on Trypanosoma brucei gambiense. Only one extract was active on all three parasites (P. lineatum). After metabolomic analyses and annotation of compounds active on Leishmania, P. strigosum and P. pseudoarboreum were considered as potential sources of leishmanicidal compounds. CONCLUSIONS: This ethnopharmacological study and the associated in vitro bioassays corroborated the relevance of use of Piper species in the Amazonian traditional medicine, especially in Peru. A series of Piper species with few previously available phytochemical data have good antiprotozoal activity and could be a starting point for subsequent promising work. Metabolomic approach appears to be a smart, quick but still limited methodology to identify compounds with high probability of biological activity.


Subject(s)
Antiprotozoal Agents/metabolism , Ethnopharmacology/methods , Medicine, Traditional/methods , Metabolomics/methods , Piper/metabolism , Plant Extracts/metabolism , Animals , Antimalarials/isolation & purification , Antimalarials/metabolism , Antimalarials/therapeutic use , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/therapeutic use , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Leishmania donovani/drug effects , Leishmania donovani/metabolism , Mesocricetus , Mice , Peru/ethnology , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , RAW 264.7 Cells , Surveys and Questionnaires
11.
Biomed Pharmacother ; 133: 111025, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254018

ABSTRACT

The present study aimed to evaluate the antileishmanial effect, the mechanisms of action and the association with miltefosine of Vernonia brasiliana essential oil against Leishmania infantum promastigotes. This essential oil was obtained by hydrodistillation and its chemical composition was determined by gas chromatography-mass spectrometry (GC-MS). The antileishmanial activity against L. infantum promastigotes and cytotoxicity on DH82 cells were evaluated by MTT colorimetric assay. Ultrastructural alterations were evaluated by transmission electron microscopy. Changes in mitochondrial membrane potential, in the production of reactive oxygen species, and analysis of apoptotic events were determined by flow cytometry. The association between the essential oil and miltefosine was evaluated using the modified isobologram method. The most abundant component of the essential oil was ß-caryophyllene (21.47 %). Anti-Leishmania assays indicated an IC50 of 39.01 ±â€¯1.080 µg/mL for promastigote forms after 72 h of treatment. The cytotoxic concentration for DH82 cells was 63.13 ±â€¯1.211 µg/mL after 24 h of treatment. The effect against L. infantum was proven through the ultrastructural changes caused by the oil, such as kinetoplast and mitochondrial swelling, vesicles in the flagellar pocket, discontinuity of the nuclear membrane, nuclear fragmentation and condensation, and loss of organelles. It was observed that the oil leads to a decrease in the mitochondrial membrane potential (35.10 %, p = 0.0031), increased reactive oxygen species production, and cell death by late apoptosis (17.60 %, p = 0.020). The combination of the essential oil and miltefosine exhibited an antagonistic effect. This study evidences the antileishmanial action of V. brasiliana essential oil against L. infantum promastigotes.


Subject(s)
Antiprotozoal Agents/pharmacology , Apoptosis/drug effects , Leishmania infantum/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Polycyclic Sesquiterpenes/pharmacology , Vernonia , Animals , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/toxicity , Cell Line , Dogs , Drug Interactions , Leishmania infantum/growth & development , Leishmania infantum/metabolism , Leishmania infantum/ultrastructure , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Oils, Volatile/isolation & purification , Oils, Volatile/toxicity , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Plant Oils/isolation & purification , Plant Oils/toxicity , Polycyclic Sesquiterpenes/isolation & purification , Polycyclic Sesquiterpenes/toxicity , Reactive Oxygen Species/metabolism , Vernonia/chemistry
12.
Int J Biol Macromol ; 167: 267-278, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33242552

ABSTRACT

This study aims to examine whether two L-amino acid oxidases isolated from Bothrops snake venom (SV-LAAOs) were cytotoxic to Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis, two causative agents of leishmaniasis, which is an endemic disease in tropical and subtropical countries. The SV-LAAOs BjussuLAAO-II and BmooLAAO-II were isolated from Bothrops jararacussu and Bothrops moojeni venom, respectively, through a three-step chromatography process that used molecular exclusion, hydrophobic interaction, and affinity columns. BmooLAAO-II is a new SV-LAAO isoform that we isolated in this study. The purified BjussuLAAO-II and BmooLAAO-II had high L-amino acid oxidase-specific activity: 3481.17 and 4924.77 U/mg/min, respectively. Both SV-LAAOs were strongly cytotoxic to the two Leishmania species, even at low concentrations. At the same concentration, BjussuLAAO-II and BmooLAAO-II exerted different cytotoxic effects on the parasites. We reported for the first time that the SV-LAAOs suppressed cell proliferation and altered the mitochondrial membrane potential of the two Leishmania species. Surprisingly, BjussuLAAO-II increased the intracellular reactive oxygen species production only in L. (L.) amazonensis, while BmooLAAO-II increased the intracellular reactive oxygen species production only in L. (V.) braziliensis, indicating that these SV-LAAOs had a certain specificity of action.


Subject(s)
Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Bothrops , Crotalid Venoms/enzymology , L-Amino Acid Oxidase/isolation & purification , L-Amino Acid Oxidase/pharmacology , Leishmania/drug effects , Amino Acid Sequence , Animals , Brazil , Chromatography , Enzyme Activation , L-Amino Acid Oxidase/chemistry , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Parasitic Sensitivity Tests , Reactive Oxygen Species/metabolism
13.
Nat Prod Res ; 35(5): 853-857, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31090448

ABSTRACT

Chemical investigation of the extracts of the fruits from Campomanesia xanthocarpa resulted in the isolation of six known compounds identified by NMR and comparison with literature data (2',4'-dihydroxy-5'-methyl-6'-methoxychalcone (1), 2',4'-dihydroxy-3',5'-dimethyl-6'-methoxychalcone (2), 2'-hydroxy-3'-methyl-4',6'-dimethoxychalcone (3), 2',6'-dihydroxy-3'-methyl-4'-methoxychalcone (4), 5-hydroxy-7-methoxy-8-methylflavanone (5) and 7-hydroxy-5-methoxy-6-methylflavanone (6)). The considerable antioxidant capacity of the extracts was demonstrated by ORAC-FL and DPPH tests. The antiproliferative assay of the extracts and 5 was done in vitro, against many different cancer cell lines besides a healthy one. The extracts presented low cytotoxicity and the substance demonstrated promising results against all the cancer cell lines tested, with IC50 values ranging from 4.75 to 45.81 µmol L-1. The in vitro trypanocidal activity was evaluated against the epimastigote form of the Y strain of Trypanosoma cruzi and an improvement in the activity of the substances 2 (221.81 µmol L-1) and 5 (61.87 µmol L-1) was observed regarding the values obtained for the extracts.


Subject(s)
Antioxidants/pharmacology , Antiprotozoal Agents/pharmacology , Fruit/chemistry , Myrtaceae/chemistry , Trypanosoma/drug effects , Antioxidants/chemistry , Antioxidants/isolation & purification , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Plant Extracts/chemistry
14.
PLoS One ; 15(11): e0241855, 2020.
Article in English | MEDLINE | ID: mdl-33156835

ABSTRACT

Leishmaniasis is a disease impacting public health worldwide due to its high incidence, morbidity and mortality. Available treatments are costly, lengthy and toxic, not to mention the problem of parasite resistance. The development of alternative treatments is warranted and natural products demonstrate promising activity. This study investigated the activity of Connarus suberosus extracts and compounds against Leishmania species. Several C. suberosus extracts were tested against L. amazonensis promastigotes. Active and inactive extracts were analyzed by UHPLC-MS and data evaluated using a metabolomics platform, revealing an unknown neoflavonoid (connarin, 3), isolated together with the pterocarpans: hemileiocarpin (1) and leiocarpin (2). The aforementioned compounds (1-3), together with the benzoquinones: rapanone (4), embelin (5) and suberonone (6) previously isolated by our group from the same species, were tested against: (i) L. amazonensis and L. infantum promastigotes, and (ii) L. amazonensis intracellular amastigotes, with the most active compound (3) also tested against L. infantum amastigotes. Cytotoxicity against murine peritoneal macrophages was also investigated. Compounds 2 and 3 presented an IC50 33.8 µM and 11.4 µM for L. amazonensis promastigotes; and 44.3 µM and 13.3 µM for L. infantum promastigotes, respectively. For L. amazonensis amastigotes, the IC50 of 2 was 20.4 µM with a selectivity index (SI) of 5.7, while the IC50 of 3 was 2.9 µM with an SI of 6.3. For L. infantum amastigotes, the IC50 of 3 was 7.7 µM. Compounds 2 and 3 presented activity comparable with the miltefosine positive control, with compound 3 found to be 2-4 times more active than the positive control, depending on the Leishmania species and form. The extracts and isolated compounds showed moderate toxicity against macrophages. Compounds 2 and 3 altered the mitochondrial membrane potential (ΔΨm) and neutral lipid body accumulation, while 2 also impacted plasma membrane permeabilization, culminating in cellular disorder and parasite death. Transmission electron microscopy of L. amazonensis promastigotes treated with compound 3 confirmed the presence of lipid bodies. Leiocarpin (2) and connarin (3) demonstrated antileishmanial activity. This study provides knowledge of natural products with antileishmanial activity, paving the way for prototype development to fight this neglected tropical disease.


Subject(s)
Connaraceae/chemistry , Flavonoids/pharmacology , Metabolomics/methods , Plant Extracts/pharmacology , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Cell Survival , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Flavonoids/isolation & purification , Leishmania mexicana/drug effects , Leishmania mexicana/growth & development , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Mass Spectrometry , Mice , Mice, Inbred BALB C , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification
15.
Sci Rep ; 10(1): 15158, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938966

ABSTRACT

The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.


Subject(s)
Antiprotozoal Agents/pharmacology , Fabaceae/chemistry , Plant Extracts/pharmacology , Pregnancy Complications, Parasitic/drug therapy , Toxoplasmosis/complications , Toxoplasmosis/drug therapy , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/isolation & purification , Cell Cycle Checkpoints/drug effects , Cell Line , Cytokines/metabolism , Dose-Response Relationship, Drug , Fabaceae/classification , Female , Host-Parasite Interactions/drug effects , Humans , Microscopy, Electron, Transmission , Phytotherapy , Placenta/drug effects , Placenta/parasitology , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Reactive Oxygen Species/metabolism , Toxoplasma/cytology , Toxoplasma/drug effects , Toxoplasma/pathogenicity , Toxoplasmosis/parasitology , Trophoblasts/drug effects , Trophoblasts/parasitology
16.
Molecules ; 25(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756445

ABSTRACT

Arrabidaea chica Verlot (crajiru) is a plant used in folk medicine as an astringent, anti-inflammatory, wound healing and to treat fungal and viral diseases such as measles chickenpox and herpes. Arrabidaea chica has several morphotypes recognized but little is known about its chemical variability. In the present study the anthocyanidin profile of A. chica morphotypes collected in two seasons (summer and winter) have been examined and their activity against Leishmania infection compared. High-performance liquid chromatography coupled to a diode-array detector (HPLC-DAD-UV) and by tandem mass spectrometry with electrospray ionization (ESI-MS/MS) were used for anthocyanidin separation and identification. Antileishmanial activity was measured against promastigote forms of Leishmania amazonensis. Multivariate analysis, principal component analysis (PCA) and Pearson's correlation were performed to classify morphotypes accordingly to their anthocyanidin profile. The presence of 6,7,3',4'-tetrahydroxy-5-methoxyflavylium (3'-hydroxy-carajurone) (1), carajurone (2), 6,7,3'-trihydroxy-5,4'-dimethoxy-flavylium (3'-hydroxy-carajurin) (3) and carajurin (4), and three unidentified anthocyanidins were detected. Two different groups were recognized: group I containing 3'-hydroxy-carajurone; and group II with high content of carajurin. Among anthocyanidins identified in the extracts, only carajurin showed significant statistical correlation (p = 0.030) with activity against L. amazonensis. Carajurin could thus be considered as a pharmacological marker for the antileishmanial potential of the species.


Subject(s)
Anthocyanins/chemistry , Antiprotozoal Agents/pharmacology , Bignoniaceae/chemistry , Leishmania mexicana/drug effects , Anthocyanins/isolation & purification , Anthocyanins/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Bignoniaceae/metabolism , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Principal Component Analysis , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification , Proanthocyanidins/pharmacology , Seasons , Spectrophotometry , Tandem Mass Spectrometry
17.
J Ethnopharmacol ; 259: 112981, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32442591

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leishmaniasis is a neglected disease that affects millions of people around the world. Parasite resistance and the toxicity to the current treatments lead to the search for new effective molecules. Plants are widely used in traditional and indigenous medicine to treat different diseases. The oleoresin of the genus Protium, which is rich in volatile compounds active against different microorganisms, is among these plants. AIM: The aim of this study was to evaluate the leishmanicidal potential of Protium altsonii (PaEO) and P. hebetatum (PhEO) (Burseraceae) oleoresins, as well as of three representative monoterpenes in their constitution: α-pinene, p-cymene and 1,8-cineole. MATERIALS AND METHODS: Protium altsonii (PaEO) and P. hebetatum (PhEO) oleoresins and three of their constituents were tested in vitro on promastigotes and amastigotes-infected macrophages in different concentrations. Their toxicity for macrophages was analyzed by XTT assay and phagocytic ability. It was evaluated the ability of the compounds to induce NO production on treated-macrophages using Griess reaction and the effect of them in lipid profile on treated-parasite through Thin Layer Chromatography. RESULTS: Our data showed that both essential oils have toxic effect on promastigotes and amastigotes of L. amazonensis in vitro in a dose-dependent manner. PaEO IC50 were 14.8 µg/mL and 7.8 µg/mL and PhEO IC50s were 0.46 µg/mL and 30.5 µg/m for promastigotes and amastigotes, respectively. Toxicity to macrophages was not observed at 50 µg/mL with both EOs. The compounds 1,8- cineole, α-pinene, and p-cymene inhibited amastigotes survival in a dose-dependent manner with IC50s of 48.4 µg/mL, 37 µg/mL, 46 µg/mL, respectively. Macrophage viability was around 90% even at 200 µg/mL and the phagocytic capacity was not altered in the treated-macrophages to up 50 µg/mL. The compounds were not able to modulate the nitric oxide production either at rest or LPS-activated macrophages. In addition, treated promastigote revealed an important change in their lipid profile after 48 h at 50 µg/mL in the presence of the compounds. CONCLUSIONS: The results indicate that oleoresins of Protium genus are potent against Leishmania and α-pinene, p-cymene and 1,8-cineole have anti-Leishmania properties that could be explored in synergistic assays in order to develop new drug candidates.


Subject(s)
Antiprotozoal Agents/pharmacology , Burseraceae , Leishmania mexicana/drug effects , Macrophages/parasitology , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Animals , Antiprotozoal Agents/isolation & purification , Burseraceae/chemistry , Burseraceae/classification , Cells, Cultured , Dose-Response Relationship, Drug , Leishmania mexicana/growth & development , Mice, Inbred BALB C , Monoterpenes/isolation & purification , Oils, Volatile/isolation & purification , Parasite Load , Parasitic Sensitivity Tests , Plant Oils/isolation & purification
18.
Fitoterapia ; 145: 104632, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32446709

ABSTRACT

This current study presents the phytochemical analysis of Croton velutinus, describing phenylpropanoids obtained from this species. The fractionation of the roots hexane extract led to the isolation of four new phenylpropanoids derivatives, velutines A-D (1-4) and three known (5-7). Their structures were established based on spectroscopic (1D-2D NMR; HRMS and IR) analysis. Cytotoxic, trypanocidal and anti-inflammatory activities of compounds 1-7 were evaluated. Only compounds 2 and 5 showed cytotoxic activity against cancer cell lines (B16F10, HL-60, HCT116, MCF-7 and HepG2), with IC50 values ranging from 6.8 to 18.3 µM and 11.1 to 18.3 µM, respectively. Compounds 2 and 5 also showed trypanocidal activity against bloodstream trypomastigotes with EC50 values of 9.0 and 9.58 µM, respectively. Finally, the anti-inflammatory potential of these compounds was evaluated on cultures of activated macrophages. All compounds exhibited concentration-dependent suppressive activity on the production of nitrite and IL-1ß by macrophages stimulated with LPS and IFN-γ. These results indicate phenylpropanoids esters (2 and 5) from C. velutinus as promising cytotoxic, trypanocidal and anti-inflammatory candidates that warrants further studies.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antiprotozoal Agents/pharmacology , Croton/chemistry , Phenylpropionates/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Antiprotozoal Agents/isolation & purification , Brazil , Cell Line, Tumor , Humans , Macrophages/chemistry , Mice , Molecular Structure , Phenylpropionates/isolation & purification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Roots/chemistry , Trypanosoma cruzi/drug effects
19.
Rev Soc Bras Med Trop ; 53: e20190139, 2020.
Article in English | MEDLINE | ID: mdl-31994657

ABSTRACT

INTRODUCTION: Leishmaniasis, a disease caused by a parasite endemic to large areas of tropical and subtropical countries, is a growing public health problem. METHODS: Male BALB/c mice were infected with Leishmania amazonensis and treated with extracts isolated from Annona mucosa. RESULTS: Treated groups had significantly reduced footpad swelling. The group treated intraperitoneally with hexane extract showed footpad swelling similar to groups treated with Pentamidine® and Glucantime®. Groups treated with dichloromethane extract and hexane extract presented the recovering phenotype associated with reduced parasite levels. CONCLUSIONS: Extracts of A. mucosa are promising sources of novel antileishmanial compounds.


Subject(s)
Annona/chemistry , Antiprotozoal Agents/therapeutic use , Leishmania/drug effects , Leishmaniasis, Cutaneous/drug therapy , Plant Extracts/therapeutic use , Animals , Antiprotozoal Agents/isolation & purification , Disease Models, Animal , Leishmaniasis, Cutaneous/parasitology , Male , Mice , Mice, Inbred BALB C
20.
Protein Pept Lett ; 27(8): 718-724, 2020.
Article in English | MEDLINE | ID: mdl-31994997

ABSTRACT

BACKGROUND: Cutaneous and mucocutaneous leishmaniasis are parasitic diseases characterized by skin manifestations. In Brazil, Leishmania (Leishmania) amazonensis is one of the etiological agents of cutaneous leishmaniasis. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, as they are often highly toxic, poorly tolerated and of variable effectiveness. This study aimed to evaluate in vitro the leishmanicidal activity of toxins isolated from Crotalus durissus terrificus venom as a new approach for the treatment of leishmaniasis. METHODS: The comparative effects of crotamine, crotoxin, gyrotoxin, convulxin and PLA2 on bone marrow-derived macrophages infected with L. (L.) amazonensis as well as the release of TGF-ß from the treated macrophages were studied. RESULTS AND DISCUSSION: Crotamine had the strongest inhibitory effect on parasite growth rate (IC50: 25.65±0.52 µg/mL), while convulxin showed the weakest inhibitory effect (IC50: 52.7±2.21 µg/mL). In addition, TGF-ß was significantly reduced after the treatment with all toxins evaluated. CONCLUSION: The Crotalus durissus terrificus toxins used in this study displayed significant activity against L. (L.) amazonensis, indicating that all of them could be a potential alternative for the treatment of cutaneous leishmaniasis.


Subject(s)
Antiprotozoal Agents , Crotalid Venoms/chemistry , Crotalus , Leishmania/growth & development , Leishmaniasis/drug therapy , Reptilian Proteins , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Female , Leishmaniasis/metabolism , Leishmaniasis/pathology , Mice , Mice, Inbred BALB C , Reptilian Proteins/chemistry , Reptilian Proteins/isolation & purification , Reptilian Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL