Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Enzyme Inhib Med Chem ; 39(1): 2388207, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39140692

ABSTRACT

The crystallographic structure of the FolB enzyme from Mycobacterium tuberculosis (MtFolB), complexed with its inhibitor 8-mercaptoguanine (8-MG), was elucidated at a resolution of 1.95 Å. A novel series of S8-functionalized 8-MG derivatives were synthesised and evaluated as in vitro inhibitors of dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of MtFolB. These compounds exhibited IC50 values in the submicromolar range. Evaluation of the activity for five compounds indicated their inhibition mode and inhibition constants. Molecular docking analyses were performed to determine the enzyme-inhibitor intermolecular interactions and ligand conformations upon complex formation. The inhibitory activities of all compounds against the M. tuberculosis H37Rv strain were evaluated. Compound 3e exhibited a minimum inhibitory concentration in the micromolar range. Finally, Compound 3e showed no apparent toxicity in both HepG2 and Vero cells. The findings presented herein will advance the quest for novel, specific inhibitors targeting MtFolB, an attractive molecular target for TB drug development.


Subject(s)
Aldehyde-Lyases , Antitubercular Agents , Dose-Response Relationship, Drug , Enzyme Inhibitors , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Structure-Activity Relationship , Aldehyde-Lyases/antagonists & inhibitors , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/chemistry , Vero Cells , Molecular Structure , Crystallography, X-Ray , Chlorocebus aethiops , Animals , Guanine/pharmacology , Guanine/chemistry , Guanine/analogs & derivatives , Guanine/chemical synthesis , Molecular Docking Simulation , Hep G2 Cells , Models, Molecular
2.
Eur J Med Chem ; 276: 116687, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39047606

ABSTRACT

Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis, has become the leading cause of death. The subsequent emergence of multidrug-resistant, extensively drug-resistant and totally drug-resistant strains, brings an urgent need to discover novel anti-TB drugs. Among them, microbial-derived anti-mycobacterial peptides, including ribosomally synthesized and post-translationally modified peptides (RiPPs) and multimodular nonribosomal peptides (NRPs), now arise as promising candidates for TB treatment. This review presents 96 natural RiPP and NRP families from bacteria and fungi that have broad spectrum in vitro activities against non-resistant and drug-resistant mycobacteria. In addition, intracellular targets of 22 molecules are the subject of much attention. Meanwhile, chemical features of 38 families could be modified in order to improve properties. In final, structure-activity relationships suggest that the modifications of various groups, especially the peptide side chains, the amino acid moieties, the cyclic peptide skeletons, various special groups, stereochemistry and entire peptide chain length are important for increasing the potency.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Mycobacterium tuberculosis/drug effects , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Molecular Structure
3.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999028

ABSTRACT

Tuberculosis is a serious public health problem worldwide. The search for new antibiotics has become a priority, especially with the emergence of resistant strains. A new family of imidazoquinoline derivatives, structurally analogous to triazolophthalazines, which had previously shown good antituberculosis activity, were designed to inhibit InhA, an essential enzyme for Mycobacterium tuberculosis survival. Over twenty molecules were synthesized and the results showed modest inhibitory efficacy against the protein. Docking experiments were carried out to show how these molecules could interact with the protein's substrate binding site. Disappointingly, unlike triazolophthlazines, these imidazoquinoline derivatives showed an absence of inhibition on mycobacterial growth.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Molecular Docking Simulation , Mycobacterium tuberculosis , Oxidoreductases , Quinolines , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Microbial Sensitivity Tests , Binding Sites , Molecular Structure
4.
Eur J Med Chem ; 276: 116693, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39053193

ABSTRACT

New 2-pyrrolamidobenzothiazole-based inhibitors of mycobacterial DNA gyrase were discovered. Among these, compounds 49 and 51, show excellent antibacterial activity against Mycobacterium tuberculosis and Mycobacterium abscessus with a notable preference for mycobacteria. Both compounds can penetrate infected macrophages and reduce intracellular M. tuberculosis load. Compound 51 is a potent inhibitor of DNA gyrase (M. tuberculosis DNA gyrase IC50 = 4.1 nM, Escherichia coli DNA gyrase IC50 of <10 nM), selective for bacterial topoisomerases. It displays low MIC90 values (M. tuberculosis: 0.63 µM; M. abscessus: 2.5 µM), showing specificity for mycobacteria, and no apparent toxicity. Compound 49 not only displays potent antimycobacterial activity (MIC90 values of 2.5 µM for M. tuberculosis and 0.63 µM for M. abscessus) and selectivity for mycobacteria but also exhibits favorable solubility (kinetic solubility = 55 µM) and plasma protein binding (with a fraction unbound of 2.9 % for human and 4.7 % for mouse). These findings underscore the potential of fine-tuning molecular properties to develop DNA gyrase B inhibitors that specifically target the mycobacterial chemical space, mitigating the risk of resistance development in non-target pathogens and minimizing harm to the microbiome.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Topoisomerase II Inhibitors , DNA Gyrase/metabolism , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Humans , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Molecular Structure , Mice , Animals , Dose-Response Relationship, Drug , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Drug Development , Mycobacterium/drug effects
5.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999023

ABSTRACT

A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.


Subject(s)
Antitubercular Agents , Azetidines , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Nitrofurans , Spiro Compounds , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Azetidines/chemistry , Azetidines/pharmacology , Nitrofurans/pharmacology , Nitrofurans/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Molecular Structure
6.
Future Med Chem ; 16(10): 949-961, 2024.
Article in English | MEDLINE | ID: mdl-38910577

ABSTRACT

Aim: The WHO, Global tuberculosis report 2022 estimated number of tuberculosis (TB) cases reached 10.6 million in 2021, reflecting a 4.5% increase compared with the 10.1 million reported in 2020. The incidence rate of TB showed 3.6% rise from 2020 to 2021. Results/methodology: This manuscript discloses Cu-promoted single pot A3-coupling between triclosan (TCS)-based alkyne, formaldehyde and secondary amines to yield TCS-based Mannich adducts. Additionally, the coupling of TCS-alkynes in the presence of Cu(OAc)2 afforded the corresponding homodimers. Among tested compounds, the most potent one in the series 11 exhibited fourfold higher potency than rifabutin against drug-resistant Mycobacterium abscessus. The selectivity index was also substantially improved, being 26 (day 1) and 15 (day 3), which is four-times better than TCS.


[Box: see text].


Subject(s)
Copper , Microbial Sensitivity Tests , Triclosan , Triclosan/pharmacology , Triclosan/chemistry , Triclosan/chemical synthesis , Copper/chemistry , Copper/pharmacology , Molecular Structure , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Mycobacterium abscessus/drug effects , Computer Simulation , Structure-Activity Relationship , Humans , Mannich Bases/chemistry , Mannich Bases/pharmacology , Mannich Bases/chemical synthesis
7.
Bioorg Med Chem Lett ; 109: 129846, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38857850

ABSTRACT

Over the past 2000 years, tuberculosis (TB) has been responsible for more deaths than any other infectious disease. In recent years, there has been a recovery of research and development (R&D) efforts focused on TB drugs. This is driven by the pressing need to combat the global spread of the disease and develop improved therapies for both drug-sensitive and drug-resistant strains. Many new TB drug candidates have recently entered clinical trials, marking the beginning of a rebirth in this area after decades of neglect. The problem is that very few of the hundreds of compounds identified each year as potential anti-TB drugs really make it to the clinical development stage. This perspective focuses on the primary obstacles and approaches involved in the development of new medications for TB. This will help medicinal chemists better understand TB drug challenges and develop novel drug candidates.


Subject(s)
Antitubercular Agents , Drug Discovery , Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Humans , Tuberculosis/drug therapy , Mycobacterium tuberculosis/drug effects , Microbial Sensitivity Tests , Molecular Structure
8.
Bioorg Chem ; 150: 107511, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870705

ABSTRACT

Tuberculosis is a global serious problem that imposes major health, economic and social challenges worldwide. The search for new antitubercular drugs is extremely important which could be achieved via inhibition of different druggable targets. Mycobacterium tuberculosis enoyl acyl carrier protein reductase (InhA) enzyme is essential for the survival of M. tuberculosis. In this investigation, a series of coumarin based thiazole derivatives was synthesized relying on a molecular hybridization approach and was assessed against thewild typeMtb H37Rv and its mutant strain (ΔkatG) via inhibiting InhA enzyme. Among the synthesized derivatives, compounds 2b, 3i and 3j were the most potent against wild type M. tuberculosis with MIC values ranging from 6 to 8 µg/ mL and displayed low cytotoxicity towards mouse fibroblasts at concentrations 8-13 times higher than the MIC values. The three hybrids could also inhibit the growth of ΔkatGmutant strain which is resistant to isoniazid (INH). Compounds 2b and 3j were able to inhibit the growth of mycobacteria inside human macrophages, indicating their ability to penetrate human professional phagocytes. The two derivatives significantly suppress mycobacterial biofilm formation by 10-15 %. The promising target compounds were also assessed for their inhibitory effect against InhA and showed potent effectiveness with IC50 values of 0.737 and 1.494 µM, respectively. Molecular docking studies revealed that the tested compounds occupied the active site of InhA in contact with the NAD+ molecule. The 4-phenylcoumarin aromatic system showed binding interactions within the hydrophobic pocket of the active site. Furthermore, H-bond formation and π -π stacking interactions were also recorded for the promising derivatives.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Coumarins , Drug Design , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Oxidoreductases , Thiazoles , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/chemical synthesis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/chemical synthesis , Structure-Activity Relationship , Humans , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Molecular Structure , Animals , Mice , Dose-Response Relationship, Drug , Models, Molecular , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry
9.
ACS Infect Dis ; 10(6): 2288-2302, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38717380

ABSTRACT

The current tuberculosis (TB) treatment is challenged by a complex first-line treatment for drug-sensitive (DS) TB. Additionally, the prevalence of multidrug (MDR)- and extensively drug (XDR)-resistant TB necessitates the search for new drug prototypes. We synthesized and screened 30 hybrid compounds containing aminopyridine and 2-chloro-3-formyl quinoline to arrive at a compound with potent antimycobacterial activity, UH-NIP-16. Subsequently, antimycobacterial activity against DS and MDR Mycobacterium tuberculosis (M.tb) strains were performed. It demonstrated an MIC50 value of 1.86 ± 0.21 µM for laboratory pathogenic M.tb strain H37Rv and 3.045 ± 0.813 µM for a clinical M.tb strain CDC1551. UH-NIP-16 also decreased the MIC50 values of streptomycin, isoniazid, ethambutol, and bedaquiline to about 45, 55, 68, and 76%, respectively, when used in combination, potentiating their activities. The molecule was active against a clinical MDR M.tb strain. Cytotoxicity on PBMCs from healthy donors and on human cell lines was found to be negligible. Further, blind docking of UH-NIP-16 using Auto Dock Vina and MGL tools onto diverse M.tb proteins showed high binding affinities with multiple M.tb proteins, the top five targets being metabolically critical proteins CelA1, DevS, MmaA4, lysine acetyltransferase, and immunity factor for tuberculosis necrotizing toxin. These bindings were confirmed by fluorescence spectroscopy using a representative protein, MmaA4. Envisaging that a pathogen will have a lower probability of developing resistance to a hybrid molecule with multiple targets, we propose that UH-NIP-16 can be further developed as a lead molecule with the bacteriostatic potential against M.tb, both alone and in combination with first-line drugs.


Subject(s)
Antitubercular Agents , Isonicotinic Acids , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Quinolines , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Humans , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Isonicotinic Acids/pharmacology , Isonicotinic Acids/chemistry , Isonicotinic Acids/chemical synthesis , Tuberculosis/drug therapy , Tuberculosis/microbiology
10.
PLoS One ; 19(5): e0303173, 2024.
Article in English | MEDLINE | ID: mdl-38739587

ABSTRACT

In this study, new series of N'-(2-(substitutedphenoxy)acetyl)-4-(1H-pyrrol-1-yl)benzohydrazides (3a-j) 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N'-(2-(substitutedphenoxy)acetyl)benzohydrazides (5a-j) were synthesized, characterized and assessed as inhibitors of enoyl ACP reductase and DHFR. Most of the compounds exhibited dual inhibition against the enzymes enoyl ACP reductase and DHFR. Several synthesized substances also demonstrated significant antibacterial and antitubercular properties. A molecular docking analysis was conducted in order to determine the potential mechanism of action of the synthesized compounds. The results indicated that there were binding interactions seen with the active sites of dihydrofolate reductase and enoyl ACP reductase. Additionally, important structural details were identified that play a critical role in sustaining the dual inhibitory activity. These findings were useful for the development of future dual inhibitors. Therefore, this study provided strong evidence that several synthesized molecules could exert their antitubercular properties at the cellular level through multi-target inhibition. By shedding light on the mechanisms through which these compounds exert their inhibitory effects, this research opens up promising avenues for the future development of dual inhibitors with enhanced antibacterial and antitubercular properties. The study's findings underscore the importance of multi-target approaches in drug design, providing a strong foundation for the design and optimization of novel compounds that can effectively target bacterial infections at the cellular level.


Subject(s)
Antitubercular Agents , Pyrroles , Tetrahydrofolate Dehydrogenase , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Catalytic Domain , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/chemical synthesis , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolate Dehydrogenase/chemistry
11.
Bioorg Med Chem Lett ; 108: 129800, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38763480

ABSTRACT

In a quest to discover new antimalarial and antitubercular drugs, we have designed and synthesized a series of novel triazole-quinazolinone hybrids. The in vitro screening of the triazole-quinazolinone hybrid entities against the plasmodium species P. falciparum offered potent antimalarial molecules 6c, 6d, 6f, 6g, 6j & 6k owing comparable activity to the reference drugs. Furthermore, the target compounds were evaluated in vitro against Mycobacterium tuberculosis (MTB) H37Rv strain. Among the screened compounds, 6c, 6d and 6l were found to be the most active molecules with a MIC values of 19.57-40.68 µM. The cytotoxicity of the most active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed. The computational study including drug likeness and ADMET profiling, DFT, and molecular docking study was done to explore the features of target molecules. The compounds 6a, 6g, and 6k exhibited highest binding affinity of -10.3 kcal/mol with docked molecular targets from M. tuberculosis. Molecular docking study indicates that all the molecules are binding to the falcipain 2 protease (PDB: 6SSZ) of the P. falciparum. Our findings indicated that these new triazole-quinazolinone hybrids may be considered hit molecules for further optimization studies.


Subject(s)
Antimalarials , Antitubercular Agents , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Plasmodium falciparum , Quinazolinones , Triazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Mycobacterium tuberculosis/drug effects , Plasmodium falciparum/drug effects , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/chemical synthesis , Mice , Structure-Activity Relationship , Animals , Molecular Structure , Dose-Response Relationship, Drug , RAW 264.7 Cells
12.
Eur J Med Chem ; 272: 116479, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38733886

ABSTRACT

Through a comprehensive molecular docking study, a unique series of naphthoquinones clubbed azetidinone scaffolds was arrived with promising binding affinity to Mycobacterial Cytbc1 complex, a drug target chosen to kill multi-drug resistant Mycobacterium tuberculosis (MDR-Mtb). Five compounds from series-2, 2a, 2c, 2g, 2h, and 2j, showcased significant in vitro anti-tubercular activities against Mtb H37Rv and MDR clinical isolates. Further, synergistic studies of these compounds in combination with INH and RIF revealed a potent bactericidal effect of compound 2a at concentration of 0.39 µg/mL, and remaining (2c, 2g, 2h, and 2j) at 0.78 µg/mL. Exploration into the mechanism study through chemo-stress assay and proteome profiling uncovered the down-regulation of key proteins of electron-transport chain and Cytbc1 inhibition pathway. Metabolomics corroborated these proteome findings, and heightened further understanding of the underlying mechanism. Notably, in vitro and in vivo animal toxicity studies demonstrated minimal toxicity, thus underscoring the potential of these compounds as promising anti-TB agents in combination with RIF and INH. These active compounds adhered to Lipinski's Rule of Five, indicating the suitability of these compounds for drug development. Particular significance of molecules NQ02, 2a, and 2h, which have been patented (Published 202141033473).


Subject(s)
Antitubercular Agents , Electron Transport Complex III , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Tuberculosis, Multidrug-Resistant/drug therapy , Electron Transport Complex III/antagonists & inhibitors , Electron Transport Complex III/metabolism , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Benzoquinones/chemistry , Benzoquinones/pharmacology , Animals , Humans , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Drug Synergism
13.
Chem Biodivers ; 21(6): e202400496, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700369

ABSTRACT

Tuberculosis remains a global health threat, with increasing infection rates and mortality despite existing anti-TB drugs. The present work focuses on the research findings regarding the development and evaluation of thiadiazole-linked thiazole derivatives as potential anti-tuberculosis agents. We present the synthesis data and confirm the compound structures using spectroscopic techniques. The current study reports twelve thiazole-thiadiazole compounds (5 a-5 l) for their anti-tuberculosis and related bioactivities. This paper emphasizes compounds 5 g, 5 i, and 5 l, which exhibited promising MIC values, leading to further in silico and interaction analysis. Pharmacophore mapping data included in the present analysis identified tubercular ThyX as potential drug targets. The compounds were evaluated for anti-tubercular activity using standard methods, revealing significant MIC values, particularly compound 5 l, with the best MIC value of 7.1285 µg/ml. Compounds 5 g and 5 i also demonstrated moderate to good MIC values against M. tuberculosis (H37Ra). Structural inspection of the docked poses revealed interactions such as hydrogen bonds, halogen bonds, and interactions containing Pi electron cloud, shedding light on conserved interactions with residues like Arg 95, Cys 43, His 69, and Arg 87 from the tubercular ThyX enzyme.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Thiadiazoles , Thiazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Molecular Structure , Humans
14.
Arch Pharm (Weinheim) ; 357(8): e2400171, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38710636

ABSTRACT

This study presents an exploration of the chemical space around derivatives of 3-benzamidopyrazine-2-carboxamides, previously identified as potent antimycobacterial compounds with predicted binding to mycobacterial prolyl-transfer RNA synthetase. New urea derivatives (Series-1) were generally inactive, probably due to their preference for cis-trans conformation (confirmed by density functional theory calculations and experimentally by nuclear overhauser effect spectroscopy NMR). Series-2 (3-benzamidopyrazine-2-carboxamides with disubstituted benzene ring) demonstrated that substituents larger than fluorine are not tolerated in the ortho position of the benzene ring. This series brought two new compounds (21: R = 2-F, 4-Cl and 22: R = 2-F, 4-Br) with in vitro activity against Mycobacterium tuberculosis H37Rv as well as multidrug-resistant clinical isolates, with minimum inhibitory concentration ranging from 6.25 to 25 µg/mL. The lactone-type derivatives 4H-pyrazino[2,3-d][1,3]oxazin-4-ones (Series-3) were inactive, but solvent stability studies of compound 29 indicated that they might be developed to usable lactone prodrugs of inhibitors of mycobacterial aspartate decarboxylase (PanD).


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Structure-Activity Relationship , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Molecular Structure , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/metabolism , Pyrazines/pharmacology , Pyrazines/chemistry , Pyrazines/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Dose-Response Relationship, Drug
15.
Z Naturforsch C J Biosci ; 79(3-4): 61-71, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38578162

ABSTRACT

A new series of 4-nitroimidazole bearing aryl piperazines 7-16, tetrazole 17 and 1,3,4-thiadiazole 18 derivatives was synthesized. All derivatives were screened for their anticancer activity against eight diverse human cancer cell lines (Capan-1, HCT-116, LN229, NCI-H460, DND-41, HL-60, K562, and Z138). Compound 17 proved the most potent compound of the series inhibiting proliferation of most of the selected human cancer cell lines with IC50 values in the low micromolar range. In addition, compound 11 exhibited IC50 values ranging 8.60-64.0 µM against a selection of cancer cell lines. These findings suggest that derivative 17 can potentially be a new lead compound for further development of novel antiproliferative agents. Additionally, 17-18 were assessed for their antibacterial and antituberculosis activity. Derivatives 17 and 18 were the most potent compounds of this series against both Staphylococcus aureus strain Wichita and a methicillin resistant strain of S. aureus (MRSA), as well as against Mycobacterium tuberculosis strain mc26230. The antiviral activity of 7-18 was also evaluated against diverse viruses, but no activity was detected. The docking study of compound 17 with putative protein targets in acute myeloid leukemia had been studied. Furthermore, the molecular dynamics simulation of 17 and 18 had been investigated.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Nitroimidazoles , Humans , Nitroimidazoles/pharmacology , Nitroimidazoles/chemistry , Nitroimidazoles/chemical synthesis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Molecular Docking Simulation , Staphylococcus aureus/drug effects , Mycobacterium tuberculosis/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Thiadiazoles/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/chemical synthesis , Cell Proliferation/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry
16.
Chem Biodivers ; 21(6): e202400267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588490

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of death from a bacterium in the world. The global prevalence of clinically relevant infections with opportunistically pathogenic non-tuberculous mycobacteria (NTM) has also been on the rise. Pharmacological treatment of both TB and NTM infections usually requires prolonged regimens of drug combinations, and is often challenging because of developed or inherent resistance to common antibiotic drugs. Medicinal chemistry efforts are thus needed to improve treatment options and therapeutic outcomes. Nα-aroyl-N-aryl-phenylalanine amides (AAPs) have been identified as potent antimycobacterial agents that target the RNA polymerase with a low probability of cross resistance to rifamycins, the clinically most important class of antibiotics known to inhibit the bacterial RNA polymerase. In this review, we describe recent developments in the field of AAPs, including synthesis, structural characterization, in vitro microbiological profiling, structure-activity relationships, physicochemical properties, pharmacokinetics and early cytotoxicity assessment.


Subject(s)
Amides , DNA-Directed RNA Polymerases , Phenylalanine , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/metabolism , Phenylalanine/pharmacology , Phenylalanine/chemistry , Phenylalanine/chemical synthesis , Phenylalanine/analogs & derivatives , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
17.
Bioorg Chem ; 147: 107361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613924

ABSTRACT

Biologically important macromolecule 1, 1', 3, 3' Bis - [2,3,5,6-Tetramethyl-p-phenylenebis(methylene)] dibenzotriazlinium dibromide hydrate (BTD) was synthesized and characterized using FT-IR, NMR and single-crystal XRD (SCXRD). SCXRD revealed that the compound was crystallized as a monoclinic system and associated through weak intermolecular interactions like H-bonding and π- π stacking interactions. These weak intermolecular interactions in BTD were studied using Crystal Explorer and Gaussian. The calculated energies for the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) showed the stability and reactivity of the title compound. Molecular electrostatic potential (MEP) surface analysis was used to investigate the crystal's nucleophilic and electrophilic reactive sites. The molecular shape and intermolecular interactions in the crystal structure were determined using Hirshfeld surface analysis and fingerprint plots. Anticancer, anti-bacterial and DNA binding ability of BTD were investigated by experimental and theoretical techniques. The obtained results suggest that BTD possesses better anti-cancer, anti-bacterial and DNA binding abilities. The mode of action of antibiotic and anticancer approach was discussed. This provides promising therapeutic advantages for further development.


Subject(s)
Antineoplastic Agents , Antitubercular Agents , DNA , Molecular Docking Simulation , Triazoles , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Humans , Ligands , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Molecular Structure , DNA/chemistry , DNA/metabolism , Structure-Activity Relationship , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Microbial Sensitivity Tests , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Mycobacterium tuberculosis/drug effects , Cell Proliferation/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
18.
Arch Pharm (Weinheim) ; 357(7): e2400064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38498883

ABSTRACT

With the rise of multidrug-resistant tuberculosis, the imperative for an alternative and superior treatment regimen, incorporating novel mechanisms of action, has become crucial. In pursuit of this goal, we have developed and synthesized a new series of rhodanine-linked enamine-carbohydrazide derivatives, exploring their potential as inhibitors of mycobacterial carbonic anhydrase. The findings reveal their efficacy, displaying notable selectivity toward the mycobacterial carbonic anhydrase 2 (mtCA 2) enzyme. While exhibiting moderate activity against human carbonic anhydrase isoforms, this series demonstrates promising selectivity, positioning these compounds as potential antitubercular agents. Compound 6d was the best one from the series with a Ki value of 9.5 µM toward mtCA 2. Most of the compounds displayed moderate to good inhibition against the Mtb H37Rv strain; compound 11k showed a minimum inhibitory concentration of 1 µg/mL. Molecular docking studies revealed that compounds 6d and 11k show metal coordination with the zinc ion, like classical CA inhibitors.


Subject(s)
Antitubercular Agents , Carbonic Anhydrase Inhibitors , Drug Design , Hydrazines , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Rhodanine , Rhodanine/pharmacology , Rhodanine/chemical synthesis , Rhodanine/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Structure-Activity Relationship , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Humans , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Hydrazines/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism
19.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Article in English | MEDLINE | ID: mdl-38457745

ABSTRACT

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Subject(s)
Antitubercular Agents , Drug Design , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Triazoles , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Structure-Activity Relationship , Enterococcus faecalis/drug effects , Molecular Structure , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/chemical synthesis
20.
Chem Biodivers ; 21(5): e202400067, 2024 May.
Article in English | MEDLINE | ID: mdl-38500408

ABSTRACT

Tuberculosis is a communicable disease which affects humans particularly the lungs and is transmitted mainly through air. Despite two decades of intensive research aimed at understanding and combating tuberculosis, persistent biological uncertainties continue to hinder progress. Nowadays, heterocyclic compounds have proven themselves in effective treatment of tuberculosis because of their wide range of biological and pharmacological activities. Antituberculosis or antimycobacterial agents encompass a broad array of compounds utilized singly or in conjunction to combat Mycobacterium infections, spanning from tuberculosis to leprosy. Here, we summarize the synthesis of various heterocyclic compounds which includes the greener synthetic route as well as use of nano compounds as catalyst along with their anti TB activities.


Subject(s)
Antitubercular Agents , Heterocyclic Compounds , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Humans , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL