Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 566
Filter
1.
J Cell Mol Med ; 28(8): e18279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634203

ABSTRACT

The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Pyrazinamide/chemistry , Pyrazinamide/metabolism , Pyrazinamide/pharmacology , Mycobacterium tuberculosis/genetics , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Tuberculosis/microbiology , Mutation , Microbial Sensitivity Tests
2.
Nat Microbiol ; 9(4): 976-987, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38491273

ABSTRACT

In Mycobacterium tuberculosis, Rv3806c is a membrane-bound phosphoribosyltransferase (PRTase) involved in cell wall precursor production. It catalyses pentosyl phosphate transfer from phosphoribosyl pyrophosphate to decaprenyl phosphate, to generate 5-phospho-ß-ribosyl-1-phosphoryldecaprenol. Despite Rv3806c being an attractive drug target, structural and molecular mechanistic insight into this PRTase is lacking. Here we report cryogenic electron microscopy structures for Rv3806c in the donor- and acceptor-bound states. In a lipidic environment, Rv3806c is trimeric, creating a UbiA-like fold. Each protomer forms two helical bundles, which, alongside the bound lipids, are required for PRTase activity in vitro. Mutational and functional analyses reveal that decaprenyl phosphate and phosphoribosyl pyrophosphate bind the intramembrane and extramembrane cavities of Rv3806c, respectively, in a distinct manner to that of UbiA superfamily enzymes. Our data suggest a model for Rv3806c-catalysed phosphoribose transfer through an inverting mechanism. These findings provide a structural basis for cell wall precursor biosynthesis that could have potential for anti-tuberculosis drug development.


Subject(s)
Mycobacterium tuberculosis , Polyisoprenyl Phosphates , Mycobacterium tuberculosis/genetics , Phosphoribosyl Pyrophosphate/metabolism , Antitubercular Agents/metabolism , Cell Wall/metabolism
3.
Molecules ; 29(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338462

ABSTRACT

Tuberculosis is one of the most common infectious diseases in the world, caused by Mycobacterium tuberculosis. The outbreak of multiple drug-resistant tuberculosis has become a major challenge to prevent this disease worldwide. ClpC1 is a Clp ATPase protein of Mycobacterium tuberculosis, functioning as a chaperon when combined with the Clp complex. ClpC1 has emerged as a new target to discover anti-tuberculosis drugs. This study aimed to explore the ClpC1 inhibitors from actinomycetes, which have been known to provide abundant sources of antibiotics. Two cyclic peptides, including nocardamin (1), halolitoralin A (3), and a lactone pleurone (2), were isolated from the culture of Streptomyces aureus (VTCC43181). The structures of these compounds were determined based on the detailed analysis of their spectral data and comparison with references. This is the first time these compounds have been isolated from S. aureus. Compounds 1-3 were evaluated for their affection of ATPase activity of the recombinant ClpC1 protein. Of these compounds, halolitoralin A (1), a macrocyclic peptide, was effective for the ATPase hydrolysis of the ClpC1 protein.


Subject(s)
Mycobacterium tuberculosis , Streptomyces , Staphylococcus aureus/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Bacterial Proteins/chemistry , Adenosine Triphosphatases/metabolism
4.
Trends Microbiol ; 32(3): 270-279, 2024 03.
Article in English | MEDLINE | ID: mdl-37709598

ABSTRACT

The aetiologic agent of tuberculosis (TB), Mycobacterium tuberculosis (Mtb), can survive, persist, and proliferate in a variety of heterogeneous subcellular compartments. Therefore, TB chemotherapy requires antibiotics crossing multiple biological membranes to reach distinct subcellular compartments and target these bacterial populations. These compartments are also dynamic, and our understanding of intracellular pharmacokinetics (PK) often represents a challenge for antitubercular drug development. In recent years, the development of high-resolution imaging approaches in the context of host-pathogen interactions has revealed the intracellular distribution of antibiotics at a new level, yielding discoveries with important clinical implications. In this review, we describe the current knowledge regarding cellular PK of antibiotics and the complexity of drug distribution within the context of TB. We also discuss the recent advances in quantitative imaging and highlight their applications for drug development in the context of how intracellular environments and microbial localisation affect TB treatment efficacy.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/metabolism , Mycobacterium tuberculosis/metabolism , Host-Pathogen Interactions , Treatment Outcome
5.
Eur J Med Chem ; 265: 116058, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38128237

ABSTRACT

The significant challenge in confronting TB eradication is the discursive treatment that results in the disease reactivation, patient non compliance and drug resistance. The presently available drug regimen for TB largely targets the active bacilli and thus remains inadequate against the dormant or persistent subpopulation of Mtb that results in latent TB affecting a quarter of the global population. The crucial pathways that are particularly essential for the survival of dormant Mtb demand better apprehension. Novel drugs are needed to specifically address these persisters in order to enhance treatment effectiveness. Among such pathways, the glyoxylate bypass plays a critical role in the persistence and latent infection of Mtb, making it a promising target for drug development in recent years. In this review, we have compiled the attributes of bacterial subpopulations liable for latent TB and the pathways indispensable for their survival. Specifically, we delve into the glyoxylate shunt pathway and its key enzymes as potential drug targets.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/metabolism , Latent Tuberculosis/drug therapy , Tuberculosis/drug therapy , Tuberculosis/microbiology , Drug Discovery , Glyoxylates/metabolism , Glyoxylates/therapeutic use
6.
ACS Infect Dis ; 9(12): 2369-2385, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37944023

ABSTRACT

Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Tuberculosis/drug therapy , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/metabolism , Tuberculosis, Multidrug-Resistant/drug therapy , DNA Replication
7.
Biomed Pharmacother ; 168: 115738, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864894

ABSTRACT

Tuberculosis (TB) accounts for 1.6 million deaths annually and over 25% of deaths due to antimicrobial resistance. Mycobacterium tuberculosis (M.tb) drives MCL-1 expression (family member of anti-apoptotic BCL-2 proteins) to limit apoptosis and grow intracellularly in human macrophages. The feasibility of re-purposing specific MCL-1 and BCL-2 inhibitors to limit M.tb growth, using inhibitors that are in clinical trials and FDA-approved for cancer treatment has not be tested previously. We show that specifically inhibiting MCL-1 and BCL-2 induces apoptosis of M.tb-infected macrophages, and markedly reduces M.tb growth in human and murine macrophages, and in a pre-clinical model of human granulomas. MCL-1 and BCL-2 inhibitors limit growth of drug resistant and susceptible M.tb in macrophages and act in additive fashion with the antibiotics isoniazid and rifampicin. This exciting work uncovers targeting the intrinsic apoptosis pathway as a promising approach for TB host-directed therapy. Since safety and activity studies are underway in cancer clinics for MCL-1 and BCL-2 inhibitors, we expect that re-purposing them for TB treatment should translate more readily and rapidly to the clinic. Thus, the work supports further development of this host-directed therapy approach to augment current TB treatment.


Subject(s)
Antineoplastic Agents , Antitubercular Agents , Drug Repositioning , Mycobacterium tuberculosis , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2 , Tuberculosis , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/metabolism , Macrophages/drug effects , Mycobacterium tuberculosis/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Tuberculosis/drug therapy , Tuberculosis/microbiology
8.
J Antibiot (Tokyo) ; 76(12): 720-727, 2023 12.
Article in English | MEDLINE | ID: mdl-37821540

ABSTRACT

Mycobacterium tuberculosis is exposed to diverse stresses inside the host during dormancy. Meanwhile, many metabolic and transcriptional regulatory changes occur, resulting in physiological modifications that help M. tuberculosis to adapt to these stresses. The same physiological changes also cause antibiotic tolerance in dormant M. tuberculosis. However, the transcriptional regulatory mechanism of antibiotic tolerance during dormancy remains unclear. Here, we showed that the expression of Rv1255c, an uncharacterised member of the tetracycline repressor family of transcriptional regulators, is upregulated during different stresses and hypoxia-induced dormancy. Antibiotic tolerance and efflux activities of Mycobacterium smegmatis constitutively expressing Rv1255c were analysed, and interestingly, it showed increased isoniazid tolerance and efflux activity. The intrabacterial isoniazid concentrations were found to be low in M. smegmatis expressing Rv1255c. Moreover, orthologs of the M. tuberculosis katG, gene of the enzyme which activates the first-line prodrug isoniazid, are overexpressed in this strain. Structural analysis of isoforms of KatG enzymes in M. smegmatis identified major amino acid substitutions associated with isoniazid resistance. Thus, we showed that Rv1255c helps M. smegmatis tolerate isoniazid by orchestrating drug efflux machinery. In addition, we showed that Rv1255c also causes overexpression of katG isoform in M. smegmatis which has amino acid substitutions as found in isoniazid-resistant katG in M. tuberculosis.


Subject(s)
Isoniazid , Mycobacterium smegmatis , Humans , Anti-Bacterial Agents/pharmacology , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Bacterial Proteins/metabolism , Catalase/chemistry , Catalase/genetics , Catalase/metabolism , Isoniazid/pharmacology , Isoniazid/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology
9.
ACS Infect Dis ; 9(10): 1981-1992, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37708378

ABSTRACT

New drugs to treat tuberculosis which target intractable bacterial populations are required to develop shorter and more effective treatment regimens. The benzene amide ether scaffold has activity against intracellular Mycobacterium tuberculosis, but low activity against extracellular, actively replicating M. tuberculosis. We determined that these molecules have bactericidal activity against non-replicating M. tuberculosis but not actively replicating bacteria. Exposure to compounds depleted ATP levels in non-replicating bacteria and increased the oxygen consumption rate; a subset of molecules led to the accumulation of intrabacterial reactive oxygen species. A comprehensive screen of M. tuberculosis strains identified a number of under-expressing strains as more sensitive to compounds under replicating conditions including QcrA and QcrB hypomorphs. We determined the global gene expression profile after compound treatment for both replicating and nutrient-starved M. tuberculosis. We saw compound-dependent changes in the expression of genes involved in energy metabolism under both conditions. Taken together, our data suggest that the scaffold targets respiration in M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/metabolism , Benzene/pharmacology , Ether/metabolism , Ether/pharmacology , Ether/therapeutic use , Amides/pharmacology , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Tuberculosis/microbiology , Ethyl Ethers/metabolism , Ethyl Ethers/pharmacology , Ethyl Ethers/therapeutic use , Ethers/metabolism , Ethers/pharmacology , Ethers/therapeutic use
10.
Int J Mycobacteriol ; 12(3): 332-344, 2023.
Article in English | MEDLINE | ID: mdl-37721241

ABSTRACT

Background: Mycobacterium tuberculosis is a bacterium that has historically had a substantial impact on human health. Despite advances in understanding and management of tuberculosis (TB), the disease remains a crucial problem that necessitates ongoing work to discover effective drugs, minimize transmission, and improve global health outcomes. Methods: The purpose of this study is to use molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses to explore the molecular interactions of different proteins that are involved in mycolic acid biosynthesis (HadAB, InhA, KasA, FabD, and beta-ketoacyl-acyl carrier protein synthase III) of M. tuberculosis with Demospongiae metabolites. The docking findings were evaluated using the glide gscore, and the top 10 compounds docked against each protein receptor were chosen. Furthermore, the selected compounds underwent ADMET analysis, indicating that they have the potential for therapeutic development. Results: Among the selected compounds, makaluvamine G showed the highest binding affinity against HadAB, psammaplysin E showed highest binding affinity against InhA, pseudotheonamide D showed the highest binding affinity against KasA protein, dinordehydrobatzelladine B showed the highest binding affinity against FabD, and nagelamide X showed the highest binding affinity against beta-ketoacyl-acyl carrier protein synthase III. Additionally, molecular mechanics generalized born surface area (MM-GBSA) binding free energy and molecular dynamics simulations were used to support the docking investigations. Conclusion: The results of the study suggest that these compounds may eventually be used to treat TB. However, computer validations were included in this study, and more in vitro research is required to turn these prospective inhibitors into clinical drugs.


Subject(s)
Mycobacterium tuberculosis , Porifera , Tuberculosis , Humans , Animals , Mycolic Acids/metabolism , Molecular Docking Simulation , Tuberculosis/drug therapy , Porifera/metabolism , Bacterial Proteins/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism
11.
Bioorg Chem ; 138: 106648, 2023 09.
Article in English | MEDLINE | ID: mdl-37315451

ABSTRACT

CtpF is a Ca2+ transporter P-type ATPase key to the response to stress conditions and to Mycobacterium tuberculosis virulence, therefore, an interesting target for the design of novel anti-Mtb compounds. In this work, molecular dynamics simulations of four previously identified CtpF inhibitors allowed recognizing the key protein-ligand (P-L) interactions, which were then used to perform a pharmacophore-based virtual screening (PBVS) of 22 million compounds from ZINCPharmer. The top-rated compounds were then subjected to molecular docking, and their scores were refined by MM-GBSA calculations. In vitro assays showed that ZINC04030361 (Compound 7) was the best promising candidate, showing a MIC of 25.0 µg/mL, inhibition of Ca2+-ATPase activity (IC50) of 3.3 µM, cytotoxic activity of 27.2 %, and hemolysis of red blood cells lower than 0.2 %. Interestingly, the ctpF gene is upregulated in the presence of compound 7, compared to other alkali/alkaline P-type ATPases coding genes, strongly suggesting that CtpF is a compound 7-specific target.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Molecular Docking Simulation , Protein Binding , Molecular Dynamics Simulation , Membrane Transport Proteins/metabolism , Adenosine Triphosphatases/metabolism , Cell Membrane/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Bacterial Proteins/metabolism
12.
EMBO J ; 42(15): e113687, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37377118

ABSTRACT

Mycobacteria, such as Mycobacterium tuberculosis, depend on the activity of adenosine triphosphate (ATP) synthase for growth. The diarylquinoline bedaquiline (BDQ), a mycobacterial ATP synthase inhibitor, is an important medication for treatment of drug-resistant tuberculosis but suffers from off-target effects and is susceptible to resistance mutations. Consequently, both new and improved mycobacterial ATP synthase inhibitors are needed. We used electron cryomicroscopy and biochemical assays to study the interaction of Mycobacterium smegmatis ATP synthase with the second generation diarylquinoline TBAJ-876 and the squaramide inhibitor SQ31f. The aryl groups of TBAJ-876 improve binding compared with BDQ, while SQ31f, which blocks ATP synthesis ~10 times more potently than ATP hydrolysis, binds a previously unknown site in the enzyme's proton-conducting channel. Remarkably, BDQ, TBAJ-876, and SQ31f all induce similar conformational changes in ATP synthase, suggesting that the resulting conformation is particularly suited for drug binding. Further, high concentrations of the diarylquinolines uncouple the transmembrane proton motive force while for SQ31f they do not, which may explain why high concentrations of diarylquinolines, but not SQ31f, have been reported to kill mycobacteria.


Subject(s)
Diarylquinolines , Mycobacterium tuberculosis , Diarylquinolines/pharmacology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Adenosine Triphosphate/metabolism , Mycobacterium tuberculosis/genetics
13.
Tuberculosis (Edinb) ; 141: 102362, 2023 07.
Article in English | MEDLINE | ID: mdl-37311288

ABSTRACT

The development of new anti-TB drugs to prevent the spread of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains is imperative. Mtb shikimate kinase (MtSK) was selected as the target protein to screen for new anti-TB drugs. We performed hierarchical in silico screening using a library of 154,118 compounds to search for novel compounds that could bind to the active site of MtSK. The growth-inhibitory effects of the candidate compounds on Mycobacterium smegmatis were evaluated in vitro. Nine of the 11 candidate compounds exhibited inhibitory effects against mycobacteria in vitro. The inhibitory activity of Compound 2 (IC50 = 1.39 µM) was higher than that of isoniazid, the first-line drug for TB treatment. Moreover, Compound 2 did not exhibit toxicity against mammalian cells and Escherichia coli. Molecular dynamics simulations using the MtSK-Compound 2 complex structure in a timeframe of 100 ns suggested that Compound 2 could stably bind to MtSK. The binding free energy of Compound 2 was estimated to be -37.96 kcal/mol using the MM/PBSA method, demonstrating that Compound 2 can stably bind to MtSK. These in silico and in vitro results indicated that Compound 2 is a promising hit compound for the development of novel anti-TB drugs.


Subject(s)
Anti-Infective Agents , Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/metabolism , Drug Evaluation, Preclinical , Tuberculosis/drug therapy , Molecular Docking Simulation , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Mammals/metabolism
14.
J Med Chem ; 66(11): 7553-7569, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37235809

ABSTRACT

We tested a series of SQ109 analogues against Mycobacterium tuberculosis and M. smegmatis, in addition to determining their uncoupling activity. We then investigated potential protein targets, involved in quinone and cell wall biosynthesis, using "rescue" experiments. There was little effect of menaquinone on growth inhibition by SQ109, but there were large increases in the IC50 of SQ109 and its analogues (up to 20×) on addition of undecaprenyl phosphate (Up), a homologue of the mycobacterial decaprenyl (C50) diphosphate. Inhibition of an undecaprenyl diphosphate phosphatase, an ortholog of the mycobacterial phosphatase, correlated with cell growth inhibition, and we found that M. smegmatis cell growth inhibition could be well predicted by using uncoupler and Up-rescue results. We also investigated whether SQ109 was metabolized inside Mycobacterium tuberculosis, finding only a single metabolite, previously shown to be inactive. The results are of general interest since they help explain the mechanism of SQ109 in mycobacteria.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Diphosphates/pharmacology , Tuberculosis/drug therapy , Tuberculosis/microbiology , Mycobacterium smegmatis
15.
Tuberculosis (Edinb) ; 141: 102350, 2023 07.
Article in English | MEDLINE | ID: mdl-37244249

ABSTRACT

A series of molecules containing bulky lipophilic scaffolds was screened for activity against Mycobacterium tuberculosis and a number of compounds with antimycobacterial activity were identified. The most active compound, (2E)-N-(adamantan-1-yl)-3-phenylprop-2-enamide (C1), has a low micromolar minimum inhibitory concentration, low cytotoxicity (therapeutic index = 32.26), low mutation frequency and is active against intracellular Mycobacterium tuberculosis. Whole genome sequencing of mutants resistant to C1 showed a mutation in mmpL3 which may point to the involvement of MmpL3 in the antimycobacterial activity of the compound. In silico mutagenesis and molecular modelling studies were performed to better understand the binding of C1 within MmpL3 and the role that the specific mutation may play in the interaction at protein level. These analyses revealed that the mutation increases the energy required for binding of C1 within the protein translocation channel of MmpL3. The mutation also decreases the solvation energy of the protein, suggesting that the mutant protein might be more solvent-accessible, thereby restricting its interaction with other molecules. The results reported here describe a new molecule that may interact with the MmpL3 protein, providing insights into the effect of mutations on protein-ligand interactions and enhancing our understanding of this essential protein as a priority drug target.


Subject(s)
Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Membrane Transport Proteins/genetics , Amides/metabolism , Amides/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/metabolism
16.
Infect Genet Evol ; 112: 105445, 2023 08.
Article in English | MEDLINE | ID: mdl-37217031

ABSTRACT

CRISPR-Cas systems are the only RNA- guided adaptive immunity pathways that trigger the detection and destruction of invasive phages and plasmids in bacteria and archaea. Due to its prevalence and mystery, the Class 1 CRISPR-Cas system has lately been the subject of several studies. This review highlights the specificity of CRISPR-Cas system III-A in Mycobacterium tuberculosis, the tuberculosis-causing pathogen, for over twenty years. We discuss the difference between the several subtypes of Type III and their defence mechanisms. The anti-CRISPRs (Acrs) recently described, the critical role of Reverse transcriptase (RT) and housekeeping nuclease for type III CRISPR-Cas systems, and the use of this cutting-edge technology, its impact on the search for novel anti-tuberculosis drugs.


Subject(s)
Bacteriophages , Mycobacterium tuberculosis , CRISPR-Cas Systems , Mycobacterium tuberculosis/genetics , Bacteriophages/genetics , Plasmids/genetics , Antitubercular Agents/metabolism
17.
Eur J Med Chem ; 255: 115351, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37116266

ABSTRACT

Mycobacterial membrane protein Large 3 (MmpL3), an inner membrane protein, plays a crucial role in the transport of mycolic acids that are essential for the viability of M. tuberculosis and has been a promising therapeutic target for new anti-TB agents. Herein, we report the discovery of pyridine-2-methylamine antitubercular compounds using a structure-based drug design strategy. Compound 62 stands out as the most potent compound with high activity against M. tb strain H37Rv (MIC = 0.016 µg/mL) as well as the clinically isolated strains of MDR/XDR-TB (MIC = 0.0039-0.0625 µg/mL), low Vero cell toxicity (IC50 ≥ 16 µg/mL), and moderate liver microsomal stability (CLint = 28 µL/min/mg). Furthermore, the resistant mutant of S288T due to single nucleotide polymorphism in mmpL3 was resistant to pyridine-2-methylamine 62, demonstrating compound 62 is likely target to MmpL3.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/metabolism , Bacterial Proteins , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism , Pyridines/pharmacology , Pyridines/metabolism
18.
Free Radic Biol Med ; 204: 20-27, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37094755

ABSTRACT

Acetylhydrazine (AcHZ), a major human metabolite of the widely-used anti-tuberculosis drug isoniazid (INH), was considered to be responsible for its serious hepatotoxicity and potentially fatal liver injury. It has been proposed that reactive radical species produced from further metabolic activation of AcHZ might be responsible for its hepatotoxicity. However, the exact nature of such radical species remains not clear. Through complementary applications of ESR spin-trapping and HPLC/MS methods, here we show that the initial N-centered radical intermediate can be detected and identified from AcHZ activated by transition metal ions (Mn(III)Acetate and Mn(III) pyrophosphate) and myeloperoxidase. The exact location of the radical was found to be at the distal-nitrogen of the hydrazine group by 15N-isotope-labeling techniques via using 15N-labeled AcHZ we synthesized. Additionally, the secondary C-centered radical was identified unequivocally as the reactive acetyl radical by complementary applications of ESR spin-trapping and persistent radical TEMPO trapping coupled with HPLC/MS analysis. This study represents the first detection and unequivocal identification of the initial N-centered radical and its exact location, as well as the reactive secondary acetyl radical. These findings should provide new perspectives on the molecular mechanism of AcHZ activation, which may have potential biomedical and toxicological significance for future research on the mechanism of INH-induced hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Hydrazines , Humans , Hydrazines/metabolism , Isoniazid/metabolism , Antitubercular Agents/metabolism , Electron Spin Resonance Spectroscopy , Free Radicals
19.
Prog Biophys Mol Biol ; 180-181: 87-104, 2023.
Article in English | MEDLINE | ID: mdl-37105260

ABSTRACT

ATP synthase is a key protein in the oxidative phosphorylation process, as it aids in the effective production of ATP (Adenosine triphosphate) in all life's of kingdoms. ATP synthases have distinctive properties that contribute to efficient ATP synthesis. The ATP synthase of mycobacterium is of special relevance since it has been identified as a target for potential anti-TB molecules, especially Bedaquiline (BDQ). Better knowledge of how mycobacterial ATP synthase functions and its peculiar characteristics will aid in our understanding of bacterial energy metabolism adaptations. Furthermore, identifying and understanding the important distinctions between human ATP synthase and bacterial ATP synthase may provide insight into the design and development of inhibitors that target specific ATP synthase. In recent years, many potential candidates targeting the ATP synthase of mycobacterium have been developed. In this review, we discuss the druggable targets of the Electron transport chain (ETC) and recently identified potent inhibitors (including clinical molecules) from 2015 to 2022 of diverse classes that target ATP synthase of M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Mycobacterium tuberculosis/metabolism , Adenosine Triphosphate/metabolism , Tuberculosis/drug therapy , Drug Development
20.
Comput Biol Chem ; 104: 107828, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36893566

ABSTRACT

The bacteria Mycobacterium tuberculosis is responsible for the infectious disease Tuberculosis. Targeting the tubercule bacteria is an important challenge in developing the antimycobacterials. The glyoxylate cycle is considered as a potential target for the development of anti-tuberculosis agents, due to its absence in the humans. Humans only possess tricarboxylic acid cycle, while this cycle gets connected to glyoxylate cycle in microbes. Glyoxylate cycle is essential to the Mycobacterium for its growth and survival. Due to this reason, it is considered as a potential therapeutic target for the development of anti-tuberculosis agents. Here, we explore the effect on the behavior of the tricarboxylic acid cycle, glyoxylate cycle and their integrated pathway with the bioenergetics of the Mycobacterium, under the inhibition of key glyoxylate cycle enzymes using Continuous Petri net. Continuous Petri net is a special Petri net used to perform the quantitative analysis of the networks. We first study the tricarboxylic acid cycle and glyoxylate cycle of the tubercule bacteria by simulating its Continuous Petri net model under different scenarios. Both the cycles are then integrated with the bioenergetics of the bacteria and the integrated pathway is again simulated under different conditions. The simulation graphs show the metabolic consequences of inhibiting the key glyoxylate cycle enzymes and adding the uncouplers on the individual as well as integrated pathway. The uncouplers that inhibit the synthesis of adenosine triphosphate, play an important role as anti-mycobacterials. The simulation study done here validates the proposed Continuous Petri net model as compared with the experimental outcomes and also explains the consequences of the enzyme inhibition on the biochemical reactions involved in the metabolic pathways of the mycobacterium.


Subject(s)
Mycobacterium tuberculosis , Humans , Energy Metabolism , Citric Acid Cycle/physiology , Antitubercular Agents/pharmacology , Antitubercular Agents/metabolism , Glyoxylates/metabolism , Glyoxylates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...