ABSTRACT
Quinazolinones have pharmacological effects on vascular reactivity through different mechanisms. We synthesized 4-phenylquinazolin-2(1H)-one derivatives under microwave irradiation and tested them on the rat thoracic aorta. The prepared compounds 2a-2f were obtained in about 1 h with suitable yields (31-92%). All derivatives produced vasorelaxant effects with IC50 values ranging from 3.41 ± 0.65 µM to 39.72 ± 6.77 µM. Compounds 2c, 2e and 2f demonstrated the highest potency in endothelium-intact aorta rings (IC50 4.31 ± 0.90 µM, 4.94 ± 1.21 µM and 3.41 ± 0.65 µM respectively), and they achieved around 90% relaxation (30 µM). In aorta rings without an endothelium, the effect of compound 2f was abolished. Using the MTT assay to test for cell viability, only compound 2b induced cytotoxicity at the maximum concentration employed (30 µM). The results show that vasorelaxation by 4-phenylquinazolin-2(1H)-one derivatives might depend on the activation of a signalling pathway triggered by endothelium-derived factors.
Subject(s)
Aorta, Thoracic/drug effects , Microwaves , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Animals , Aorta, Thoracic/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Male , Quinazolines/chemistry , Rats , Vasodilation/drug effects , Vasodilation/radiation effectsABSTRACT
The purpose of this study was to evaluate the acute effect of photobiomodulation therapy (PBM) on arterial pressure in hypertensive and normotensive rats with application in an abdominal region. Normotensive (2K) and hypertensive (2K-1C) wistar rats were treated with PBM. Systolic arterial pressure (SAP), diastolic arterial pressure (DAP), mean arterial pressure (MAP) and heart rate (HR) were measured before, during and after PBM application. The nitric oxide (NO) serum concentration was measured before and after PBM application. Vascular reactivity study was performed in isolated thoracic aortas. Aluminum gallium arsenide (GaAlAs) diode laser was used, at 660nm wavelength and 100mW optical output. The PBM application induced a decrease of SAP in 2K-1C rats. In 2K rats, the PBM application had no effect on SAP, DAP and MAP. Moreover, the magnitude of hypotensive effect was higher in 2K-1C than in 2K rats. The PBM application induced a decrease of HR in 2K-1C and 2K, with higher effect in 2K-1C rats. In 2K-1C, the hypotensive effect induced by PBM was longer than that obtained in 2K rats. PBM application induced an elevation of NO concentration in serum from 2K-1C and 2K rats, with higher effect in 2K-1C. In isolated aortic rings PBM effect is dependent of NO release, and is not dependent of nitric oxide synthase (NOS) activation. Our results indicate that the abdominal acute application of PBM at 660nm is able to induce a long lasting hypotensive effect in hypertensive rats and vasodilation by a NO dependent mechanism.