Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 444
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674156

ABSTRACT

This study investigated the association between apolipoprotein E (APOE) gene polymorphisms (rs429358 and rs7412) and primary angle-closure glaucoma (PACG) and pseudoexfoliation glaucoma (PXG) in a Saudi cohort. Genotyping of 437 DNA samples (251 controls, 92 PACG, 94 PXG) was conducted using PCR-based Sanger sequencing. The results showed no significant differences in the allele and genotype frequencies of rs429358 and rs7412 between the PACG/PXG cases and controls. Haplotype analysis revealed ε3 as predominant, followed by ε4 and ε2 alleles, with no significant variance in PACG/PXG. However, APOE genotype analysis indicated a significant association between ε2-carriers and PACG (odds ratio = 4.82, 95% CI 1.52-15.26, p = 0.007), whereas no notable association was observed with PXG. Logistic regression confirmed ε2-carriers as a significant predictor for PACG (p = 0.008), while age emerged as significant for PXG (p < 0.001). These findings suggest a potential role of ε2-carriers in PACG risk within the Saudi cohort. Further validation and larger-scale investigations are essential to elucidate the precise role of APOE in PACG pathogenesis and progression.


Subject(s)
Apolipoprotein E2 , Genetic Predisposition to Disease , Glaucoma, Angle-Closure , Polymorphism, Single Nucleotide , Humans , Glaucoma, Angle-Closure/genetics , Male , Female , Saudi Arabia/epidemiology , Aged , Middle Aged , Apolipoprotein E2/genetics , Gene Frequency , Haplotypes , Case-Control Studies , Alleles , Genotype , Heterozygote , Risk Factors
2.
PLoS One ; 19(4): e0292576, 2024.
Article in English | MEDLINE | ID: mdl-38635499

ABSTRACT

BACKGROUND: The Apolipoprotein E (APOE) gene has been established in the Alzheimer's disease (AD) literature to impact brain structure and function and may also show congruent effects in healthy older adults, although findings in this population are much less consistent. The current study aimed to replicate and expand the multimodal approach employed by Honea et al. Structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and neuropsychological measures were used to investigate the impact of APOE-ε status on grey matter structure, white matter integrity, and cognitive functioning. METHODS: Data were obtained from the Alzheimer's Disease Initiative Phase 3 (ADNI3) database. Baseline MRI, DTI and cognitive composite scores for memory (ADNI-Mem) and executive function (ADNI-EF) were acquired from 116 healthy controls. Participants were grouped according to APOE allele presence (APOE-ε2+ N = 17, APOE-ε3ε3 N = 64, APOE-ε4+ N = 35). Voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) were used to compare grey matter volume (GMV) and white matter integrity, respectively, between APOE-ε2+ and APOE-ε3ε3 controls, and again between APOE-ε4+ and APOE-ε3ε3 controls. Multivariate analysis of covariance (MANCOVA) was used to examine the effects of APOE polymorphism on memory and EF across all APOE groups with age, sex and education as regressors of no interest. Cognitive scores were correlated (Pearson r) with imaging metrics within groups. RESULTS: No significant differences were seen across groups, within groups in MRI metrics, or cognitive performance (p>0.05, corrected for multiple comparisons). CONCLUSIONS: The current study partially replicated and extended previous findings from an earlier multimodal study (Honea 2009). Future studies should clarify APOE mechanisms in healthy ageing by adding other imaging, cognitive, and lifestyle metrics and longitudinal design in larger sample sizes.


Subject(s)
Alzheimer Disease , Diffusion Tensor Imaging , Aged , Humans , Alleles , Alzheimer Disease/pathology , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Brain/pathology , Cognition , Diffusion Tensor Imaging/methods , Neuropsychological Tests
3.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504517

ABSTRACT

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Subject(s)
Alzheimer Disease , Apolipoprotein E2 , Disease Models, Animal , Genetic Therapy , Mice, Transgenic , Microglia , Plaque, Amyloid , Animals , Alzheimer Disease/therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/etiology , Mice , Genetic Therapy/methods , Humans , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Microglia/metabolism , Brain/metabolism , Brain/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers
4.
J Alzheimers Dis ; 97(4): 1629-1639, 2024.
Article in English | MEDLINE | ID: mdl-38306049

ABSTRACT

APOE2 lowers Alzheimer's disease (AD) risk; unfortunately, the mechanism remains poorly understood and the use of mice models is problematic as APOE2 homozygosity is associated with hyperlipidemia. In this study, we developed mice that are heterozygous for APOE2 and APOE3 or APOE4 and overexpress amyloid-ß peptide (Aß) (EFAD) to evaluate the effect of APOE2 dosage on Aß pathology. We found that heterozygous mice do not exhibit hyperlipidemia. Hippocampal but not cortical levels of soluble Aß42 followed the order E2/2FAD > E2/3FAD≤E3/3FAD and E2/2FAD > E2/4FAD < E4/4FAD without an effect on insoluble Aß42. These findings offer initial insights on the impact of APOE2 on Aß pathology.


Subject(s)
Alzheimer Disease , Hyperlipidemias , Mice , Animals , Apolipoprotein E2/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Mice, Transgenic , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/metabolism , Apolipoprotein E3 , Mice, Inbred Strains , Hippocampus/pathology , Hyperlipidemias/genetics
5.
Hum Brain Mapp ; 45(2): e26612, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339898

ABSTRACT

Global prevalence of Alzheimer's Disease has a strong sex bias, with women representing approximately two-thirds of the patients. Yet, the role of sex-specific risk factors during midlife, including hormone replacement therapy (HRT) and their interaction with other major risk factors for Alzheimer's Disease, such as apolipoprotein E (APOE)-e4 genotype and age, on brain health remains unclear. We investigated the relationship between HRT (i.e., use, age of initiation and duration of use) and brain health (i.e., cognition and regional brain volumes). We then consider the multiplicative effects of HRT and APOE status (i.e., e2/e2, e2/e3, e3/e3, e3/e4 and e4/e4) via a two-way interaction and subsequently age of participants via a three-way interaction. Women from the UK Biobank with no self-reported neurological conditions were included (N = 207,595 women, mean age = 56.25 years, standard deviation = 8.01 years). Generalised linear regression models were computed to quantify the cross-sectional association between HRT and brain health, while controlling for APOE status, age, time since attending centre for completing brain health measure, surgical menopause status, smoking history, body mass index, education, physical activity, alcohol use, ethnicity, socioeconomic status, vascular/heart problems and diabetes diagnosed by doctor. Analyses of structural brain regions further controlled for scanner site. All brain volumes were normalised for head size. Two-way interactions between HRT and APOE status were modelled, in addition to three-way interactions including age. Results showed that women with the e4/e4 genotype who have used HRT had 1.82% lower hippocampal, 2.4% lower parahippocampal and 1.24% lower thalamus volumes than those with the e3/e3 genotype who had never used HRT. However, this interaction was not detected for measures of cognition. No clinically meaningful three-way interaction between APOE, HRT and age was detected when interpreted relative to the scales of the cognitive measures used and normative models of ageing for brain volumes in this sample. Differences in hippocampal volume between women with the e4/e4 genotype who have used HRT and those with the e3/e3 genotype who had never used HRT are equivalent to approximately 1-2 years of hippocampal atrophy observed in typical health ageing trajectories in midlife (i.e., 0.98%-1.41% per year). Effect sizes were consistent within APOE e4/e4 group post hoc sensitivity analyses, suggesting observed effects were not solely driven by APOE status and may, in part, be attributed to HRT use. Although, the design of this study means we cannot exclude the possibility that women who have used HRT may have a predisposition for poorer brain health.


Subject(s)
Alzheimer Disease , Male , Humans , Female , Middle Aged , UK Biobank , Biological Specimen Banks , Cross-Sectional Studies , Apolipoproteins E/genetics , Brain/diagnostic imaging , Genotype , Hormone Replacement Therapy , Apolipoprotein E4/genetics , Apolipoprotein E3/genetics , Apolipoprotein E2/genetics
6.
Alzheimers Res Ther ; 16(1): 7, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212861

ABSTRACT

BACKGROUND: APOE4 is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), whereas APOE2 confers protection. However, effects of APOE on neurodegeneration in cognitively intact individuals, and how these associations evolve with cognitive decline, are unclear. Furthermore, few studies have evaluated whether effects of APOE on neurodegenerative changes are modified by other AD key risk factors including age and sex. METHODS: Participants included older adults (57% women; 77 ± 7 years) from the Rancho Bernardo Study of Health Aging and the University of California San Diego Alzheimer's Disease Research Center, including 192 cognitively normal (CN) individuals and 33 with mild cognitive impairment. Participants underwent diffusion MRI, and multicompartment restriction spectrum imaging (RSI) metrics were computed in white matter, gray matter, and subcortical regions of interest. Participants were classified as APOE4 carriers, APOE2 carriers, and APOE3 homozygotes. Analysis of covariance among CN (adjusting for age, sex, and scanner) assessed differences in brain microstructure by APOE, as well as interactions between APOE and sex. Analyses across all participants examined interactions between APOE4 and cognitive status. Linear regressions assessed APOE by age interactions. RESULTS: Among CN, APOE4 carriers showed lower entorhinal cortex neurite density than non-carriers, whereas APOE2 carriers showed lower cingulum neurite density than non-carriers. Differences in entorhinal microstructure by APOE4 and in entorhinal and cingulum microstructure by APOE2 were present for women only. Age correlated with lower entorhinal restricted isotropic diffusion among APOE4 non-carriers, whereas age correlated with lower putamen restricted isotropic diffusion among APOE4 carriers. Differences in microstructure between cognitively normal and impaired participants were stronger for APOE4-carriers in medial temporal regions, thalamus, and global gray matter, but stronger for non-carriers in caudate. CONCLUSIONS: The entorhinal cortex may be an early target of neurodegenerative changes associated with APOE4 in presymptomatic individuals, whereas APOE2 may support beneficial white matter and entorhinal microstructure, with potential sex differences that warrant further investigation. APOE modifies microstructural patterns associated with aging and cognitive impairment, which may advance the development of biomarkers to distinguish microstructural changes characteristic of normal brain aging, APOE-dependent pathways, and non-AD etiologies.


Subject(s)
Alzheimer Disease , Apolipoprotein E2 , Apolipoprotein E4 , Cognitive Dysfunction , Aged , Female , Humans , Male , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Aged, 80 and over
7.
Circ Res ; 134(4): 411-424, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38258600

ABSTRACT

BACKGROUND: APOE is a known genetic contributor to cardiovascular disease, but the differential role APOE alleles play in subclinical atherosclerosis remains unclear. METHODS: The PESA (Progression of Early Subclinical Atherosclerosis) is an observational cohort study that recruited 4184 middle-aged asymptomatic individuals to be screened for cardiovascular risk and multiterritorial subclinical atherosclerosis. Participants were APOE-genotyped, and omics data were additionally evaluated. RESULTS: In the PESA study, the frequencies for APOE -ε2, -ε3, and -ε4 alleles were 0.060, 0.844, and 0.096, respectively. This study included a subcohort of 3887 participants (45.8±4.3 years of age; 62% males). As expected, APOE-ε4 carriers were at the highest risk for cardiovascular disease and had significantly greater odds of having subclinical atherosclerosis compared with ε3/ε3 carriers, which was mainly explained by their higher levels of low-density lipoprotein (LDL)-cholesterol. In turn, APOE-ε2 carriers were at the lowest risk for cardiovascular disease and had significantly lower odds of having subclinical atherosclerosis in several vascular territories (carotids: 0.62 [95% CI, 0.47-0.81]; P=0.00043; femorals: 0.60 [0.47-0.78]; P=9.96×10-5; coronaries: 0.53 [0.39-0.74]; P=0.00013; and increased PESA score: 0.58 [0.48-0.71]; P=3.16×10-8). This APOE-ε2 atheroprotective effect was mostly independent of the associated lower LDL-cholesterol levels and other cardiovascular risk factors. The protection conferred by the ε2 allele was greater with age (50-54 years: 0.49 [95% CI, 0.32-0.73]; P=0.00045), and normal (<150 mg/dL) levels of triglycerides (0.54 [0.44-0.66]; P=4.70×10-9 versus 0.90 [0.57-1.43]; P=0.67 if ≥150 mg/dL). Omics analysis revealed an enrichment of several canonical pathways associated with anti-inflammatory mechanisms together with the modulation of erythrocyte homeostasis, coagulation, and complement activation in ε2 carriers that might play a relevant role in the ε2's atheroprotective effect. CONCLUSIONS: This work sheds light on the role of APOE in cardiovascular disease development with important therapeutic and prevention implications on cardiovascular health, especially in early midlife. REGISTRATION: URL: https://www.clinicaltrials.gov: NCT01410318.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Male , Middle Aged , Humans , Female , Apolipoprotein E2/genetics , Genetic Predisposition to Disease , Apolipoproteins E/genetics , Cardiovascular Diseases/genetics , Genotype , Atherosclerosis/epidemiology , Atherosclerosis/genetics , Cholesterol, LDL , Alleles
8.
Brain Struct Funct ; 229(1): 231-249, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091051

ABSTRACT

APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.


Subject(s)
Alzheimer Disease , Connectome , Humans , Middle Aged , Female , Male , Mice , Animals , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism , Alleles , Brain/metabolism , Aging/genetics , Cognition , Gene Expression Profiling , Atrophy/pathology
9.
Article in English | MEDLINE | ID: mdl-37792627

ABSTRACT

BACKGROUND: Apolipoprotein-E (APOE) ε4 and ε2 are the most prevalent risk-increasing and risk-reducing genetic predictors of Alzheimer's disease, respectively. However, the extent to which societal factors can reduce the harmful impact of APOE-ε4 and enhance the beneficial impact of APOE-ε2 on brain health has not yet been examined systematically. METHODS: To fill this gap, we conducted a systematic review searching for studies in MEDLINE, Embase, PsycINFO, and Scopus until June 2023, that included: (a) 1 of 5 social determinants of health (SDH) identified by Healthy People 2030, (b) APOE-ε2 or APOE-ε4 allele carriers, (c) cognitive or brain-biomarker outcomes, and (d) studies with an analysis of how APOE-ε2 and/ or APOE-ε4 carriers differ on outcomes when exposed to SDH. RESULTS: From 14 076 articles retrieved, 124 met the inclusion criteria. In most of the studies, exposure to favorable SDH reduced APOE-ε4's detrimental effect and enhanced APOE-ε2's beneficial effect on cognitive and brain-biomarker outcomes (cognition: 70.5%, n: 74/105; brain-biomarkers: 71.4%, n: 20/28). A similar pattern of results emerged in each of the 5 Healthy People 2030 SDH categories, where finishing high school, having resources to satisfy basic needs, less air pollution, less negative external stimuli that can generate stress (eg, negative age stereotypes), and exposure to multiple favorable SDH were associated with better cognitive and brain health among APOE-ε4 and APOE-ε2 carriers. CONCLUSIONS: Societal factors can reduce the harmful impact of APOE-ε4 and enhance the beneficial impact of APOE-ε2 on cognitive outcomes. This suggests that plans to reduce dementia should include community-level policies promoting favorable SDH.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Humans , Alleles , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Biomarkers , Brain , Genotype
10.
Genes (Basel) ; 14(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38136930

ABSTRACT

The genetic etiology of Keratoconus (KC) in Middle Eastern Arabs of Saudi origin is still unclear. A recent genome-wide study identified two significant loci in the region of PNPLA2 (rs61876744) and CSNK1E (rs138380) for KC that may be associated with KC in the Saudi population. In addition, polymorphisms in the apolipoprotein E (APOE) gene, namely, rs429358 and rs7412, responsible for APOE allelic variants ε2, ε3, and ε4, may influence KC via oxidative stress mechanism(s). Thus, we investigated the possible association of polymorphisms rs61876744, rs138380, rs429358, rs7412, and APOE genotypes in KC patients of the Saudi population. This study included 98 KC cases and 167 controls. Polymorphisms rs6187644 and rs138380 were genotyped using TaqMan assays, and rs429358 and rs7412 were genotyped via Sanger sequencing. Although the allele frequency of rs61876744(T) in PNPLA2 was a protective effect against KC (odds ratio (OR) = 0.64, 95% confidence interval (CI) = 0.44-0.93), the p-value (p = 0.020) was not significant for multiple testing correction (p = 0.05/4 = 0.015). However, rs6187644 genotype showed a modestly significant protective effect in the dominant model (OR = 0.53, 95% CI = 0.32-0.88, p = 0.013). Polymorphisms rs138380, rs429358, and rs7412 showed no significant allelic or genotype association with KC. However, the ε2-carriers (ε2/ε2 and ε2/ε3 genotypes) exhibited a greater than 5-fold increased risk of KC, albeit non-significantly (p = 0.055). Regression analysis showed no significant effect of age, gender, and the four polymorphisms on KC. Our results suggest that polymorphism rs6187644 in PNPLA2 might be associated with KC in the Middle Eastern Arabs of Saudi origin but warrant a large-scale association analysis at this locus.


Subject(s)
Genome-Wide Association Study , Keratoconus , Humans , Keratoconus/genetics , Saudi Arabia , Polymorphism, Genetic , Apolipoproteins E/genetics , Apolipoprotein E2/genetics , Acyltransferases/genetics , Lipase/genetics
11.
PLoS One ; 18(10): e0291733, 2023.
Article in English | MEDLINE | ID: mdl-37796905

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is associated with the apolipoprotein E (APOE) gene and lipid metabolism. This study aimed to develop an imaging-based pipeline to comprehensively assess cardiac structure and function in mouse models expressing different APOE genotypes using photon-counting computed tomography (PCCT). METHODS: 123 mice grouped based on APOE genotype (APOE2, APOE3, APOE4, APOE knockout (KO)), gender, human NOS2 factor, and diet (control or high fat) were used in this study. The pipeline included PCCT imaging on a custom-built system with contrast-enhanced in vivo imaging and intrinsic cardiac gating, spectral and temporal iterative reconstruction, spectral decomposition, and deep learning cardiac segmentation. Statistical analysis evaluated genotype, diet, sex, and body weight effects on cardiac measurements. RESULTS: Our results showed that PCCT offered high quality imaging with reduced noise. Material decomposition enabled separation of calcified plaques from iodine enhanced blood in APOE KO mice. Deep learning-based segmentation showed good performance with Dice scores of 0.91 for CT-based segmentation and 0.89 for iodine map-based segmentation. Genotype-specific differences were observed in left ventricular volumes, heart rate, stroke volume, ejection fraction, and cardiac index. Statistically significant differences were found between control and high fat diets for APOE2 and APOE4 genotypes in heart rate and stroke volume. Sex and weight were also significant predictors of cardiac measurements. The inclusion of the human NOS2 gene modulated these effects. CONCLUSIONS: This study demonstrates the potential of PCCT in assessing cardiac structure and function in mouse models of CVD which can help in understanding the interplay between genetic factors, diet, and cardiovascular health.


Subject(s)
Cardiovascular Diseases , Iodine , Mice , Humans , Animals , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Apolipoprotein E3/genetics , Tomography, X-Ray Computed , Mice, Knockout , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/genetics
12.
J Neurol Neurosurg Psychiatry ; 94(9): 670-680, 2023 09.
Article in English | MEDLINE | ID: mdl-37414536

ABSTRACT

BACKGROUND: While obesity in midlife is a risk factor for dementia, several studies suggested that obesity also protected against dementia, hence so-called obesity paradox. The current study aims to address the relationship between apolipoprotein E (APOE) genotype and obesity in dementia. METHODS: Clinical and neuropathological records of the National Alzheimer's Coordinating Center (NACC) in the USA, which longitudinally followed approximately 20 000 subjects with different cognitive statues, APOE genotype and obesity states, were reviewed. RESULTS: Obesity was associated with cognitive decline in early elderly cognitively normal individuals without APOE4, especially those with APOE2. Neuropathological analyses adjusted for dementia status showed that APOE2 carriers tended to have more microinfarcts and haemorrhages due to obesity. On the other hand, obesity was associated with a lower frequency of dementia and less cognitive impairment in individuals with mild cognitive impairment or dementia. Such trends were particularly strong in APOE4 carriers. Obesity was associated with fewer Alzheimer's pathologies in individuals with dementia. CONCLUSIONS: Obesity may accelerate cognitive decline in middle to early elderly cognitive normal individuals without APOE4 likely by provoking vascular impairments. On the other hand, obesity may ease cognitive impairment in both individuals with dementia and individuals at the predementia stage, especially those with APOE4, through protecting against Alzheimer's pathologies. These results support that APOE genotype modifies the obesity paradox in dementia.


Subject(s)
Alzheimer Disease , Aged , Humans , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Genotype , Obesity/complications , Obesity/genetics , Obesity Paradox
13.
Genes (Basel) ; 14(7)2023 07 10.
Article in English | MEDLINE | ID: mdl-37510324

ABSTRACT

The role of genetics as a predisposing factor related to an increased risk of developing long COVID symptomatology is under debate. The aim of the current secondary analysis was to identify the association between the Apolipoprotein E (ApoE) gene, a gene affecting cholesterol metabolism and previously associated with a higher risk of SARS-CoV-2 infection and COVID-19 severity, and the development of long COVID in a cohort of individuals who had been hospitalized by SARS-CoV-2 infection. Unstimulated whole saliva samples were collected from 287 previously hospitalized COVID-19 survivors. Three genotypes of the ApoE gene (ApoE ε2, ε3, ε4) were obtained based on the combination of ApoE rs429358 and ApoE rs7412 polymorphisms. Participants were asked to self-report the presence of any post-COVID symptom in a face-to-face interview at 17.8 ± 5.2 months after hospital discharge and medical records were obtained. Each participant reported 3.0 (1.9) post-COVID symptoms. Overall, no significant differences in long COVID symptoms were observed depending on the ApoE genotype (ApoE ε2, ApoE ε3, ApoE ε4). The presence of the ApoE ε4 genotype, albeit associated with a higher risk of SARS-CoV-2 infection and COVID-19 severity, did not appear to predispose for the presence of long COVID in our cohort of previously hospitalized COVID-19 survivors.


Subject(s)
Apolipoproteins E , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , COVID-19/genetics , Genotype , Post-Acute COVID-19 Syndrome/genetics , SARS-CoV-2
14.
Int J Mol Sci ; 24(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37511008

ABSTRACT

The ε2 allele of apolipoprotein E (ε2) has neuroprotective effects against beta-amyloid (Aß) pathology in Alzheimer's disease (AD). However, its impact on the functional connectivity and hub efficiency in cognitively normal older adults (CN) with ε2 is unclear. We investigated the functional connectivity differences in the default mode network (DMN), salience network, and central executive network (CEN) between A-PET-negative (N = 29) and A-PET-positive (N = 15) CNs with ε2/ε2 or ε2/ε3 genotypes. The A-PET-positive CNs exhibited a lower anterior DMN functional connectivity, higher posterior DMN functional connectivity, and increased CEN functional connectivity compared to the A-PET-negative CNs. Cerebral Aß retention was negatively correlated with anterior DMN functional connectivity and positively correlated with posterior DMN and anterior CEN functional connectivity. A graph theory analysis showed that the A-PET-positive CNs displayed a higher betweenness centrality in the middle frontal gyrus (left) and medial fronto-parietal regions (left). The betweenness centrality in the middle frontal gyrus (left) was positively correlated with Aß retention. Our findings reveal a reversed anterior-posterior dissociation in the DMN functional connectivity and heightened CEN functional connectivity in A-PET-positive CNs with ε2. Hub efficiencies, measured by betweenness centrality, were increased in the DMN and CEN of the A-PET-positive CNs with ε2. These results suggest unique functional connectivity responses to Aß pathology in CN individuals with ε2.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E2 , Aged , Humans , Alleles , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Brain/pathology , Cognition , Magnetic Resonance Imaging/methods , Amyloid beta-Peptides/metabolism
15.
JAMA Neurol ; 80(9): 929-939, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37459083

ABSTRACT

Importance: Sex differences are established in associations between apolipoprotein E (APOE) ε4 and cognitive impairment in Alzheimer disease (AD). However, it is unclear whether sex-specific cognitive consequences of APOE are consistent across races and extend to the APOE ε2 allele. Objective: To investigate whether sex and race modify APOE ε4 and ε2 associations with cognition. Design, Setting, and Participants: This genetic association study included longitudinal cognitive data from 4 AD and cognitive aging cohorts. Participants were older than 60 years and self-identified as non-Hispanic White or non-Hispanic Black (hereafter, White and Black). Data were previously collected across multiple US locations from 1994 to 2018. Secondary analyses began December 2021 and ended September 2022. Main Outcomes and Measures: Harmonized composite scores for memory, executive function, and language were generated using psychometric approaches. Linear regression assessed interactions between APOE ε4 or APOE ε2 and sex on baseline cognitive scores, while linear mixed-effect models assessed interactions on cognitive trajectories. The intersectional effect of race was modeled using an APOE × sex × race interaction term, assessing whether APOE × sex interactions differed by race. Models were adjusted for age at baseline and corrected for multiple comparisons. Results: Of 32 427 participants who met inclusion criteria, there were 19 007 females (59%), 4453 Black individuals (14%), and 27 974 White individuals (86%); the mean (SD) age at baseline was 74 years (7.9). At baseline, 6048 individuals (19%) had AD, 4398 (14%) were APOE ε2 carriers, and 12 538 (38%) were APOE ε4 carriers. Participants missing APOE status were excluded (n = 9266). For APOE ε4, a robust sex interaction was observed on baseline memory (ß = -0.071, SE = 0.014; P = 9.6 × 10-7), whereby the APOE ε4 negative effect was stronger in females compared with males and did not significantly differ among races. Contrastingly, despite the large sample size, no APOE ε2 × sex interactions on cognition were observed among all participants. When testing for intersectional effects of sex, APOE ε2, and race, an interaction was revealed on baseline executive function among individuals who were cognitively unimpaired (ß = -0.165, SE = 0.066; P = .01), whereby the APOE ε2 protective effect was female-specific among White individuals but male-specific among Black individuals. Conclusions and Relevance: In this study, while race did not modify sex differences in APOE ε4, the APOE ε2 protective effect could vary by race and sex. Although female sex enhanced ε4-associated risk, there was no comparable sex difference in ε2, suggesting biological pathways underlying ε4-associated risk are distinct from ε2 and likely intersect with age-related changes in sex biology.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Aged , Female , Humans , Male , Alleles , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cognition , Executive Function , Genotype
16.
Acta Neuropathol Commun ; 11(1): 99, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37337279

ABSTRACT

Apolipoprotein (APOE) E4 isoform is a major risk factor of Alzheimer's disease and contributes to metabolic and neuropathological abnormalities during brain aging. To provide insights into whether APOE4 genotype is related to tau-associated neurodegeneration, we have generated human P301S mutant tau transgenic mice (PS19) that carry humanized APOE alleles (APOE2, APOE3 or APOE4). In aging mice that succumbed to paralysis, PS19 mice homozygous for APOE3 had the longest lifespan when compared to APOE4 and APOE2 homozygous mice (APOE3 > APOE4 ~ APOE2). Heterozygous mice with one human APOE and one mouse Apoe allele did not show any variations in lifespan. At end-stage, PS19 mice homozygous for APOE3 and APOE4 showed equivalent levels of phosphorylated tau burden, inflammation levels and ventricular volumes. Compared to these cohorts, PS19 mice homozygous for APOE2 showed lower induction of phosphorylation on selective epitopes, though the effect sizes were small and variable. In spite of this, the APOE2 cohort showed shorter lifespan relative to APOE3 homozygous mice. None of the cohorts accumulated appreciable levels of phosphorylated tau compartmentalized in the insoluble cell fraction. RNAseq analysis showed that the induction of immune gene expression was comparable across all the APOE genotypes in PS19 mice. Notably, the APOE4 homozygous mice showed additional induction of transcripts corresponding to the Alzheimer's disease-related plaque-induced gene signature. In human Alzheimer's disease brain tissues, we found no direct correlation between higher burden of phosphorylated tau and APOE4 genotype. As expected, there was a strong correlation between phosphorylated tau burden with amyloid deposition in APOE4-positive Alzheimer's disease cases. Overall, our results indicate that APOE3 genotype may confer some resilience to tauopathy, while APOE4 and APOE2 may act through multiple pathways to increase the pathogenicity in the context of tauopathy.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Humans , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Longevity/genetics , Apolipoproteins E/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Mice, Transgenic , Genotype
17.
Cancer Res ; 83(18): 3013-3025, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37335131

ABSTRACT

The secreted lipid transporter apolipoprotein E (APOE) plays important roles in atherosclerosis and Alzheimer's disease and has been implicated as a suppressor of melanoma progression. The APOE germline genotype predicts human melanoma outcomes, with APOE4 and APOE2 allele carriers exhibiting prolonged and reduced survival, respectively, relative to APOE3 homozygotes. While the APOE4 variant was recently shown to suppress melanoma progression by enhancing antitumor immunity, further work is needed to fully characterize the melanoma cell-intrinsic effects of APOE variants on cancer progression. Using a genetically engineered mouse model, we showed that human germline APOE genetic variants differentially modulate melanoma growth and metastasis in an APOE2>APOE3>APOE4 manner. The low-density lipoprotein receptor-related protein 1 (LRP1) receptor mediated the cell-intrinsic effects of APOE variants on melanoma progression. Protein synthesis was a tumor cell-intrinsic process differentially modulated by APOE variants, with APOE2 promoting translation via LRP1. These findings reveal a gain-of-function role for the APOE2 variant in melanoma progression, which may aid in predicting melanoma patient outcomes and understanding the protective effect of APOE2 in Alzheimer's disease. SIGNIFICANCE: APOE germline variants impact melanoma progression through disparate mechanisms, such as the protein synthesis-promoting function of the APOE2 variant, indicating that germline genetic variants are causal contributors to metastatic outcomes.


Subject(s)
Alzheimer Disease , Melanoma , Animals , Humans , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Carrier Proteins , Melanoma/genetics
18.
PLoS One ; 18(5): e0284697, 2023.
Article in English | MEDLINE | ID: mdl-37134097

ABSTRACT

BACKGROUND: Apolipoprotein E is involved in lipid transport and clearance of lipoprotein through low-density lipoprotein receptors (LDLR). ApoE variation has been linked to cardiovascular disease (CVD) risk. There are 3 isoforms of ApoE which originate from two non-synonymous single nucleotide polymorphisms denoted as ε2, ε3 and ε4. The ε2 isoform is implicated in higher levels of atherogenic lipoprotein with the ε4 isoform causing LDLR downregulation. This leads to variable effects and differential CVD risk. Malaria and HIV are life-threatening diseases affecting several countries globally especially in sub-Saharan Africa. Parasite and viral activities have been implicated in lipid dysregulation leading to dyslipidaemia. This study examined ApoE variation and CVD risk assessment in malaria and HIV patients. METHODS: We compared 76 malaria-only, 33 malaria-HIV coinfected, 21-HIV-only and 31 controls from a tertiary health facility in Ghana. Fasting venous blood samples were taken for ApoE genotyping and lipid measurements. Clinical and laboratory data were collected with ApoE genotyping performed using Iplex Gold microarray and PCR-RFLP. Cardiovascular disease risk was calculated using the Framingham BMI and cholesterol risk and Qrisk3 tools. RESULTS: The frequency of C/C genotype for rs429358 was 9.32%, whiles T/T genotype for rs7412 was found in 2.48% of all participants. ε3/ε3 was the most distributed ApoE genotype accounting for 51.55% of the total participants whiles ε2/ε2 was found in 2.48% of participants, with 1 in malaria-only and 3 in HIV-only patients. There was a significant association between ε4+ and high TG (OR = 0.20, CI; 0.05-0.73; p = 0.015), whiles ε2+ was significantly associated with higher BMI (OR; 0.24, CI; 0.06-0.87; p = 0.030) and higher Castelli Risk Index II in females (OR = 11.26, CI; 1.37-92.30; p = 0.024). A higher proportion of malaria-only participants had a moderate to high 10-year CVD risk. CONCLUSION: Overall malaria patients seem to have a higher CVD risk though the means through which this occurs may be poorly understood. ε2/ε2 genotypes was observed in our population at a lower frequency. Further studies are vital to determine CVD risk in malaria and how this occurs.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , HIV Infections , Malaria , Female , Humans , HIV Infections/complications , HIV Infections/epidemiology , HIV Infections/genetics , Ghana/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Apolipoproteins E/genetics , Genotype , Polymorphism, Single Nucleotide , Malaria/complications , Malaria/epidemiology , Malaria/genetics , Risk Assessment , Genetic Predisposition to Disease , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics
19.
Alzheimers Dement ; 19(11): 5086-5094, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37104247

ABSTRACT

INTRODUCTION: The influence of apolipoprotein E (APOE) genotype on mild cognitive impairment (MCI) and Alzheimer's disease (AD) is well studied in the non-Hispanic white (NHW) population but not in the Hispanic population. Additionally, health risk factors such as hypertension, stroke, and depression may also differ between the two populations. METHODS: We combined three data sets (National Alzheimer's Coordinating Center [NACC], Alzheimer's Disease Neuroimaging Initiative [ADNI], Health and Aging Brain Study: Health Disparities [HABS-HD]) and compared risk factors for MCI and AD between Hispanic and NHW participants, with a total of 24,268 participants (11.1% Hispanic). RESULTS: APOEε4 was associated with fewer all-cause MCI cases in Hispanic participants (Hispanic odds ratio [OR]: 1.114; NHW OR: 1.453), and APOEε2 (Hispanic OR: 1.224; NHW OR: 0.592) and depression (Hispanic OR: 2.817; NHW OR: 1.847) were associated with more AD cases in Hispanic participants. DISCUSSION: APOEε2 may not be protective for AD in Hispanic participants and Hispanic participants with depression may face a higher risk for AD. HIGHLIGHTS: GAAIN allows for discovery of data sets to use in secondary analyses. APOEε2 was not protective for AD in Hispanic participants. APOEε4 was associated with fewer MCI cases in Hispanic participants. Depression was associated with more AD cases in Hispanic participants.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Cognitive Dysfunction , Hispanic or Latino , White People , Humans , Aging , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/genetics , Hispanic or Latino/genetics , Hispanic or Latino/psychology , Hispanic or Latino/statistics & numerical data , Risk Factors , White People/genetics , White People/psychology , White People/statistics & numerical data
20.
Neuron ; 111(12): 1898-1913.e5, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37040764

ABSTRACT

Aberrant low γ-secretase activity is associated with most of the presenilin mutations that underlie familial Alzheimer's disease (fAD). However, the role of γ-secretase in the more prevalent sporadic AD (sAD) remains unaddressed. Here, we report that human apolipoprotein E (ApoE), the most important genetic risk factor of sAD, interacts with γ-secretase and inhibits it with substrate specificity in cell-autonomous manners through its conserved C-terminal region (CT). This ApoE CT-mediated inhibitory activity is differentially compromised in different ApoE isoforms, resulting in an ApoE2 > ApoE3 > ApoE4 potency rank order inversely correlating to their associated AD risk. Interestingly, in an AD mouse model, neuronal ApoE CT migrates to amyloid plaques in the subiculum from other regions and alleviates the plaque burden. Together, our data reveal a hidden role of ApoE as a γ-secretase inhibitor with substrate specificity and suggest that this precision γ-inhibition by ApoE may protect against the risk of sAD.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Mice , Animals , Humans , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoprotein E3/genetics , Amyloid Precursor Protein Secretases , Apolipoproteins E/genetics , Alzheimer Disease/genetics , Amyloid beta-Peptides
SELECTION OF CITATIONS
SEARCH DETAIL
...