Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44.290
Filter
1.
Reprod Fertil Dev ; 362024 May.
Article in English | MEDLINE | ID: mdl-38739740

ABSTRACT

Context A maternal high-fat diet is thought to pose a risk to spermatogenesis in the progeny. Aims We tested whether a maternal high-fat diet would affect Sertoli cell expression of transcription factors (insulin-like growth factor I (IGF-I); glial-cell line-derived neurotrophic factor (GDNF); Ets variant 5 (ETV5)) and cell proliferation and apoptotic proteins, in the testis of adult offspring. Methods Pregnant rats were fed ad libitum with a standard diet (Control) or a high-fat diet (HFat) throughout pregnancy and lactation. After weaning, male pups were fed the standard diet until postnatal day 160. Males were monitored daily from postnatal day 34 to determine onset of puberty. On postnatal day 160, their testes were processed for morphometry and immunohistochemistry. Key results The HFat diet increased seminiferous-tubule diameter (P P P P P P P P Conclusions A maternal high-fat diet alters the balance between spermatogonia proliferation and spermatid apoptosis. Implications A maternal high-fat diet seems to 'program' adult male fertility.


Subject(s)
Apoptosis , Cell Proliferation , Diet, High-Fat , Lactation , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Testis , Animals , Female , Male , Pregnancy , Apoptosis/physiology , Lactation/physiology , Testis/metabolism , Testis/pathology , Rats , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Spermatogenesis/physiology , Sertoli Cells/metabolism , Sertoli Cells/pathology , Insulin-Like Growth Factor I/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Rats, Wistar
2.
FASEB J ; 38(7): e23562, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38578557

ABSTRACT

Our recent investigation has indicated that the global deletion of MBD2 can mitigate the progression of AKI induced by VAN. Nevertheless, the role and regulatory mechanisms of proximal tubular MBD2 in this pathophysiological process have yet to be elucidated. Our preceding investigation revealed that autophagy played a crucial role in advancing AKI induced by VAN. Consequently, we postulated that MBD2 present in the proximal tubule could upregulate the autophagic process to expedite the onset of AKI. In the present study, we found for the first time that MBD2 mediated the autophagy production induced by VAN. Through the utilization of miRNA chip analysis, we have mechanistically demonstrated that MBD2 initiates the activation of miR-597-5p through promoter demethylation. This process leads to the suppression of S1PR1, which results in the induction of autophagy and apoptosis in renal tubular cells. Besides, PT-MBD2-KO reduced autophagy to attenuate VAN-induced AKI via regulation of the miR-597-5p/S1PR1 axis, which was reversed by rapamycin. Finally, the overexpression of MBD2 aggravated the diminished VAN-induced AKI in autophagy-deficient mice (PT-Atg7-KO). These data demonstrate that proximal tubular MBD2 facilitated the process of autophagy via the miR-597-5p/S1PR1 axis and subsequently instigated VAN-induced AKI through the induction of apoptosis. The potentiality of MBD2 being a target for AKI was established.


Subject(s)
Acute Kidney Injury , MicroRNAs , Animals , Mice , Vancomycin , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Kidney , MicroRNAs/genetics , Apoptosis/physiology , Autophagy
3.
Int J Hyperthermia ; 41(1): 2335199, 2024.
Article in English | MEDLINE | ID: mdl-38565204

ABSTRACT

PURPOSE: c-Jun N-terminal kinases (JNKs) comprise a subfamily of mitogen-activated protein kinases (MAPKs). The JNK group is known to be activated by a variety of stimuli. However, the molecular mechanism underlying heat-induced JNK activation is largely unknown. The aim of this study was to clarify how JNK activity is stimulated by heat. METHODS AND MATERIALS: The expression levels of various MAPK members in HeLa cells, with or without hyperthermia treatment, were evaluated via western blotting. The kinase activity of MAPK members was assessed through in vitro kinase assays. Cell death was assessed in the absence or presence of siRNAs targeting MAPK-related members. RESULTS: Hyperthermia decreased the levels of MAP3Ks, such as ASK1 and MLK3 which are JNK kinase kinase members, but not those of the downstream MAP2K/SEK1 and MAPK/JNK. Despite the reduced or transient phosphorylation of ASK1, MLK3, or SEK1, downstream JNK was phosphorylated in a temperature-dependent manner. In vitro kinase assays demonstrated that heat did not directly stimulate SEK1 or JNK. However, the expression levels of DUSP16, a JNK phosphatase, were decreased upon hyperthermia treatment. DUSP16 knockdown enhanced the heat-induced activation of ASK1-SEK1-JNK pathway and apoptosis. CONCLUSION: JNK was activated in a temperature-dependent manner despite reduced or transient phosphorylation of the upstream MAP3K and MAP2K. Hyperthermia-induced degradation of DUSP16 may induce activation of the ASK1-SEK1-JNK pathway and subsequent apoptosis.


Subject(s)
Hyperthermia, Induced , MAP Kinase Signaling System , Humans , HeLa Cells , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Apoptosis/physiology
4.
Brain Res Bull ; 211: 110950, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38631651

ABSTRACT

The aim of this study was to investigate the expression and function of the transient receptor potential vanilloid 1 (TRPV1) in glioma. We found that the expression of TRPV1 mRNA and protein were upregulated in glioma compared with normal brain by qPCR and western blot analysis. In order to investigate the function of TRPV1 in glioma, short hairpin RNA (shRNA) and the inhibitor of TRPV1 were used. In vitro, the activation of TRPV1 induced cell apoptosis with decreased migration capability and inhibited proliferation, which was abolished upon TRPV1 pharmacological inhibition and silencing. Mechanistically, TRPV1 modulated glioma proliferation through the protein kinase B (Akt) signaling pathway. More importantly, in immunodeficient (NOD-SCID) mouse xenograft models, tumor size was significantly increased when TRPV1 expression was disrupted by a shRNA knockdown approach in vivo. Altogether, our findings indicate that TRPV1 negatively controls glioma cell proliferation in an Akt-dependent manner, which suggests that targeting TRPV1 may be a potential therapeutic strategy for glioma.


Subject(s)
Apoptosis , Brain Neoplasms , Cell Proliferation , Glioma , TRPV Cation Channels , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Glioma/metabolism , Glioma/pathology , Animals , Humans , Cell Proliferation/physiology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Mice , Apoptosis/physiology , Mice, SCID , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred NOD , Cell Movement/physiology , RNA, Small Interfering/pharmacology , Signal Transduction/physiology , Male , Female
5.
Pathol Res Pract ; 257: 155323, 2024 May.
Article in English | MEDLINE | ID: mdl-38653091

ABSTRACT

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is a dominant pathological type in China. NUPR1 is a complex molecule implicated in various physiological and biological functions whose expression is upregulated in response to stress. Furthermore, autophagy is a vital physiological mechanism in the onset and metastasis of malignancies. This study aims to uncover the influence of NUPR1 on ESCC occurrence and development by regulating autophagy while also exploring its association with the MAPK signaling pathway. METHODS: First, the differences in NUPR1 between ESCC and normal tissues were analyzed through online databases. Subsequently, the pathological tissues of clinical samples were stained and scored using immunohistochemistry. And NUPR1 expression in ESCC cells was investigated, as was the function of NUPR1 in the modulation of ESCC's malignant behavior. Furthermore, a nude mouse ESCC xenograft model was developed. Finally, RNA sequencing was performed on NUPR1-downregulated ESCC cells, which was verified using WB. RESULTS: Our findings initially uncovered differences in the expression of NUPR1 in ESCC and normal tissues. In vitro experiments demonstrated that NUPR1 downregulation significantly inhibited ESCC cell proliferation, invasion, and migration, as well as promoted their apoptosis. Our xenograft model exhibited significant inhibition of ESCC tumors upon NUPR1 downregulation. Subsequently, RNA sequencing uncovered that NUPR1 regulates its malignant biological behavior through MAPK-mTOR signaling pathway. Finally, we found that NUPR1 downregulation can inhibit autophagic flux in ESCC. CONCLUSION: Collectively, our findings show that NUPR1 enhances the progression of ESCC by triggering autophagy and is associated with the MAPK-mTOR signaling pathway.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Transcription Factors , Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Mice, Nude , Neoplasm Proteins , TOR Serine-Threonine Kinases , Humans , Autophagy/physiology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , TOR Serine-Threonine Kinases/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , MAP Kinase Signaling System/physiology , Cell Proliferation/physiology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction/physiology , Male , Female , Apoptosis/physiology , Mice, Inbred BALB C , Cell Movement
6.
J Psychiatr Res ; 174: 84-93, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626565

ABSTRACT

Schizophrenia (SCZ) represents a set of enduring mental illnesses whose underlying etiology remains elusive, posing a significant challenge to public health. Previous studies have shown that the neurodevelopmental process involving small molecules such as miRNA and mRNA is one of the etiological hypotheses of SCZ. We identified and verified that miR-30e-3p and ABI1 can be used as biomarkers in peripheral blood transcriptome sequencing data of patients with SCZ, and confirmed the regulatory relationship between them. To further explore their involvement, we employed retinoic acid (RA)-treated SH-SY5Y differentiated cells as a model system. Our findings indicate that in RA-induced SH-SY5Y cells, ABI1 expression is up-regulated, while miR-30e-3p expression is down-regulated. Functionally, both miR-30e-3p down-regulation and ABI1 up-regulation promote apoptosis and inhibit the proliferation of SH-SY5Y cells. Subsequently, the immunofluorescence assay detected the expression location and abundance of the neuron-specific protein ß-tubulinIII. The expression levels of neuronal marker genes MAPT, TUBB3 and SYP were detected by RT-qPCR. We observed that these changes of miR-30e-3p and ABI1 inhibit the neurite growth of SH-SY5Y cells. Rescue experiments further support that ABI1 silencing can correct miR-30e-3p down-regulation-induced SH-SY5Y neurodevelopmental defects. Collectively, our results establish that miR-30e-3p's regulation of neurite development in SH-SY5Y cells is mediated through ABI1, highlighting a potential mechanism in SCZ pathogenesis.


Subject(s)
Biomarkers , MicroRNAs , Schizophrenia , Humans , MicroRNAs/blood , MicroRNAs/genetics , Schizophrenia/blood , Schizophrenia/metabolism , Cell Line, Tumor , Biomarkers/blood , Biomarkers/metabolism , Neurites/drug effects , Tretinoin/pharmacology , Tubulin/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Neuroblastoma
7.
Acta Neuropathol Commun ; 12(1): 66, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654316

ABSTRACT

The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.


Subject(s)
Apoptosis , Mice, Inbred C57BL , Neurons , Serum Albumin , Tauopathies , Animals , Humans , Male , Mice , Apoptosis/drug effects , Apoptosis/physiology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/drug effects , Fatty Acid Elongases/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Serum Albumin/metabolism , Serum Albumin/pharmacology , tau Proteins/metabolism , Tauopathies/pathology , Tauopathies/metabolism
8.
Ageing Res Rev ; 95: 102251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428821

ABSTRACT

Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.


Subject(s)
Neurodegenerative Diseases , Regulated Cell Death , Humans , Aging/physiology , Apoptosis/physiology , Longevity
9.
J Int Adv Otol ; 20(1): 35-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38454287

ABSTRACT

BACKGROUND: The present study aims to determine the possible low dose-dependent adverse effects of 2.45 GHz microwave exposure and Wi-Fi frequency on the cochlea. METHODS: Twelve pregnant female rats (n=12) and their male newborns were exposed to Wi-Fi frequencies with varying electric field values of 0.6, 1.9, 5, 10 V/m, and 15 V/m during the 21-day gestation period and 45 days after birth, except for the control group. Auditory brainstem response testing was performed before exposure and sacrification. After removal of the cochlea, histopathological examination was conducted by immunohistochemistry methods using caspase (cysteine-aspartic proteases, cysteine aspartates, or cysteine-dependent aspartate-directed proteases)-3, -9, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Kruskal-Wallis and Wilcoxon tests and multivariate analysis of variance were used. RESULTS: Auditory brainstem response thresholds in postexposure tests increased statistically significantly at 5 V/m and above doses. When the number of apoptotic cells was compared in immunohistochemistry examination, significant differences were found at 10 V/m and 15 V/m doses (F(5,15)=23.203, P=.001; Pillai's trace=1.912, η2=0.637). As the magnitude of the electric field increased, all histopathological indicators of apoptosis increased. The most significant effect was noted on caspase-9 staining (η2 c9=0.996), followed by caspase-3 (η2 c3=0.991), and TUNEL staining (η2 t=0.801). Caspase-3, caspase-9, and TUNEL-stained cell densities increased directly by increasing the electric field and power values. CONCLUSION: Apoptosis and immune activity in the cochlea depend on the electric field and power value. Even at low doses, the electromagnetic field in Wi-Fi frequency damages the inner ear and causes apoptosis.


Subject(s)
Ear, Inner , Microwaves , Pregnancy , Male , Female , Rats , Animals , Microwaves/adverse effects , Caspase 3/metabolism , Caspase 3/pharmacology , Caspase 9/pharmacology , Cysteine/pharmacology , Cochlea/pathology , Apoptosis/physiology
10.
Immunity ; 57(3): 429-445, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38479360

ABSTRACT

Diverse inflammatory conditions, from infections to autoimmune disease, are often associated with cellular damage and death. Apoptotic cell death has evolved to minimize its inflammatory potential. By contrast, necrotic cell death via necroptosis and pyroptosis-driven by membrane-damaging MLKL and gasdermins, respectively-can both initiate and propagate inflammatory responses. In this review, we provide insights into the function and regulation of MLKL and gasdermin necrotic effector proteins and drivers of plasma membrane rupture. We evaluate genetic evidence that MLKL- and gasdermin-driven necrosis may either provide protection against, or contribute to, disease states in a context-dependent manner. These cumulative insights using gene-targeted mice underscore the necessity for future research examining pyroptotic and necroptotic cell death in human tissue, as a basis for developing specific necrotic inhibitors with the potential to benefit a spectrum of pathological conditions.


Subject(s)
Apoptosis , Gasdermins , Humans , Animals , Mice , Necrosis/metabolism , Apoptosis/physiology , Pyroptosis/physiology , Cell Death , Inflammasomes/metabolism , Protein Kinases/metabolism
11.
Adv Exp Med Biol ; 1444: 129-143, 2024.
Article in English | MEDLINE | ID: mdl-38467977

ABSTRACT

Necroptosis is a regulated form of cell death involved in the development of various pathological conditions. In contrast to apoptosis, plasma membrane rupture (PMR) occurs in cells in the relatively early stage of necroptosis; therefore, necroptosis induces a strong inflammatory response. Stimuli, including tumor necrosis factor (TNF), interferon (IFN)α/ß, lipopolysaccharide, polyI:C, and viral infection, induce the formation of necrosomes that lead to membrane rupture and the release of intracellular contents, termed danger-associated molecular patterns (DAMPs). DAMPs are the collective term for molecules that normally reside in the cytoplasm or nucleus in living cells without inducing inflammation but induce strong inflammatory responses when released outside cells. Recent studies have provided a better understanding of the mechanisms underlying PMR and the release of DAMPs. Moreover, necroptosis is involved in various pathological conditions, and mutations in necroptosis-related genes can cause hereditary autoinflammatory syndromes. Thus, manipulating necroptosis signaling pathways may be useful for treating diseases involving necroptosis.


Subject(s)
Apoptosis , Necroptosis , Humans , Necrosis/metabolism , Apoptosis/physiology , Cell Death , Tumor Necrosis Factor-alpha/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
12.
Eur J Med Chem ; 269: 116304, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38484677

ABSTRACT

Necroptosis is a type of regulated cell death known for its pro-inflammatory nature due to the substantial release of cellular contents. The phosphorylation of key proteins, namely RIP1, RIP3, and mixed lineage kinase domain-like protein (MLKL), plays a pivotal role in the processes associated with necroptosis. Consequently, inhibiting the phosphorylation of any of these three key protein kinases could effectively block necroptosis. Utilizing a scaffold hopping strategy, we have successfully designed and synthesized a series of novel RIP1 inhibitors with selective and anti-necrotic properties, using compound o1 as the lead compound. In comparison to o1, SY1 has demonstrated heightened antinecroptosis activity and binding affinity in vitro studies. Moreover, SY1 has exhibited superior efficacy in both in vivo studies, specifically in the context of SIRS, and pharmacokinetic assessments. Furthermore, SY1 has proven effective in significantly suppressing the central inflammatory response induced by epilepsy.


Subject(s)
Epilepsy , Systemic Inflammatory Response Syndrome , Humans , Systemic Inflammatory Response Syndrome/drug therapy , Necroptosis , Protein Kinases/metabolism , Epilepsy/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis/physiology
13.
Sci Total Environ ; 924: 171649, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38485018

ABSTRACT

Unstoppable global warming and increased frequency of extreme heat leads to human and animals easier to suffer from heat stress (HS), with gastrointestinal abnormalities as one of the initial clinical symptoms. HS induces intestinal mucosal damage owing to intestinal hypoxia and hyperthermia. Hypoxia-inducible factor 1α (HIF-1α) activates numerous genes to mediate cell hypoxic responses; however, its role in HS-treated intestinal mucosa is unknown. This work aimed to explore HIF-1α function and regulatory mechanisms in HS-treated pig intestines. We assigned 10 pigs to control and moderate HS groups. Physical signs, stress, and antioxidant levels were detected, and the intestines were harvested after 72 h of HS treatment to study histological changes and HIF-1α, heat shock protein 90 (HSP90), and prolyl-4-hydroxylase 2 (PHD-2) expression. In addition, porcine intestinal columnar epithelial cells (IPEC-J2) underwent HS treatment (42 °C, 5 % O2) to further explore the functions and regulatory mechanism of HIF-1α. The results of histological examination revealed HS caused intestinal villi damage and increased apoptotic epithelial cell; the expression of HIF-1α and HSP90 increased while PHD-2 showed and opposite trend. Transcriptome sequencing analysis revealed that HS activated HIF-1 signaling. To further explore the role of HIF-1α on HS induced IPEC-J2 apoptosis, the HIF-1α was interfered and overexpression respectively, and the result confirmed that HIF-1α could inhibited cell apoptosis under HS. Furthermore, HS-induced apoptosis depends on eukaryotic initiation factor 2 alpha (eif2α)/activating transcription factor 4 (ATF4)/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway, and HIF-1α can inhibit this pathway to alleviate IPEC-J2 cell apoptosis. In conclusion, this study suggests that HS can promote intestinal epithelial cell apoptosis and cause pig intestinal mucosal barrier damage; the HIF-1α can alleviate cell apoptosis by inhibiting eif2α/ATF4/CHOP signaling. These results indicate that HIF-1α plays a protective role in HS, and offers a potential target for HS prevention and mitigation.


Subject(s)
Apoptosis , Heat-Shock Response , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Activating Transcription Factor 4/metabolism , Apoptosis/genetics , Apoptosis/physiology , Epithelial Cells/metabolism , Eukaryotic Initiation Factor-2/metabolism , Heat-Shock Response/genetics , Intestines/metabolism , Swine , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Transcription Factor CHOP/metabolism , Signal Transduction
14.
Exp Cell Res ; 437(1): 113995, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38490621

ABSTRACT

PURPOSE: Oral Squamous Cell Carcinoma (OSCC) is the 6th most common cancer worldwide. It is generally aggressive and closely associated with chemoresistance and poor survival. There is accumulating evidence for the involvement of inhibitors of apoptosis proteins (IAPs), including IAP1 and XIAP, in mediating chemotherapy resistance in OSCC. Various strategies for targeting IAPs have been designed and tested in recent years and several small molecule IAP inhibitors are in clinical trials as monotherapies as well as in combination with radiotherapy and chemotherapy. The purpose of this study was to evaluate and compare the efficacy and biological activity of three IAP inhibitors both as stand-alone and sensitising agents to cisplatin in a preclinical model of squamous cell carcinoma of the tongue. METHODS: Cisplatin-sensitive SCC4 and -resistant SCC4cisR cells were utilised in this study. Apoptosis was evaluated by flow cytometric analysis of Annexin V/Propidium Iodide-stained cells. Expression of IAP proteins was determined by western blotting and knockdown of cIAP1, livin and XIAP was conducted by transfection of cells with siRNA. RESULTS: We establish for the first time the therapeutic efficacy of the Smac mimetic, BV6 and the XIAP inhibitor Embelin, for OSCC. Both of these IAP targeting agents synergistically enhanced cisplatin-mediated apoptotic cell death in resistant cells which was mediated in part by depletion of XIAP. In addition, knockdown of XIAP using siRNA enhanced cisplatin-mediated cell death, demonstrating the importance of targeting XIAP in this sensitisation. CONCLUSION: These findings provide pre-clinical evidence that IAP inhibition may be a valuable therapeutic option in OSCC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Cisplatin/pharmacology , Carcinoma, Squamous Cell/drug therapy , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism , Cell Line, Tumor , Mouth Neoplasms/drug therapy , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Apoptosis/physiology , Carrier Proteins , RNA, Small Interfering
15.
Int Heart J ; 65(2): 279-291, 2024.
Article in English | MEDLINE | ID: mdl-38556336

ABSTRACT

Myocardial ischemia/reperfusion (I/R) decreases cardiac function and efficiency. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) have been linked to the cellular processes of myocardial I/R injury. The present investigation elucidated the function of lncRNA colon cancer-associated transcript 2 (CCAT2) in myocardial I/R injury and the related mechanisms.AC16 cardiomyocytes were exposed to hypoxia (16 hours) /reoxygenation (6 hours) (H/R) to mimic myocardial I/R models in vitro. CCAT2 and microRNA (miR) -539-3p expressions in AC16 cardiomyocytes were measured using real-time quantitative polymerase chain reaction. B-cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) protein levels in AC16 cardiomyocytes were determined by western blotting. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) levels, mitochondrial membrane potential, and apoptosis were detected using Counting Kit-8, LDH Assay Kit, dihydroethidium assay, 5,5',6,6'-tetrachloro1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide staining, flow cytometry, and western blotting, respectively. The interactions between the molecules were confirmed using the dual-luciferase gene reporter. The wingless/integrated/beta-catenin (Wnt/ß-catenin) pathway under the H/R condition was detected by western blotting.CCAT2 and BMI1 mRNA expressions were reduced in H/R-exposed AC16 cardiomyocytes. CCAT2 overexpression exerted protective effects against H/R-induced cardiomyocyte injury, as demonstrated by increased cell viability and mitochondrial membrane potential and decreased LDH leakage, ROS levels, and apoptosis. In addition, CCAT2 positively regulated BMI1 expression by binding to miR-539-3p. CCAT2 knockdown or miR-539-3p overexpression restrained the protective effects of BMI1 against H/R-induced cardiomyocyte injury. In addition, miR-539-3p overexpression reversed the protective effects of CCAT2. Furthermore, CCAT2 activated the Wnt/ß-catenin pathway under the H/R condition via the miR-539-3p/BMI1 axis.Overall, this investigation showed the protective effects of the CCAT2/miR-539-3p/BMI1/Wnt/ß-catenin regulatory axis against cardiomyocyte injury induced by H/R.


Subject(s)
Colonic Neoplasms , Coronary Artery Disease , MicroRNAs , Myocardial Ischemia , Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Humans , Mice , Apoptosis/physiology , beta Catenin/metabolism , Colonic Neoplasms/metabolism , Coronary Artery Disease/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Polycomb Repressive Complex 1/genetics , Reactive Oxygen Species/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
16.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542202

ABSTRACT

Fas-associated death domain (FADD) is an adaptor protein that predominantly transduces the apoptosis signal from the death receptor (DR) to activate caspases, leading to the initiation of apoptotic signaling and the coordinated removal of damaged, infected, or unwanted cells. In addition to its apoptotic functions, FADD is involved in signaling pathways related to autophagy, cell proliferation, necroptosis, and cellular senescence, indicating its versatile role in cell survival and proliferation. The subcellular localization and intracellular expression of FADD play a crucial role in determining its functional outcomes, thereby highlighting the importance of spatiotemporal mechanisms and regulation. Furthermore, FADD has emerged as a key regulator of inflammatory signaling, contributing to immune responses and cellular homeostasis. This review provides a comprehensive summary and analysis of the cellular dynamics of FADD in regulating programmed cell death and inflammation through distinct molecular mechanisms associated with various signaling pathways.


Subject(s)
Apoptosis , Neoplasms , Humans , Death Domain , Fas-Associated Death Domain Protein/metabolism , Apoptosis/physiology , fas Receptor/metabolism , Inflammation , Caspase 8/metabolism
17.
Int J Biol Macromol ; 264(Pt 1): 130542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432272

ABSTRACT

Pathological cardiac hypertrophy (CH) is driven by maladaptive changes in myocardial cells in response to pressure overload or other stimuli. CH has been identified as a significant risk factor for the development of various cardiovascular diseases, ultimately resulting in heart failure. Melanoma differentiation-associated protein 5 (MDA5), encoded by interferon-induced with helicase C domain 1 (IFIH1), is a cytoplasmic sensor that primarily functions as a detector of double-stranded ribonucleic acid (dsRNA) viruses in innate immune responses; however, its role in CH pathogenesis remains unclear. Thus, the aim of this study was to examine the relationship between MDA5 and CH using cellular and animal models generated by stimulating neonatal rat cardiomyocytes with phenylephrine and by performing transverse aortic constriction on mice, respectively. MDA5 expression was upregulated in all models. MDA5 deficiency exacerbated myocardial pachynsis, fibrosis, and inflammation in vivo, whereas its overexpression hindered CH development in vitro. In terms of the underlying molecular mechanism, MDA5 inhibited CH development by promoting apoptosis signal-regulating kinase 1 (ASK1) phosphorylation, thereby suppressing c-Jun N-terminal kinase/p38 signaling pathway activation. Rescue experiments using an ASK1 activation inhibitor confirmed that ASK1 phosphorylation was essential for MDA5-mediated cell death. Thus, MDA5 protects against CH and is a potential therapeutic target.


Subject(s)
Apoptosis , MAP Kinase Kinase Kinase 5 , Mice , Rats , Animals , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , MAP Kinase Kinase Kinase 5/metabolism , Apoptosis/physiology , Cardiomegaly/metabolism , Signal Transduction , JNK Mitogen-Activated Protein Kinases/metabolism
18.
Nat Commun ; 15(1): 2676, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538581

ABSTRACT

Autophagy modulates the degradation and recycling of intracellular materials and contributes to male gametophyte development and male fertility in plants. However, whether autophagy participates in seed development remains largely unknown. Here, we demonstrate that autophagy is crucial for timely programmed cell death (PCD) in the integumentary tapetum, the counterpart of anther tapetum, influencing embryo pattern formation and seed viability. Inhibition of autophagy resulted in delayed PCD of the integumentary tapetum and defects in embryo patterning. Cell-type-specific restoration of autophagic activities revealed that the integumentary tapetum plays a non-autonomous role in embryo patterning. Furthermore, high-throughput, comprehensive lipidomic analyzes uncovered an unexpected seed-developmental-stage-dependent role of autophagy in seed lipid metabolism: it contributes to triacylglycerol degradation before fertilization and to triacylglycerol biosynthesis after fertilization. This study highlights the critical role of autophagy in regulating timely integumentary tapetum PCD and reveals its significance in seed lipid metabolism and viability.


Subject(s)
Apoptosis , Pollen , Pollen/metabolism , Apoptosis/physiology , Skin , Autophagy/genetics , Triglycerides/metabolism , Gene Expression Regulation, Plant , Flowers
19.
Cells ; 13(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38534365

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.


Subject(s)
Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Humans , TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Apoptosis/physiology , Signal Transduction , Neoplasms/metabolism
20.
Brain Res ; 1834: 148890, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552936

ABSTRACT

NADPH-oxidase (NOX) is a multi-subunit enzyme complex. The upregulation of NOX causes massive production of superoxide (O2¯), which avidly reacts with nitric oxide (NO) and increases cellular reactive oxygen/nitrogen species (ROS/RNS). Increased ROS/RNS plays pivotal role in the sporadic Alzheimer's disease (sAD) development and brain damage following impaired insulin signaling. Hence, this study aimed to examine early-time course of changes in NOX and NOS expression, and apoptotic proteins in the rats hippocampi following insulin signaling impairment [induced by STZ injection; intraperitoneal (IP) or in cerebral ventricles (ICV)]. Early effects (1, 3, or 6 weeks) on the NOX activity, translocation of NOX subunits from cytosol to the membrane, NO-synthases [neuronal-, inducible- and endothelial-NOS; nNOS, iNOS and eNOS], The Rac-1 protein expression, levels of NO and O2¯, cytochrome c release, caspase-3 and 9 activations (cleavage) were studied. STZ injection (in both models) increased NOX activity, O2¯ production, and enhanced cytosolic subunits translocation into membrane. The iNOS but not nNOS and eNOS expression and NO levels were increased in STZ treated rats. Finally, STZ injection increased cytochrome c release, caspase-3 and 9 activations in a manner that was significantly associated with levels of O2¯ and NO in the hippocampus. ICV-STZ administration resulted in significant profound changes over the IP route. In conclusion, impairment in insulin function induces early changes in ROS/RNS contents through NOX and iNOS upregulation and neuronal apoptosis in the hippocampus. Our results could mechanistically explain the role of impaired insulin function in the development of sAD.


Subject(s)
Alzheimer Disease , Apoptosis , Hippocampus , Insulin , NADPH Oxidases , Nitric Oxide Synthase Type II , Rats, Wistar , Signal Transduction , Up-Regulation , Animals , Hippocampus/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Male , Apoptosis/physiology , Up-Regulation/physiology , Insulin/metabolism , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type II/metabolism , Signal Transduction/physiology , Rats , Streptozocin , Nitric Oxide/metabolism , rac1 GTP-Binding Protein/metabolism , Reactive Oxygen Species/metabolism , Disease Models, Animal , Caspase 3/metabolism , Cytochromes c/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...