Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.942
Filter
1.
Nutrients ; 16(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38674831

ABSTRACT

An approach that shows promise for quickening the evolution of innovative anticancer drugs is the assessment of natural biomass sources. Our study sought to assess the effect of W. somnifera L. (WS) methanolic root and stem extracts on the expression of five targeted genes (cyclooxygenase-2, caspase-9, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2) in colon cancer cell lines (Caco-2 cell lines). Plant extracts were prepared for bioassay by dissolving them in dimethyl sulfoxide. Caco-2 cell lines were exposed to various concentrations of plant extracts, followed by RNA extraction for analysis. By explicitly relating phytoconstituents of WS to the dose-dependent overexpression of caspase-9 genes and the inhibition of cyclooxygenase-2, 5-Lipoxygenase, B-cell lymphoma-extra-large, and B-cell lymphoma 2 genes, our novel findings characterize WS as a promising natural inhibitor of colorectal cancer (CRC) growth. Nonetheless, we recommend additional in vitro research to verify the current findings. With significant clinical benefits hypothesized, we offer WS methanolic root and stem extracts as potential organic antagonists for colorectal carcinogenesis and suggest further in vivo and clinical investigations, following successful in vitro trials. We recommend more investigation into the specific phytoconstituents in WS that contribute to the regulatory mechanisms that inhibit the growth of colon cancer cells.


Subject(s)
Colorectal Neoplasms , Plant Extracts , Withania , Humans , Plant Extracts/pharmacology , Caco-2 Cells , Withania/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Methanol/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Caspase 9/metabolism , Caspase 9/genetics , Antineoplastic Agents, Phytogenic/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Plant Roots/chemistry , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Plant Stems/chemistry
2.
Oncogene ; 43(18): 1319-1327, 2024 May.
Article in English | MEDLINE | ID: mdl-38575760

ABSTRACT

5-Lipoxygenase (5-LO), a fatty acid oxygenase, is the central enzyme in leukotriene (LT) biosynthesis, potent arachidonic acid-derived lipid mediators released by innate immune cells, that control inflammatory and allergic responses. In addition, through interaction with 12- and 15-lipoxgenases, the enzyme is involved in the formation of omega-3 fatty acid-based oxylipins, which are thought to be involved in the resolution of inflammation. The expression of 5-LO is frequently deregulated in solid and liquid tumors, and there is strong evidence that the enzyme plays an important role in carcinogenesis. However, global inhibition of LT formation and signaling has not yet shown the desired success in clinical trials. Curiously, the release of 5-LO-derived lipid mediators from tumor cells is often low, and the exact mechanism by which 5-LO influences tumor cell function is poorly understood. Recent data now show that in addition to releasing oxylipins, 5-LO can also influence gene expression in a lipid mediator-independent manner. These non-canonical functions, including modulation of miRNA processing and transcription factor shuttling, most likely influence cancer cell function and the tumor microenvironment and might explain the low clinical efficacy of pharmacological strategies that previously only targeted oxylipin formation and signaling by 5-LO. This review summarizes the canonical and non-canonical functions of 5-LO with a particular focus on tumorigenesis, highlights unresolved issues, and suggests future research directions.


Subject(s)
Arachidonate 5-Lipoxygenase , Carcinogenesis , Neoplasms , Humans , Arachidonate 5-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/genetics , Carcinogenesis/metabolism , Carcinogenesis/genetics , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Leukotrienes/metabolism , Animals , Signal Transduction , Gene Expression Regulation, Neoplastic
3.
Redox Biol ; 71: 103096, 2024 May.
Article in English | MEDLINE | ID: mdl-38387137

ABSTRACT

Oxidative stress in muscles is closely related to the occurrence of insulin resistance, muscle weakness and atrophy, age-related sarcopenia, and cancer. Aldehydes, a primary oxidation intermediate of polyunsaturated fatty acids, have been proven to be an important trigger for oxidative stress. However, the potential role of linoleic acid (LA) as a donor for volatile aldehydes to trigger oxidative stress has not been reported. Here, we reported that excessive dietary LA caused muscle redox imbalance and volatile aldehydes containing hexanal, 2-hexenal, and nonanal were the main metabolites leading to oxidative stress. Importantly, we identified 5-lipoxygenase (5-LOX) as a key enzyme mediating LA peroxidation in crustaceans for the first time. The inhibition of 5-LOX significantly suppressed the content of aldehydes produced by excessive LA. Mechanistically, the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway facilitated the translocation of 5-LOX from the nucleus to the cytoplasm, where 5-LOX oxidized LA, leading to oxidative stress through the generation of aldehydes. This study suggests that 5-LOX is a potential target to prevent the production of harmful aldehydes.


Subject(s)
Arachidonate 5-Lipoxygenase , Linoleic Acid , Linoleic Acid/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Oxidative Stress , Oxidation-Reduction , Muscles/metabolism , Aldehydes/metabolism
4.
Sci Signal ; 17(825): eadh1178, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412254

ABSTRACT

Pyroptosis, an inflammatory form of programmed cell death, is linked to the pathology of rheumatoid arthritis (RA). Here, we investigated the molecular mechanism underlying pyroptosis in T cells isolated from patients with RA. Compared with healthy individuals, patients with RA had more pyroptotic CD4+ T cells in blood and synovia, which correlated with clinical measures of disease activity. Moreover, the mRNA expression and protein abundance of arachidonate 5-lipoxygenase (ALOX5), which converts arachidonic acid to leukotriene A4 (LTA4), were increased in CD4+ T cells from patients with RA and, among patients with RA, were lowest in those in clinical remission. Knockdown or pharmacological inhibition of ALOX5 suppressed CD4+ T cell pyroptosis and improved symptoms in two rodent models of RA. Mechanistically, the increase in ALOX5 activity in RA CD4+ T cells enhanced the production of the LTA4 derivative LTB4, which stimulated Ca2+ influx through ORAI3 channels, leading to the activation of NLRP3 inflammasomes and pyroptosis. Our findings reveal a role for ALOX5 in RA and provide a molecular basis for further exploring the clinical utility of ALOX5 inhibition in RA and for using ALOX5 as a biomarker to distinguish active disease and remission in RA.


Subject(s)
Arthritis, Rheumatoid , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , Pyroptosis , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Inflammation/metabolism , CD4-Positive T-Lymphocytes/metabolism
5.
Int Arch Allergy Immunol ; 185(4): 301-310, 2024.
Article in English | MEDLINE | ID: mdl-38176394

ABSTRACT

BACKGROUND: 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-Oxo-ETE) is a metabolite of arachidonic acid shown to promote biological activities in different cell types. SUMMARY: 5-Oxo-ETE is synthesized from the 5-lipoxygenase product 5S-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) in the presence of the nicotinamide adenine dinucleotide phosphate (NADP)+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Under some conditions that promote oxidation of NADPH to NADP+, such as the respiratory burst in phagocytic cells, eosinophils, and neutrophils, oxidative stress in monocytes and dendritic cells, and cell death, 5-Oxo-ETE synthesis can be dramatically increased. In addition, 5-Oxo-ETE can also be formed in the absence of 5-lipoxygenase in cells through transcellular biosynthesis by inflammatory cell-derived 5S-HETE. This compound performs its biological activities by the highly selective Gi/o-coupled OXE receptor, which is highly expressed on eosinophils, neutrophils, basophils, and monocytes. As such, 5-Oxo-ETE is a potent chemoattractant for these inflammatory cells, especially for eosinophils. KEY MESSAGES: Although the pathophysiological role of 5-Oxo-ETE is not clearly understood, 5-Oxo-ETE may be a significant mediator in allergic diseases, such as allergic asthma, allergic rhinitis, and atopic dermatitis. And targeting the OXE receptor may be a novel therapy for this kind of inflammatory condition. Nowadays, selective OXE receptor antagonists are currently under investigation and could become potential therapeutic agents in allergy.


Subject(s)
Arachidonate 5-Lipoxygenase , Arachidonic Acids , Asthma , Humans , Arachidonic Acid , Arachidonate 5-Lipoxygenase/metabolism , NADP , Hydroxyeicosatetraenoic Acids/metabolism , Asthma/metabolism
6.
Eur J Med Chem ; 266: 116138, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38219658

ABSTRACT

As a new approach to the management of inflammatory disorders, a series of chromone-based derivatives containing a (carbamate)hydrazone moiety was designed and synthesized. The compounds were assessed for their ability to inhibit COX-1/2, 15-LOX, and mPGES-1, as a combination that should effectively impede the arachidonate pathway. Results revealed that the benzylcarbazates (2a-c) demonstrated two-digit nanomolar COX-2 inhibitory activities with reasonable selectivity indices. They also showed appreciable 15-LOX inhibition, in comparison to quercetin. Further testing of these compounds for mPGES-1 inhibition displayed promising activities. Intriguingly, compounds 2a-c were capable of suppressing edema in the formalin-induced rat paw edema assay. They exhibited an acceptable gastrointestinal safety profile regarding ulcerogenic liabilities in gross and histopathological examinations. Additionally, upon treatment with the test compounds, the expression of the anti-inflammatory cytokine IL-10 was elevated, whereas that of TNF-α, iNOS, IL-1ß, and COX-2 were downregulated in LPS-challenged RAW264.7 macrophages. Docking experiments into the three enzymes showed interesting binding profiles and affinities, further substantiating their biological activities. Their in silico physicochemical and pharmacokinetic parameters were advantageous.


Subject(s)
Anti-Inflammatory Agents , Lipoxygenase Inhibitors , Rats , Animals , Cyclooxygenase 2/metabolism , Lipoxygenase Inhibitors/chemistry , Cyclooxygenase 1/metabolism , Anti-Inflammatory Agents/pharmacology , Arachidonic Acids , Edema/chemically induced , Edema/drug therapy , Molecular Docking Simulation , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Arachidonate 5-Lipoxygenase/metabolism , Structure-Activity Relationship
7.
Inflammopharmacology ; 32(1): 693-713, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985602

ABSTRACT

The thiophene bearing pyrazole derivatives (7a-j) were synthesized and examined for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities followed by the in vivo analgesic, anti-inflammatory, and ulcerogenic evaluations. The synthesized series (7a-j) were characterized using 1H NMR, 13C NMR, FT-IR, and mass spectral analysis. Initially, the compounds (7a-j) were evaluated for their in vitro cyclooxygenase, 5-lipoxygenase, and tumour inducing factor-α inhibitory activities and the compound (7f) with two phenyl substituents in the pyrazole ring and chloro substituent in the thiophene ring and the compound (7g) with two phenyl substituents in the pyrazole ring and bromo substituent in the thiophene ring were observed as potent compounds among the series. The compounds (7f and 7g) with effective in vitro potentials were further analyzed for analgesic, anti-inflammatory, and ulcerogenic evaluations. Also, to ascertain the binding affinities of compounds (7a-j), docking assessments were carried out and the ligand (7f) with the highest binding affinity was docked to know the interactions of the ligand with amino acids of target proteins.


Subject(s)
Arachidonate 5-Lipoxygenase , Neoplasms , Humans , Arachidonate 5-Lipoxygenase/metabolism , Molecular Docking Simulation , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor Inhibitors , Thiophenes/pharmacology , Ligands , Spectroscopy, Fourier Transform Infrared , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Analgesics/therapeutic use , Cyclooxygenase 2/metabolism , Pyrazoles/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Molecular Structure , Edema/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
8.
ACS Chem Biol ; 19(1): 217-229, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38149598

ABSTRACT

Machine learning (ML) models have made inroads into chemical sciences, with optimization of chemical reactions and prediction of biologically active molecules being prime examples thereof. These models excel where physical experiments are expensive or time-consuming, for example, due to large scales or the need for materials that are difficult to obtain. Studies of natural products suffer from these issues─this class of small molecules is known for its wealth of structural diversity and wide-ranging biological activities, but their investigation is hindered by poor synthetic accessibility and lack of scalability. To facilitate the evaluation of these molecules, we designed ML models that predict which natural products can interact with a particular target or a relevant pathway. Here, we focused on discovering natural products that are capable of modulating the 5-lipoxygenase (5-LO) pathway that plays key roles in lipid signaling and inflammation. These computational approaches led to the identification of nine natural products that either directly inhibit the activity of the 5-LO enzyme or affect the cellular 5-LO pathway. Further investigation of one of these molecules, deltonin, led us to discover a new cell-type-selective mechanism of action. Our ML approach helped deorphanize natural products as well as shed light on their mechanisms and can be broadly applied to other use cases in chemical biology.


Subject(s)
Arachidonate 5-Lipoxygenase , Biological Products , Humans , Arachidonate 5-Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Biological Products/chemistry , Inflammation , Machine Learning
9.
Eur J Pharmacol ; 961: 176123, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37926274

ABSTRACT

The pathological feature of hypoxic pulmonary hypertension (PH) is pulmonary vascular remodeling (PVR), primarily attributed to the hyperproliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Existing PH-targeted drugs have difficulties in reversing PVR. Therefore, it is vital to discover a new regulatory mechanism for PVR and develop new targeted drugs. G protein-coupled receptor 146 (GPR146) is believed to participate in this process. This study aimed to investigate the role of GPR146 in PASMCs during PH. We investigated the role of GPR146 in PVR and its underlying mechanism using hypoxic PASMCs and mouse model (Sugen 5416 (20 mg/kg)/hypoxia). In our recent study, we have observed a significant increase in the expression of GPR146 protein in animal models of PH as well as in patients diagnosed with pulmonary arterial hypertension (PAH). Through immunohistochemistry, we found that GPR146 was mainly localized in the smooth muscle and endothelial layers of the pulmonary vasculature. GPR146 deficiency induction exhibited protective effects against hypoxia-induced elevation of right ventricular systolic blood pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular remodeling in mice. In particular, the deletion of GPR146 attenuated the hypoxia-triggered proliferation of PASMCs. Furthermore, 5-lipoxygenase (5-LO) was related to PH development. Hypoxia and overexpression of GPR146 increased 5-LO expression, which was reversed through GPR146 knockdown or siRNA intervention. Our study discovered that GPR146 exhibited high expression in the pulmonary vessels of pulmonary hypertension. Subsequent research revealed that GPR146 played a crucial role in the development of hypoxic PH by promoting lipid peroxidation and 5-LO expression. In conclusion, GPR146 may regulate pulmonary vascular remodeling by promoting PASMCs proliferation through 5-LO, which presents a feasible target for PH prevention and treatment.


Subject(s)
Hypertension, Pulmonary , Pulmonary Artery , Humans , Mice , Animals , Pulmonary Artery/pathology , Hypertension, Pulmonary/pathology , Vascular Remodeling , Arachidonate 5-Lipoxygenase/metabolism , Cell Proliferation/physiology , Hypoxia/metabolism , Myocytes, Smooth Muscle , Muscle, Smooth, Vascular , Cells, Cultured
10.
Clin Transl Med ; 13(11): e1483, 2023 11.
Article in English | MEDLINE | ID: mdl-37965796

ABSTRACT

BACKGROUND: Oncogenic PIK3CA mutations (PIK3CAmut ) frequently occur in a higher proportion in luminal breast cancer (LBC), especially in refractory advanced cases, and are associated with changes in tumour cellular metabolism. Nevertheless, its effect on the progression of the immune microenvironment (TIME) within tumours and vital molecular events remains veiled. METHODS: Multiplex immunohistochemistry (mIHC) and single-cell mass cytometry (CyTOF) was used to describe the landscape of TIME in PIK3CAmut LBC. The PIK3CA mutant cell lines were established using CRISPER/Cas9 system. The gene expression levels, protein secretion and activity of signaling pathways were measured by real-time RT-PCR, ELISA, immunofluorescence staining or western blotting. GSEA analysis, transwell chemotaxis assay, live cell imaging, flow cytometry metabolite analysis targeting arachidonic acid, Dual-luciferase reporter assay, and Chromatin immunoprecipitation assay were used to investigate the underlying function and mechanism of the PI3K/5-LOX/LTB4 axis. RESULTS: PIK3CAmut LBC cells can induce an immunosuppressive TIME by recruiting myeloid-derived suppressor cells (MDSCs) and excluding cytotoxic T cells via the arachidonic acid (AA) metabolism pathway. Mechanistically, PIK3CAmut activates the transcription of 5-lipoxygenase (5-LOX) in a STAT3-dependent manner, which in turn directly results in high LTB4 production, binding to BLT2 on MDSCs and promoting their infiltration. Since a suppressive TIME is a critical barrier for the success of cancer immunotherapy, the strategies that can convert "cold" tumours into "hot" tumours were compared. Targeted therapy against the PI3K/5-LOX/LTB4 axis synergizing with immune checkpoint blockade (ICB) therapy achieved dramatic shrinkage in vivo. CONCLUSIONS: The results emphasize that PIK3CAmut can induce immune evasion by recruiting MDSCs through the 5-LOX-dependent AA pathway, and combination targeted therapy with ICB may provide a promising treatment option for refractory advanced LBC patients.


Subject(s)
Breast Neoplasms , Myeloid-Derived Suppressor Cells , Female , Humans , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Breast Neoplasms/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Immunosuppressive Agents , Leukotriene B4/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Tumor Microenvironment
11.
Eur J Med Chem ; 261: 115866, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37862815

ABSTRACT

Dual cyclooxygenase 2/15-lipoxygenase inhibitors constitute a valuable alternative to classical non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 (cyclooxygenase-2) inhibitors for the treatment of inflammatory diseases, as well as preventing the cancer. Indeed, these latter present diverse side effects, which are reduced or absent in dual-acting agents. In this review, COX-2 and 15-LOX (15-lipoxygenase) pathways are first described in order to highlight the therapeutic interest of designing such compounds. Various structural families of dual inhibitors are illustrated. This study discloses various structural families of dual 15-LOX/COX-2 inhibitors, thus pave the way to design potentially-active anticancer agents with balanced dual inhibition of these enzymes.


Subject(s)
Cyclooxygenase 2 Inhibitors , Neoplasms , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2/metabolism , Arachidonate 15-Lipoxygenase , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry , Neoplasms/drug therapy , Neoplasms/chemically induced , Arachidonate 5-Lipoxygenase/metabolism , Cyclooxygenase 1
12.
Article in English | MEDLINE | ID: mdl-37716021

ABSTRACT

BACKGROUND: The role of the lipoxygenase (LOX) and cyclooxygenase (COX) enzymes in maintaining cellular homeostasis and regulating immune responses promoted us in this study to analyze the pattern of changes in 15-lipoxygenase and cyclooxygenase isoforms and their related cytokines in SARS-CoV-2 infection. METHODS: 15-LOX-1, 15-LOX-2, COX-1 and COX-2 gene expression levels were determined using qRT-PCR in nasopharynx specimens from patients with severe [N = 40] and non-severe [N = 40] confirmed SARS-CoV-2 infections and healthy controls. Circulating levels of lL-6, lL-10, PGE2, and IFN-γ were measured in patients and healthy controls using ELISA assay. The associations between the measured variables and the patient's clinic-pathological characteristics were assessed for all groups. RESULTS: The expression level of 15-LOX-1 was elevated significantly in male patients with severe infection; although female patients showed a different expression profile. 15-LOX-2 expression level was considerably increased in male patients with severe infection; while changes in its expression remained inconclusive in female patients. The relationship between 15-LOX expression and the male gender was prominent. Both COX isoforms expression showed elevation in male and female patients that were correlated with disease severity. The simultaneous increase in lL-6, PGE2 and IFN-γ levels also decrease in lL-10 in patients with severe infection indicating the possible regulatory network related to the COX and 15-LOX enzymes in the output of the SARS-CoV-2 infection. CONCLUSION: The results of this study determined the pattern of possible changes in key enzymes of prostaglandin and eicosanoids synthesis pathway and their mediators, which can be helpful in mapping the SARS-CoV-2 pathogenicity and pharmaceutical approaches.


Subject(s)
Arachidonate 15-Lipoxygenase , COVID-19 , Humans , Male , Female , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Arachidonate 15-Lipoxygenase/genetics , Dinoprostone/metabolism , SARS-CoV-2/metabolism , Cyclooxygenase 1/genetics , Protein Isoforms , Scavenger Receptors, Class E , Arachidonate 5-Lipoxygenase/metabolism
13.
Int Immunopharmacol ; 121: 110419, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295028

ABSTRACT

The inflammatory response is an essential process for the host defence against pathogens. Lipid mediators are important in coordinating the pro-inflammatory and pro-resolution phases of the inflammatory process. However, unregulated production of these mediators has been associated with chronic inflammatory diseases such as arthritis, asthma, cardiovascular diseases, and several types of cancer. Therefore, it is not surprising that enzymes implicated in the production of these lipid mediators have been targeted for potential therapeutic approaches. Amongst these inflammatory molecules, the 12-hydroxyeicosatetraenoic acid (12(S)-HETE) is abundantly produced in several diseases and is primarily biosynthesized via the platelet's 12-lipoxygenase (12-LO) pathway. To this day, very few compounds selectively inhibit the 12-LO pathway, and most importantly, none are currently used in the clinical settings. In this study, we investigated a series of polyphenol analogues of natural polyphenols that inhibit the 12-LO pathway in human platelets without affecting other normal functions of the cell. Using an ex vivo approach, we found one compound that selectively inhibited the 12-LO pathway, with IC50 values as low as 0.11 µM, with minimal inhibition of other lipoxygenase or cyclooxygenase pathways. More importantly, our data show that none of the compounds tested induced significant off-target effects on either the platelet's activation or its viability. In the continuous search for specific and better inhibitors targeting the regulation of inflammation, we characterized two novel inhibitors of the 12-LO pathway that could be promising for subsequent in vivo studies.


Subject(s)
Arachidonate 12-Lipoxygenase , Arachidonate 5-Lipoxygenase , Humans , Arachidonate 5-Lipoxygenase/metabolism , Caffeic Acids/pharmacology , Lipids , Lipoxygenase Inhibitors/pharmacology
14.
Genes (Basel) ; 14(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37372393

ABSTRACT

Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. This study aimed to identify candidate genes involved in Haiyang Yellow Chickens' growth and to understand the regulatory role of the key gene ALOX5 (arachidonate 5-lipoxygenase) in myoblast proliferation and differentiation. In order to search the key candidate genes in the process of muscle growth and development, RNA sequencing was used to compare the transcriptomes of chicken muscle tissues at four developmental stages and to analyze the effects of ALOX5 gene interference and overexpression on myoblast proliferation and differentiation at the cellular level. The results showed that 5743 differentially expressed genes (DEGs) (|fold change| ≥ 2; FDR ≤ 0.05) were detected by pairwise comparison in male chickens. Functional analysis showed that the DEGs were mainly involved in the processes of cell proliferation, growth, and developmental process. Many of the DEGs, such as MYOCD (Myocardin), MUSTN1 (Musculoskeletal Embryonic Nuclear Protein 1), MYOG (MYOGenin), MYOD1 (MYOGenic differentiation 1), FGF8 (fibroblast growth factor 8), FGF9 (fibroblast growth factor 9), and IGF-1 (insulin-like growth factor-1), were related to chicken growth and development. KEGG pathway (Kyoto Encyclopedia of Genes and Genomes pathway) analysis showed that the DEGs were significantly enriched in two pathways related to growth and development: ECM-receptor interaction (Extracellular Matrix) and MAPK signaling pathway (Mitogen-Activated Protein Kinase). With the extension of differentiation time, the expression of the ALOX5 gene showed an increasing trend, and it was found that interference with the ALOX5 gene could inhibit the proliferation and differentiation of myoblasts and that overexpression of the ALOX5 gene could promote the proliferation and differentiation of myoblasts. This study identified a range of genes and several pathways that may be involved in regulating early growth, and it can provide theoretical research for understanding the regulation mechanism of muscle growth and development of Haiyang Yellow Chickens.


Subject(s)
Arachidonate 5-Lipoxygenase , Chickens , Male , Animals , Chickens/genetics , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Gene Expression Profiling , Myoblasts , Muscle, Skeletal/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics
15.
Int Immunopharmacol ; 121: 110505, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37348233

ABSTRACT

5-lipoxygenase (encoded by ALOX5) plays an important role in immune regulation. Zileuton is currently the only approved ALOX5 inhibitor. However, the mechanisms of ALOX5 and Zileuton in progression of pancreatic cancer remain unclear. Therefore, we investigated the effects of Zileuton on tumor-associated macrophage M2 polarization and pancreatic cancer invasion and metastasis, both in vivo and in vitro. In bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analyses, we found a significant association between elevated levels of ALOX5 and poor survival, adverse stages, M2 macrophage infiltration, and the activation of JAK/STAT pathways in macrophages. In clinical samples, immunofluorescence, quantitative real-time PCR and immunohistochemical results verified the high expression of ALOX5 in pancreatic cancer, primarily in macrophages. We constructed PANC-1 human pancreatic cancer cells and macrophages overexpressing ALOX5 using lentivirus. In PANC-1 pancreatic cancer cells, low-dose Zileuton inhibited PANC-1 cell invasion and migration by blocking ALOX5. In macrophages, ALOX5 induced the M2-like phenotype through the JAK/STAT pathway and promoted the chemotaxis of macrophages towards PANC-1 cells, while Zileuton can inhibit these effects. We constructed the nude mouse model of in situ transplantation tumor of pancreatic cancer. After treatment with Zileuton, the mice showed increased survival rates and reduced liver metastasis. These findings indicate that ALOX5 regulates tumor-associated macrophage M2 polarization via the JAK/STAT pathway and promotes invasion and metastasis in pancreatic cancer. Zileuton can inhibit these effects by inhibiting ALOX5. These results provide a theoretical basis for the potential use of Zileuton in the treatment of pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Tumor-Associated Macrophages , Humans , Animals , Mice , Tumor-Associated Macrophages/metabolism , Signal Transduction , Janus Kinases/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Cell Proliferation , STAT Transcription Factors/metabolism , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Pancreatic Neoplasms
16.
J Inorg Biochem ; 245: 112233, 2023 08.
Article in English | MEDLINE | ID: mdl-37141763

ABSTRACT

In the search for new 5-LOX inhibitors, two ferrocenyl Schiff base complexes functionalized with catechol ((ƞ5-(E)-C5H4-NCH-3,4-benzodiol)Fe(ƞ5-C5H5) (3a)) and vanillin ((ƞ5-(E)-C5H4-NCH-3-methoxy-4-phenol)Fe(ƞ5-C5H5) (3b)) were obtained. Complexes 3a and 3b were biologically evaluated as 5-LOX inhibitors showed potent inhibition compared to their organic analogs (2a and 2b) and known commercial inhibitors, with IC50 = 0.17 ± 0.05 µM for (3a) and 0.73 ± 0.06 µM for (3b) demonstrated a highly inhibitory and potent effect against 5-LOX due to the incorporation of the ferrocenyl fragment. Molecular dynamic studies showed a preferential orientation of the ferrocenyl fragment toward the non-heme iron of 5-LOX, which, together with electrochemical and in-vitro studies, allowed us to propose a competitive redox deactivation mechanism mediated by water, where Fe(III)-enzyme can be reduced by the ferrocenyl fragment. An Epa/IC50 relationship was observed, and the stability of the Schiff bases was evaluated by SWV in the biological medium, observing that the hydrolysis does not affect the high potency of the complexes, making them interesting alternatives for pharmacological applications.


Subject(s)
Arachidonate 5-Lipoxygenase , Schiff Bases , Schiff Bases/pharmacology , Schiff Bases/chemistry , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Ferric Compounds , Molecular Dynamics Simulation , Oxidation-Reduction , Lipoxygenase Inhibitors/pharmacology , Structure-Activity Relationship
17.
Nanotoxicology ; 17(3): 249-269, 2023 04.
Article in English | MEDLINE | ID: mdl-37115655

ABSTRACT

Fibrogenic carbon nanotubes (CNTs) induce the polarization of M1 and M2 macrophages in mouse lungs. Polarization of the macrophages regulates the production of proinflammatory and pro-resolving lipid mediators (LMs) to mediate acute inflammation and its resolution in a time-dependent manner. Here we examined the molecular mechanism by which multi-walled CNTs (MWCNTs, Mitsui-7) induce M1 polarization in vitro. Treatment of murine macrophages (J774A.1) with Mitsui-7 MWCNTs increased the expression of Alox5 mRNA and protein in a concentration- and time-dependent manner. The MWCNTs induced the expression of CD68 and that induction persisted for up to 3 days post-exposure. The expression and activity of inducible nitric oxide synthase, an intracellular marker of M1, were increased by MWCNTs. Consistent with M1 polarization, the MWCNTs induced the production and secretion of proinflammatory cytokines tumor necrosis factor-α and interleukin-1ß, and proinflammatory LMs leukotriene B4 (LTB4) and prostaglandin E2 (PGE2). The cell-free media from MWCNT-polarized macrophages induced the migration of neutrophilic cells (differentiated from HL-60), which was blocked by Acebilustat, a specific leukotriene A4 hydrolase inhibitor, or LY239111, an LTB4 receptor antagonist, but not NS-398, a cyclooxygenase 2 inhibitor, revealing LTB4 as a major mediator of neutrophil chemotaxis from MWCNT-polarized macrophages. Knockdown of Alox5 using specific small hairpin-RNA suppressed MWCNT-induced M1 polarization, LTB4 secretion, and migration of neutrophils. Taken together, these findings demonstrate the polarization of M1 macrophages by Mitsui-7 MWCNTs in vitro and that induction of Alox5 is an important mechanism by which the MWCNTs promote proinflammatory responses by boosting M1 polarization and production of proinflammatory LMs.


Subject(s)
Arachidonate 5-Lipoxygenase , Macrophages , Nanotubes, Carbon , Animals , Mice , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Cytokines/metabolism , Leukotriene B4/metabolism , Nanotubes, Carbon/toxicity , Macrophage Activation
18.
Biochem Pharmacol ; 212: 115554, 2023 06.
Article in English | MEDLINE | ID: mdl-37080437

ABSTRACT

BACKGROUND: Melanoma has become more common, and its therapeutic management has remained challenging in recent decades. The purpose of our study is to explore new prognostic therapeutic markers of melanoma and to find new therapeutic methods and therapeutic targets of novel drugs, which have great significance. METHOD: First, the arachidonate 5-lipoxygenase (ALOX5) gene associated with both autophagy and ferroptosis was identified by R version 4.2.0. We used human melanoma and para-cancer tissues, human melanoma cell lines, and melanoma-bearing mouse tissues. We used qRT-PCR, Western blotting, immunohistochemistry, immunofluorescence staining, CCK-8, iron ion assay, GSH assay, and MDA assay. In vivo, the ferroptosis activation and antitumor effects of recombinant human ALOX5 protein were evaluated using a xenograft model. RESULT: We report that the downregulation of ALOX5 in melanoma is positively correlated with the prognosis of patients and is an independent prognostic factor. Elevated ALOX5 contributes to autophagy and ferroptosis in vitro and in vivo. At the same time, inhibition of autophagy can reduce ferroptosis enhanced by ALOX5, and autophagy and ALOX5 have a synergistic effect. The results of the mechanistic study showed that the increase in ALOX5 could activate the AMPK/mTOR pathway and inhibit GPX4 expression, promoting the occurrence of autophagy-dependent ferroptosis, while the decrease in p-AMPK/AMPK inhibited the occurrence of ferroptosis. CONCLUSION: ALOX5 deficiency was resistant to autophagy and ferroptosis by inhibiting the AMPK/mTOR pathway. Therefore, it can provide new targets and methods for melanoma drug development.


Subject(s)
Ferroptosis , Melanoma , Humans , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Signal Transduction , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Cell Line, Tumor , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Autophagy
19.
Biomed Pharmacother ; 162: 114592, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36966664

ABSTRACT

Arachidonic acid 5-lipoxygenase (5-LOX), an enzyme that synthesizes leukotrienes (LTs), is involved in cancer development including proliferation, invasion, metastasis and drug resistance. However, the functional role of 5-LOX in hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we analyzed the contribution of 5-LOX in HCC progression and investigated the potential of targeted therapy. Analysis of 86 resected HCC specimens and the clinical data of 362 cases of liver cancer from The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset, showed that 5-LOX expression was associated with postoperative survival. The cancer proliferative and stem cell potential were correlated with the levels of 5-LOX in CD163(+) tumor-associated macrophages (TAMs). In an HCC mouse model, CD163(+) TAMs expressed 5-LOX and produced LTB4 and LTC/D/E4; the 5-LOX inhibitor, zileuton, suppressed HCC progression. LTB4 and LTC/D/E4 promoted cancer proliferation and stem cell capacity via phosphorylation of extracellular signal-regulated kinase 1/2 and stem cell-associated genes. Taken together, we identified a novel mechanism of HCC progression in which CD163(+) TAMs express 5-LOX and produce LTB4 and LTC/D/E4, thereby enhancing the proliferative and stem cell potential of HCC cells. Furthermore, inhibition of 5-LOX activity regulates HCC progression, suggesting it has potential as a new therapeutic target.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Arachidonate 5-Lipoxygenase/metabolism , Tumor-Associated Macrophages/metabolism , Leukotriene B4/metabolism
20.
FASEB J ; 37(3): e22782, 2023 03.
Article in English | MEDLINE | ID: mdl-36786721

ABSTRACT

Ischemia-reperfusion (I/R) injury is a crucial factor causing liver injury in the clinic. Recent research has confirmed that human adipose-derived stem cells (ADSCs) can differentiate into functional hepatocytes. However, the mechanism of the effects of ADSCs in the treatment of liver injury remains unclear. The characteristics of ADSCs were first identified, and exosome-derived ADSCs were isolated and characterized. The function and mechanism of action of miR-183 and arachidonate 5-lipoxygenase (ALOX5) were investigated by functional experiments in HL-7702 cells with I/R injury and in I/R rats. Our data disclosed that exosome release from ADSCs induced proliferation and inhibited apoptosis in HL-7702 cells with I/R injury. The effect of miR-183 was similar to that of exosomes derived from ADSCs. In addition, ALOX5, as a target gene of miR-183, was involved in the related functions of miR-183. Moreover, in vivo experiments confirmed that miR-183 and exosomes from ADSCs could improve liver injury in rats and inhibit the MAPK and NF-κB pathways. All of these findings demonstrate that exosomes derived from ADSCs have a significant protective effect on hepatic I/R injury by regulating the miR-183/ALOX5 axis, which might provide a therapeutic strategy for liver injury.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Reperfusion Injury , Humans , Rats , Animals , Cell Line , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Mesenchymal Stem Cells/metabolism , Liver/metabolism , Reperfusion , Reperfusion Injury/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...