Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 431
Filter
1.
Front Public Health ; 10: 900077, 2022.
Article in English | MEDLINE | ID: mdl-35719644

ABSTRACT

Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models.


Subject(s)
Arbovirus Infections/virology , Arboviruses/classification , Arthropod Vectors/classification , Machine Learning , Neglected Diseases/virology , Public Health/methods , Animals , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Arboviruses/pathogenicity , Arboviruses/physiology , Arthropod Vectors/virology , Humans , Machine Learning/standards , Machine Learning/trends , Models, Statistical , Neglected Diseases/epidemiology , Public Health/trends
2.
J Virol ; 96(6): e0006022, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107376

ABSTRACT

The impact of the host microbiota on arbovirus infections is currently not well understood. Arboviruses are viruses transmitted through the bites of infected arthropods, predominantly mosquitoes or ticks. The first site of arbovirus inoculation is the biting site in the host skin, which is colonized by a complex microbial community that could possibly influence arbovirus infection. We demonstrated that preincubation of arboviruses with certain components of the bacterial cell wall, including lipopolysaccharides (LPS) of some Gram-negative bacteria and lipoteichoic acids or peptidoglycan of certain Gram-positive bacteria, significantly reduced arbovirus infectivity in vitro. This inhibitory effect was observed for arboviruses of different virus families, including chikungunya virus of the Alphavirus genus and Zika virus of the Flavivirus genus, showing that this is a broad phenomenon. A modest inhibitory effect was observed following incubation with a panel of heat-inactivated bacteria, including bacteria residing on the skin. No viral inhibition was observed after preincubation of cells with LPS. Furthermore, a virucidal effect of LPS on viral particles was noticed by electron microscopy. Therefore, the main inhibitory mechanism seems to be due to a direct effect on the virus particles. Together, these results suggest that bacteria are able to decrease the infectivity of alphaviruses and flaviviruses. IMPORTANCE During the past decades, the world has experienced a vast increase in epidemics of alphavirus and flavivirus infections. These viruses can cause severe diseases, such as hemorrhagic fever, encephalitis, and arthritis. Several alpha- and flaviviruses, such as chikungunya virus, Zika virus, and dengue virus, are significant global health threats because of their high disease burden, their widespread (re-)emergence, and the lack of (good) anti-arboviral strategies. Despite the clear health burden, alphavirus and flavivirus infection and disease are not fully understood. A knowledge gap in the interplay between the host and the arbovirus is the potential interaction with host skin bacteria. Therefore, we studied the effect of (skin) bacteria and bacterial cell wall components on alphavirus and flavivirus infectivity in cell culture. Our results show that certain bacterial cell wall components markedly reduced viral infectivity by interacting directly with the virus particle.


Subject(s)
Alphavirus , Arboviruses , Cell Wall , Flavivirus , Alphavirus/pathogenicity , Alphavirus/physiology , Animals , Arboviruses/pathogenicity , Arboviruses/physiology , Bacteria , Chikungunya virus , Flavivirus/pathogenicity , Flavivirus/physiology , Lipopolysaccharides , Microbiota , Zika Virus
3.
PLoS One ; 16(12): e0261244, 2021.
Article in English | MEDLINE | ID: mdl-34941927

ABSTRACT

Arboviruses are arthropod-dependent viruses to complete their zoonotic cycle. Among the transmitting arthropods, culicids stand out, which participate in the cycle of several arboviruses that can affect humans. The present study aimed to identify species of culicidae and to point out the risk of circulation, emergency, or reemergence of pathogenic arboviruses to humans in the region of the Jequitibá headquarters of the Parque Estadual dos Três Picos (PETP), in Cachoeiras de Macacu, state of Rio de Janeiro, Brazil. Sampling was carried out at five Sample Points (SP) demarcated on trails from the headquarters, with CDC light traps, HP model with dry ice attached to the side, for 48 hours of activity each month. Additionally, active catches were made with a castro catcher in the period of one hour per day in the field, from six to eleven o'clock in the morning, in each PM. After the captures, thematic map was assembled using the ArcGIS 10 software and performing a multidimensional scaling (MDS). A total of 1151 specimens were captured and the presence of culicids already incriminated as vectors of arboviruses circulating in the region was observed: Aedes fluviatilis Lutz, 1904 (71 specimens); Aedes scapularis Rondani, 1848 (55 specimens); Haemagogus leococelaenus Dyar and Shannon, 1924 (29 specimens). In addition to the subgenus Culex (culex) spp. (163 specimens). In this sense, we highlight the importance of strengthening the actions of continuous entomological surveillance of the emergence and re-emergence of new arboviruses in ecotourism visitation parks.


Subject(s)
Arbovirus Infections/epidemiology , Culicidae/virology , Aedes/virology , Animals , Arboviruses/pathogenicity , Brazil/epidemiology , Diptera/pathogenicity , Epidemiological Monitoring/veterinary , Mosquito Vectors/virology , Seasons , Sentinel Surveillance/veterinary
4.
mBio ; 12(5): e0156321, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34634928

ABSTRACT

Wolbachia are endosymbiont bacteria known to infect arthropods causing different effects, such as cytoplasmic incompatibility and pathogen blocking in Aedes aegypti. Although several Wolbachia strains have been studied, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their obligate endosymbiont nature and its pathogen blocking ability. Motivated by the potential applications on disease control, we developed a genome-scale model of two Wolbachia strains: wMel and the strongest Dengue blocking strain known to date: wMelPop. The obtained metabolic reconstructions exhibit an energy metabolism relying mainly on amino acids and lipid transport to support cell growth that is consistent with altered lipid and cholesterol metabolism in Wolbachia-infected mosquitoes. The obtained metabolic reconstruction was then coupled with a reconstructed mosquito model to retrieve a symbiotic genome-scale model accounting for 1,636 genes and 6,408 reactions of the Aedes aegypti-Wolbachia interaction system. Simulation of an arboviral infection in the obtained novel symbiotic model represents a metabolic scenario characterized by pathogen blocking in higher titer Wolbachia strains, showing that pathogen blocking by Wolbachia infection is consistent with competition for lipid and amino acid resources between arbovirus and this endosymbiotic bacteria. IMPORTANCE Arboviral diseases such as Zika and Dengue have been on the rise mainly due to climate change, and the development of new treatments and strategies to limit their spreading is needed. The use of Wolbachia as an approach for disease control has motivated new research related to the characterization of the mechanisms that underlie its pathogen-blocking properties. In this work, we propose a new approach for studying the metabolic interactions between Aedes aegypti and Wolbachia using genome-scale models, finding that pathogen blocking is mainly influenced by competition for the resources required for Wolbachia and viral replication.


Subject(s)
Aedes/microbiology , Aedes/virology , Arboviruses/pathogenicity , Genome, Bacterial , Symbiosis/genetics , Wolbachia/genetics , Wolbachia/virology , Amino Acids/metabolism , Animals , Arboviruses/metabolism , Host Microbial Interactions , Lipid Metabolism , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Virus Replication/physiology , Wolbachia/metabolism
5.
Viruses ; 13(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34696407

ABSTRACT

Culicoides-borne viruses such as bluetongue, African horse sickness, and Schmallenberg virus cause major economic burdens due to animal outbreaks in Africa and their emergence in Europe and Asia. However, little is known about the role of Culicoides as vectors for zoonotic arboviruses. In this study, we identify both veterinary and zoonotic arboviruses in pools of Culicoides biting midges in South Africa, during 2012-2017. Midges were collected at six surveillance sites in three provinces and screened for Alphavirs, Flavivirus, Orthobunyavirus, and Phlebovirus genera; equine encephalosis virus (EEV); and Rhaboviridae, by reverse transcription polymerase chain reaction. In total, 66/331 (minimum infection rate (MIR) = 0.4) pools tested positive for one or more arbovirus. Orthobunyaviruses, including Shuni virus (MIR = 0.1) and EEV (MIR = 0.2) were more readily detected, while only 2/66 (MIR = 0.1) Middelburg virus and 4/66 unknown Rhabdoviridae viruses (MIR = 0.0) were detected. This study suggests Culicoides as potential vectors of both veterinary and zoonotic arboviruses detected in disease outbreaks in Africa, which may contribute to the emergence of these viruses to new regions.


Subject(s)
Arboviruses/pathogenicity , Ceratopogonidae/virology , Insect Vectors/virology , Animals , Ceratopogonidae/pathogenicity , Diptera/pathogenicity , Disease Outbreaks , Insect Vectors/pathogenicity , South Africa/epidemiology , Viral Zoonoses/epidemiology , Viral Zoonoses/prevention & control
6.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502092

ABSTRACT

Arthropod-borne viruses, referred to collectively as arboviruses, infect millions of people worldwide each year and have the potential to cause severe disease. They are predominately transmitted to humans through blood-feeding behavior of three main groups of biting arthropods: ticks, mosquitoes, and sandflies. The pathogens harbored by these blood-feeding arthropods (BFA) are transferred to animal hosts through deposition of virus-rich saliva into the skin. Sometimes these infections become systemic and can lead to neuro-invasion and life-threatening viral encephalitis. Factors intrinsic to the arboviral vectors can greatly influence the pathogenicity and virulence of infections, with mounting evidence that BFA saliva and salivary proteins can shift the trajectory of viral infection in the host. This review provides an overview of arbovirus infection and ways in which vectors influence viral pathogenesis. In particular, we focus on how saliva and salivary gland extracts from the three dominant arbovirus vectors impact the trajectory of the cellular immune response to arbovirus infection in the skin.


Subject(s)
Arbovirus Infections/transmission , Arboviruses/pathogenicity , Arthropod Vectors/virology , Saliva/virology , Animals , Arthropod Vectors/physiology , Host-Pathogen Interactions , Humans , Saliva/metabolism
7.
Parasit Vectors ; 14(1): 482, 2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34538276

ABSTRACT

BACKGROUND: The global impact of Zika virus in Latin America has drawn renewed attention to circulating mosquito-borne viruses in this region, such as dengue and chikungunya. Our objective was to assess socio-ecological factors associated with Aedes mosquito vector density as a measure of arbovirus transmission risk in three cities of potentially recent Zika virus introduction: Ibagué, Colombia; Manta, Ecuador; and Posadas, Argentina, in order to inform disease mitigation strategies. METHODS: We sampled Aedes mosquito populations in a total of 1086 households, using indoor and peridomestic mosquito collection methods, including light traps, resting traps, traps equipped with chemical attractant and aspirators. For each sampled household, we collected socio-economic data using structured questionnaires and data on microenvironmental conditions using iButton data loggers. RESULTS: A total of 3230 female Aedes mosquitoes were collected, of which 99.8% were Aedes aegypti and 0.2% were Aedes albopictus. Mean female Aedes mosquito density per household was 1.71 (standard deviation: 2.84). We used mixed-effects generalized linear Poisson regression analyses to identify predictors of Aedes density, using month, neighborhood and country as random-effects variables. Across study sites, the number of household occupants [incidence rate ratio (IRR): 1.08, 95% confidence interval (CI): 1.01-1.14], presence of entry points for mosquitoes into the household (IRR: 1.51, 95% CI: 1.30-1.76) and presence of decorative vegetation (IRR: 1.52, 95% CI: 1.22-1.88) were associated with higher Aedes density; while being in the highest wealth tertile of household wealth (IRR: 0.78, 95% CI: 0.66-0.92), knowledge of how arboviruses are transmitted (IRR: 0.94, 95% CI: 0.89-1.00) and regular emptying of water containers by occupants (IRR: 0.79, 95% CI: 0.67-0.92) were associated with lower Aedes density. CONCLUSIONS: Our study addresses the complexities of arbovirus vectors of global significance at the interface between human and mosquito populations. Our results point to several predictors of Aedes mosquito vector density in countries with co-circulation of multiple Aedes-borne viruses, and point to modifiable risk factors that may be useful for disease prevention and control.


Subject(s)
Aedes/virology , Animal Distribution , Arbovirus Infections/transmission , Arboviruses/pathogenicity , Mosquito Vectors/virology , Aedes/physiology , Animals , Argentina , Chikungunya Fever/transmission , Cities , Colombia , Dengue/transmission , Ecuador , Female , Humans , Mosquito Vectors/physiology , Risk Factors , Zika Virus Infection/transmission
8.
Viruses ; 13(7)2021 07 02.
Article in English | MEDLINE | ID: mdl-34372505

ABSTRACT

Despite the health, social and economic impact of arboviruses in French Guiana, very little is known about the extent to which infection burden is shared between individuals. We conducted a large multiplexed serological survey among 2697 individuals from June to October 2017. All serum samples were tested for IgG antibodies against DENV, CHIKV, ZIKV and MAYV using a recombinant antigen-based microsphere immunoassay with a subset further evaluated through anti-ZIKV microneutralization tests. The overall DENV seroprevalence was estimated at 73.1% (70.6-75.4) in the whole territory with estimations by serotype at 68.9% for DENV-1, 38.8% for DENV-2, 42.3% for DENV-3, and 56.1% for DENV-4. The overall seroprevalence of CHIKV, ZIKV and MAYV antibodies was 20.3% (17.7-23.1), 23.3% (20.9-25.9) and 3.3% (2.7-4.1), respectively. We provide a consistent overview of the burden of emerging arboviruses in French Guiana, with useful findings for risk mapping, future prevention and control programs. The majority of the population remains susceptible to CHIKV and ZIKV, which could potentially facilitate the risk of further re-emergences. Our results underscore the need to strengthen MAYV surveillance in order to rapidly detect any substantial changes in MAYV circulation patterns.


Subject(s)
Antibodies, Viral/blood , Arbovirus Infections/epidemiology , Arbovirus Infections/immunology , Arboviruses/genetics , Arboviruses/immunology , Adolescent , Adult , Aged , Arbovirus Infections/classification , Arboviruses/classification , Arboviruses/pathogenicity , Child , Child, Preschool , Cost of Illness , Cross-Sectional Studies , Demography , Female , French Guiana/epidemiology , Humans , Immunoglobulin G/blood , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , Young Adult
9.
Viruses ; 13(7)2021 07 07.
Article in English | MEDLINE | ID: mdl-34372518

ABSTRACT

Most viruses use several entry sites and modes of transmission to infect their host (parenteral, sexual, respiratory, oro-fecal, transplacental, transcutaneous, etc.). Some of them are known to be essentially transmitted via arthropod bites (mosquitoes, ticks, phlebotomes, sandflies, etc.), and are thus named arthropod-borne viruses, or arboviruses. During the last decades, several arboviruses have emerged or re-emerged in different countries in the form of notable outbreaks, resulting in a growing interest from scientific and medical communities as well as an increase in epidemiological studies. These studies have highlighted the existence of other modes of transmission. Among them, mother-to-child transmission (MTCT) during breastfeeding was highlighted for the vaccine strain of yellow fever virus (YFV) and Zika virus (ZIKV), and suggested for other arboviruses such as Chikungunya virus (CHIKV), dengue virus (DENV), and West Nile virus (WNV). In this review, we summarize all epidemiological and clinical clues that suggest the existence of breastfeeding as a neglected route for MTCT of arboviruses and we decipher some of the mechanisms that chronologically occur during MTCT via breastfeeding by focusing on ZIKV transmission process.


Subject(s)
Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Arboviruses/pathogenicity , Breast Feeding , Infectious Disease Transmission, Vertical , Milk, Human/virology , Animals , Arboviruses/classification , Chikungunya Fever/transmission , Chikungunya Fever/virology , Colostrum/virology , Culicidae/virology , Dengue/transmission , Dengue/virology , Disease Outbreaks , Female , Humans , West Nile Fever/transmission , West Nile Fever/virology , Zika Virus Infection/transmission , Zika Virus Infection/virology
10.
PLoS One ; 16(7): e0253955, 2021.
Article in English | MEDLINE | ID: mdl-34197539

ABSTRACT

BACKGROUND: Bunyamwera(BUNV) and Ngari (NGIV) viruses are arboviruses of medical importance globally, the viruses are endemic in Africa, Aedes(Ae) aegypti and Anopheles(An) gambiae mosquitoes are currently competent vectors for BUNV and NGIV respectively. Both viruses have been isolated from humans and mosquitoes in various ecologies of Kenya. Understanding the risk patterns and spread of the viruses necessitate studies of vector competence in local vector population of Ae. simpsoni sl which is abundant in the coastal region. This study sought to assess the ability of Ae. Simpsoni sl mosquitoes abundant at the Coast of Kenya to transmit these viruses in experimental laboratory experiments. METHODS: Field collected larvae/pupae of Ae. Simpsoni sl mosquitoes from Rabai, Kilifi County, were reared to adults, the first filial generation (F0) females' mosquitoes were orally exposed to infectious blood meal with isolates of the viruses using the hemotek membrane feeder. The exposed mosquitoes were incubated under insectary conditions and sampled on day 7, 14 and 21days post infection to determine susceptibility to the virus infection using plaque assay. RESULTS: A total of 379 (Bunyamwera virus 255 and Ngari virus 124) Ae. simpsoni sl were orally exposed to infectious blood meal. Overall, the infection rate (IR) for BUNV and NGIV were 2.7 and 0.9% respectively. Dissemination occurred in 5 out 7 mosquitoes with mid-gut infection for Bunyamwera virus and 1 out of 2 mosquitoes with mid-gut infection for Ngari virus. Further, the transmission was observed in 1 out of 5 mosquitoes that had disseminated infection and no transmission was observed for Ngari virus in all days post infection (dpi). CONCLUSION: Our study shows that Ae. simpsoni sl. is a laboratory competent vector for Bunyamwera virus since it was able to transmit the virus through capillary feeding while NGIV infection was restricted to midgut infection and disseminated infection, these finding adds information on the epidemiology of the viruses and vector control plan.


Subject(s)
Aedes/virology , Arboviruses/genetics , Bunyamwera virus/genetics , Virus Diseases/transmission , Animals , Arboviruses/pathogenicity , Bunyamwera virus/pathogenicity , Chikungunya virus/pathogenicity , Humans , Kenya/epidemiology , Mosquito Vectors/pathogenicity , Viral Load/genetics , Virus Diseases/epidemiology , Virus Diseases/genetics , Virus Diseases/virology , Zika Virus/pathogenicity
11.
Viruses ; 13(5)2021 04 24.
Article in English | MEDLINE | ID: mdl-33923307

ABSTRACT

Mosquito-borne viral infections are responsible for a significant degree of morbidity and mortality across the globe due to the severe diseases these infections cause, and they continue to increase each year. These viruses are dependent on the mosquito vector as the primary means of transmission to new vertebrate hosts including avian, livestock, and human populations. Due to the dynamic host environments that mosquito-borne viruses pass through as they are transmitted between vector and vertebrate hosts, there are various host factors that control the response to infection over the course of the pathogen's life cycle. In this review, we discuss these host factors that are present in either vector or vertebrate models during infection, how they vary or are conserved between hosts, and their implications in future research pertaining to disease prevention and treatment.


Subject(s)
Arbovirus Infections/transmission , Arboviruses/pathogenicity , Culicidae/virology , Host Microbial Interactions , Mosquito Vectors/virology , Animals , Arbovirus Infections/virology , Culicidae/immunology , Humans , Life Cycle Stages , Livestock/virology , Mosquito Vectors/immunology
12.
Infect Genet Evol ; 92: 104855, 2021 08.
Article in English | MEDLINE | ID: mdl-33839310

ABSTRACT

INTRODUCTION: Non-classical class I human leukocyte antigens (HLA) molecules are known to modulate the function of cytotoxic cells (NK and T CD8+) during viral infection by interacting with inhibitory/activating receptors. However, little is known about the HLA-E/-F genetic variability on arbovirus infections. METHODS: We evaluated by massive parallel sequencing the full HLA-E/-F genetic diversity among patients infected during the arbovirus (ZIKV, DENV, and CHIKV) outbreak leading to a broad range of neurological complications in the Brazilian State of Pernambuco. In parallel, healthy blood donors from the same area were also studied. Plink and R software were used for genetic association study. To limit the false-positive results and enhance the reliability of the results, we adopted P-values <0.01 as significant levels. RESULTS: Compared to controls, the HLA-F alleles: -1610 C (rs17875375), +1383 G (rs17178385), and +3537 A (rs17875384), all in complete linkage disequilibrium with each other (r2 = 1), were overrepresented in patients presenting peripheral spectrum disorders (PSD). The HLA-F*Distal-D haplotype that harbored the -1610 C allele exhibited a trend increase in PSD group. No associations were found for HLA-E. CONCLUSIONS: Our findings showed that the HLA-F genetic background seems to be more important than HLA-E on the susceptibility to PSD complications.


Subject(s)
Arbovirus Infections/genetics , Arbovirus Infections/virology , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Histocompatibility Antigens Class I/genetics , Nervous System Diseases/genetics , Nervous System Diseases/virology , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Arboviruses/pathogenicity , Brazil , Child , Female , Gene Frequency/genetics , Genetic Association Studies/methods , Haplotypes/genetics , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , Young Adult
13.
PLoS Negl Trop Dis ; 15(2): e0009014, 2021 02.
Article in English | MEDLINE | ID: mdl-33539393

ABSTRACT

BACKGROUND: Chikungunya, dengue, and Zika are three different arboviruses which have similar symptoms and are a major public health issue in Colombia. Despite the mandatory reporting of these arboviruses to the National Surveillance System in Colombia (SIVIGILA), it has been reported that the system captures less than 10% of diagnosed cases in some cities. METHODOLOGY/PRINCIPAL FINDINGS: To assess the scope and degree of arboviruses reporting in Colombia between 2014-2017, we conducted an observational study of surveillance data using the capture-recapture approach in three Colombian cities. Using healthcare facility registries (capture data) and surveillance-notified cases (recapture data), we estimated the degree of reporting by clinical diagnosis. We fit robust Poisson regressions to identify predictors of reporting and estimated the predicted probability of reporting by disease and year. To account for the potential misclassification of the clinical diagnosis, we used the simulation extrapolation for misclassification (MC-SIMEX) method. A total of 266,549 registries were examined. Overall arboviruses' reporting ranged from 5.3% to 14.7% and varied in magnitude according to age and year of diagnosis. Dengue was the most notified disease (21-70%) followed by Zika (6-45%). The highest reporting rate was seen in 2016, an epidemic year. The MC-SIMEX corrected rates indicated underestimation of the reporting due to the potential misclassification bias. CONCLUSIONS: These findings reflect challenges on arboviruses' reporting, and therefore, potential challenges on the estimation of arboviral burden in Colombia and other endemic settings with similar surveillance systems.


Subject(s)
Arboviruses/pathogenicity , Chikungunya Fever/epidemiology , Dengue/epidemiology , Zika Virus Infection/epidemiology , Adolescent , Adult , Arboviruses/classification , Chikungunya Fever/mortality , Child , Child, Preschool , Cities/epidemiology , Colombia/epidemiology , Dengue/mortality , Female , Humans , Male , Middle Aged , Population Surveillance , Regression Analysis , Young Adult , Zika Virus Infection/mortality
14.
J Med Virol ; 93(3): 1770-1775, 2021 03.
Article in English | MEDLINE | ID: mdl-32881018

ABSTRACT

Herein, we report a case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and dengue coinfection, presented as a fatal stroke in our hospital, in São José do Rio Preto, São Paulo State, a Brazilian city hyperendemic for dengue viruses and other arthropod-borne viruses (arboviruses) and currently facing a surge of SARS-CoV-2 cases. This case is the first described in the literature and contributes to the better understanding of clinical presentations of two important diseases in a tropical setting.


Subject(s)
COVID-19/complications , Coinfection/complications , Dengue Virus/pathogenicity , Dengue/complications , SARS-CoV-2/pathogenicity , Stroke/etiology , Stroke/virology , Arboviruses/pathogenicity , Brazil , COVID-19/virology , Coinfection/virology , Dengue/virology , Female , Humans , Middle Aged
15.
Sci Rep ; 10(1): 18254, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106507

ABSTRACT

The emergence of Zika virus (ZIKV) in Latin America brought to the fore longstanding concerns that forests bordering urban areas may provide a gateway for arbovirus spillback from humans to wildlife. To bridge urban and sylvatic transmission cycles, mosquitoes must co-occur with both humans and potential wildlife hosts, such as monkeys, in space and time. We deployed BG-Sentinel traps at heights of 0, 5, 10, and 15 m in trees in a rainforest reserve bordering Manaus, Brazil, to characterize the vertical stratification of mosquitoes and their associations with microclimate and to identify potential bridge vectors. Haemagogus janthinomys and Sabethes chloropterus, two known flavivirus vectors, showed significant stratification, occurring most frequently above the ground. Psorophora amazonica, a poorly studied anthropophilic species of unknown vector status, showed no stratification and was the most abundant species at all heights sampled. High temperatures and low humidity are common features of forest edges and microclimate analyses revealed negative associations between minimum relative humidity, which was inversely correlated with maximum temperature, and the occurrence of Haemagogus and Sabethes mosquitoes. In this reserve, human habitations border the forest while tamarin and capuchin monkeys are also common to edge habitats, creating opportunities for the spillback of mosquito-borne viruses.


Subject(s)
Animals, Wild/virology , Arbovirus Infections/transmission , Culicidae/virology , Mosquito Vectors/virology , Yellow Fever/transmission , Zika Virus Infection/transmission , Animals , Arbovirus Infections/virology , Arboviruses/isolation & purification , Arboviruses/pathogenicity , Brazil , Ecosystem , Flavivirus/isolation & purification , Flavivirus/pathogenicity , Forests , Haplorhini , Humans , Trees , Yellow Fever/virology , Zika Virus/isolation & purification , Zika Virus/pathogenicity , Zika Virus Infection/virology
16.
PLoS Pathog ; 16(10): e1009015, 2020 10.
Article in English | MEDLINE | ID: mdl-33075107

ABSTRACT

Recent developments on extracellular vesicles (EVs) containing multiple virus particles challenge the rigid definition of non-enveloped viruses. However, how non-enveloped viruses hijack cell machinery to promote non-lytic release in EVs, and their functional roles, remain to be clarified. Here we used Bluetongue virus (BTV) as a model of a non-enveloped arthropod-borne virus and discovered that the majority of viruses are released in EVs. Based on the cellular proteins detected in these EVs, and use of inhibitors targeting the cellular degradation process, we demonstrated that these extracellular vesicles are derived from secretory lysosomes, in which the acidic pH is neutralized upon the infection. Moreover, we report that secreted EVs are more efficient than free-viruses for initiating infections, but that they trigger super-infection exclusion that only free-viruses can overcome.


Subject(s)
Bluetongue virus/metabolism , Extracellular Vesicles/metabolism , Lysosomes/metabolism , Animals , Arboviruses/pathogenicity , Bluetongue virus/genetics , Cell Line , Extracellular Vesicles/physiology , Models, Biological , Secretory Vesicles , Virion , Virus Replication
17.
PLoS Negl Trop Dis ; 14(9): e0008614, 2020 09.
Article in English | MEDLINE | ID: mdl-32956355

ABSTRACT

The emergence of mosquito-transmitted viruses poses a global threat to human health. Combining mechanistic epidemiological models based on temperature-trait relationships with climatological data is a powerful technique for environmental risk assessment. However, a limitation of this approach is that the local microclimates experienced by mosquitoes can differ substantially from macroclimate measurements, particularly in heterogeneous urban environments. To address this scaling mismatch, we modeled spatial variation in microclimate temperatures and the thermal potential for dengue transmission by Aedes albopictus across an urban-to-rural gradient in Athens-Clarke County GA. Microclimate data were collected across gradients of tree cover and impervious surface cover. We developed statistical models to predict daily minimum and maximum microclimate temperatures using coarse-resolution gridded macroclimate data (4000 m) and high-resolution land cover data (30 m). The resulting high-resolution microclimate maps were integrated with temperature-dependent mosquito abundance and vectorial capacity models to generate monthly predictions for the summer and early fall of 2018. The highest vectorial capacities were predicted for patches of trees in urban areas with high cover of impervious surfaces. Vectorial capacity was most sensitive to tree cover during the summer and became more sensitive to impervious surfaces in the early fall. Predictions from the same models using temperature data from a local meteorological station consistently over-predicted vectorial capacity compared to the microclimate-based estimates. This work demonstrates that it is feasible to model variation in mosquito microenvironments across an urban-to-rural gradient using satellite Earth observations. Epidemiological models applied to the microclimate maps revealed localized patterns of temperature suitability for disease transmission that would not be detectable using macroclimate data. Incorporating microclimate data into disease transmission models has the potential to yield more spatially precise and ecologically interpretable metrics of mosquito-borne disease transmission risk in urban landscapes.


Subject(s)
Aedes/virology , Dengue/epidemiology , Dengue/transmission , Mosquito Vectors/virology , Animals , Arboviruses/pathogenicity , Dengue Virus/pathogenicity , Ecosystem , Georgia/epidemiology , Humans , Microclimate , Models, Biological , Trees
18.
Viruses ; 12(8)2020 08 14.
Article in English | MEDLINE | ID: mdl-32823806

ABSTRACT

The purpose of the study was to classify, through phylogenetic analyses, the main arboviruses that have been isolated in the metropolitan region of Porto Velho, Rondônia, Brazil. Serum samples from patients with symptoms suggesting arboviruses were collected and tested by One Step RT-qPCR for Zika, Dengue (serotypes 1-4), Chikungunya, Mayaro and Oropouche viruses. Positive samples were amplified by conventional PCR and sequenced utilizing the Sanger method. The obtained sequences were aligned, and an evolutionary analysis was carried out using Bayesian inference. A total of 308 samples were tested. Of this total, 20 had a detectable viral load for Dengue, being detected DENV1 (18/20), co-infection DENV1 and DENV2 (1/20) and DENV4 (1/20). For Dengue serotype 3 and for the CHIKV, ZIKV, MAYV and OROV viruses, no individuals with a detectable viral load were found. A total of 9 of these samples were magnified by conventional PCR for sequencing. Of these, 6 were successfully sequenced and, according to the evolutionary profile, 5 corresponded to serotype DENV-1 genotype V, and 1 to serotype DENV-4 genotype II. In the study, we demonstrate co-circulation of the DENV-1 genotype V and the DENV-4 genotype II. Co-circulation of several DENV serotypes in the same city poses a risk to the population and is correlated with the increase of the most severe forms of the disease. Similarly, co-circulation of genetically distinct DENV and the occurrence of simultaneous infections can affect recombination events and lead to the emergence of more virulent isolates.


Subject(s)
Arbovirus Infections/virology , Arboviruses/classification , Fever/virology , Phylogeny , Acute Disease/epidemiology , Arbovirus Infections/epidemiology , Arboviruses/pathogenicity , Brazil/epidemiology , Coinfection/epidemiology , Coinfection/virology , Dengue/epidemiology , Dengue Virus/genetics , Disease Outbreaks , Evolution, Molecular , Female , Fever/epidemiology , Genotype , Humans , Male , RNA, Viral/genetics , Serogroup , Viral Load
19.
PLoS One ; 15(4): e0232192, 2020.
Article in English | MEDLINE | ID: mdl-32343725

ABSTRACT

The introduction of exotic disease vectors into a new habitat can drastically change the local epidemiological situation. During 2012-2015, larvae and an adult of the yellow-fever mosquito, Aedes aegypti, were captured alive at two international airports serving the Greater Tokyo Area, Japan. Because this species does not naturally distribute in this country, those mosquitoes were considered to be introduced from overseas via air-transportation. To infer the places of origin of those mosquitoes, we genotyped the 12 microsatellite loci for which the most comprehensive population genetic reference is currently available. Although clustering by Bayesian and multivariate methods both suggested that all those mosquitoes captured at the airports in Japan belonged to the Asia/Pacific populations, they were not clustered into a single cluster. Moreover, there was variation in mitochondrial cytochrome oxidase I gene (CoxI) haplotypes among mosquitoes collected in different incidents of discovery which indicated the existence of multiple maternal origins. We conclude there is little evidence to support the overwintering of Ae. aegypti at the airports; nevertheless, special attention is still needed to prevent the invasion of this prominent arbovirus vector.


Subject(s)
Aedes/genetics , Airports , Mosquito Vectors/genetics , Aedes/classification , Aedes/virology , Animals , Arbovirus Infections/transmission , Arbovirus Infections/virology , Arboviruses/isolation & purification , Arboviruses/pathogenicity , Bayes Theorem , Ecosystem , Electron Transport Complex IV/genetics , Genes, Insect , Genes, Mitochondrial , Genetic Variation , Genetics, Population , Genotype , Haplotypes , Humans , Insect Proteins/genetics , Microsatellite Repeats , Mosquito Vectors/classification , Mosquito Vectors/virology , Tokyo
20.
Virus Genes ; 56(2): 150-167, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32076918

ABSTRACT

The viruses historically implicated or currently considered as candidates for misuse in bioterrorist events are poxviruses, filoviruses, bunyaviruses, orthomyxoviruses, paramyxoviruses and a number of arboviruses causing encephalitis, including alpha- and flaviviruses. All these viruses are of concern for public health services when they occur in natural outbreaks or emerge in unvaccinated populations. Recent events and intelligence reports point to a growing risk of dangerous biological agents being used for nefarious purposes. Public health responses effective in natural outbreaks of infectious disease may not be sufficient to deal with the severe consequences of a deliberate release of such agents. One important aspect of countermeasures against viral biothreat agents are the antiviral treatment options available for use in post-exposure prophylaxis. These issues were adressed by the organizers of the 16th Medical Biodefense Conference, held in Munich in 2018, in a special session on the development of drugs to treat infections with viruses currently perceived as a threat to societies or associated with a potential for misuse as biothreat agents. This review will outline the state-of-the-art methods in antivirals research discussed and provide an overview of antiviral compounds in the pipeline that are already approved for use or still under development.


Subject(s)
Antiviral Agents/therapeutic use , Arboviruses/drug effects , Bioterrorism/prevention & control , Virus Diseases/drug therapy , Arboviruses/pathogenicity , Filoviridae/drug effects , Filoviridae/pathogenicity , Humans , Orthobunyavirus/drug effects , Orthobunyavirus/pathogenicity , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Paramyxovirinae/drug effects , Paramyxovirinae/pathogenicity , Poxviridae/drug effects , Poxviridae/pathogenicity , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...