Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 925
Filter
1.
Sci Rep ; 14(1): 10190, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702366

ABSTRACT

Dysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats. The serotonergic reuptake inhibitor administration into the mediobasal hypothalamus (MBH), including the ARC, significantly blocked glucoprivic suppression of luteinizing hormone (LH) pulses and hyperglycemia induced by intravenous 2-deoxy-D-glucose (2DG) administration in female rats. A local infusion of glucose into the DR significantly increased in vivo serotonin release in the MBH and partly restored LH pulses and hyperglycemia in the 2DG-treated female rats. Furthermore, central administration of serotonin or a 5HT2CR agonist immediately evoked GnRH pulse generator activity, and central 5HT2CR antagonism blocked the serotonin-induced facilitation of GnRH pulse generator activity in ovariectomized goats. These results suggest that DR serotonergic neurons sense high glucose availability to reduce gluconeogenesis and upregulate reproductive function by activating GnRH/LH pulse generator activity in mammals.


Subject(s)
Glucose , Goats , Gonadotropin-Releasing Hormone , Luteinizing Hormone , Receptor, Serotonin, 5-HT2C , Serotonergic Neurons , Animals , Luteinizing Hormone/metabolism , Female , Receptor, Serotonin, 5-HT2C/metabolism , Rats , Serotonergic Neurons/metabolism , Gonadotropin-Releasing Hormone/metabolism , Glucose/metabolism , Serotonin/metabolism , Kisspeptins/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/drug effects , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/drug effects , Rats, Sprague-Dawley
2.
Gen Physiol Biophys ; 43(3): 255-261, 2024 May.
Article in English | MEDLINE | ID: mdl-38385362

ABSTRACT

The arcuate nucleus (ARN) of the hypothalamus is involved in multiple biological functions, such as feeding, sexual activity, and the regulation of the cardiovascular system. It was reported that leptin increased c-Fos expression in the proopiomelanocortin (POMC)- and decreased it in the neuropeptide-Y (NPY)-positive neurons of the ARN, suggesting that it stimulates the former, and inhibits the later. This study aimed at the direct electrophysiological examination of the effect of leptin on ARN neurons and to investigate potential sex-dimorphic changes. Wistar rats were anesthetized with urethane and the electrodes were inserted into the ARN. After a spontaneous active neuron was recorded for at least one minute, leptin was administered intravenously, and the firing activity of the same neuron was recorded for two additional minutes. It was found that approximately half of the ARN neurons had an excitatory, and another half an inhibitory response to the leptin administration. The excitability of the neurons with excitatory response to leptin was not different between the sexes. The average firing rate of the neurons with inhibitory response to leptin in females was, however, significantly lower comparing to the males. The obtained results demonstrate that the ARN neurons with stimulatory response to leptin are POMC and those with inhibitory response are NPY neurons. NPY Y1 receptor be might responsible, at least in part, for the sex differences in the excitability of the neurons putatively identified as NPY neurons.


Subject(s)
Arcuate Nucleus of Hypothalamus , Leptin , Neurons , Neuropeptide Y , Pro-Opiomelanocortin , Rats, Wistar , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/drug effects , Pro-Opiomelanocortin/metabolism , Male , Female , Rats , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Leptin/pharmacology , Leptin/metabolism , Neurons/metabolism , Neurons/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Sex Characteristics
3.
Toxicol Appl Pharmacol ; 437: 115893, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35085591

ABSTRACT

Background Oxidative stress and inflammation play important roles in the development of diabetes. Metformin (MET) is considered as the first-line therapy for patients with type 2 diabetes (T2D). Hypothalamic paraventricular nucleus (PVN) and hypothalamic arcuate nucleus (ARC) are vital in obesity and diabetes. However, there have been few studies on the effects of MET on inflammatory reaction and oxidative stress in the PVN and ARC of T2D diabetic rats. Methods Male Sprague-Dawley (SD) rats were fed with high-fat diet (HFD), and intraperitoneally injected with low-dose streptozotocin (STZ, 30 mg/kg) at 6th week to induce T2D diabetes. After injection of STZ, they were fed with HFD continually. Starting from the 8th week of HFD feeding, T2D rats received intragastrical administration of MET (150 mg/kg/day) in addition to the HFD for another 8 weeks. At the end of the 15th week, the rats were anaesthetized to record the sympathetic nerve activity and collect blood and tissue samples. Results In comparison with control rats, T2D diabetic rats had higher levels of pro-inflammatory cytokines (PICs) and excessive oxidative stress in the PVN and ARC, accompanied with more activated astrocytes. The renal sympathetic nerve activity (RSNA) and the plasma norepinephrine (NE) increased in T2D diabetic rats. The expression of tyrosine hydroxylase (TH) increased and the expression of 67-kDa isoform of glutamate decarboxylase (GAD67) decreased in T2D diabetic rats. Supplementation of MET decreased blood glucose, suppressed RSNA, decreased PICs (TNF-α, IL-1ß and IL-6) in PVN and ARC, attenuated oxidative stress and activation of astrocytes in ARC and PVN of T2D diabetic rats, as well as restored the balance of neurotransmitter synthetase. The number of Fra-LI (chronic neuronal excitation marker) positive neurons in the ARC and PVN of T2D diabetic rats increased. Chronic supplementation of MET also decreased the number of Fra-LI positive neurons in the ARC and PVN of T2D diabetic rats. Conclusion These findings suggest that the PVN and ARC participate in the beneficial effects of MET in T2D diabetic rats, which is possibly mediated via down-regulating of inflammatory molecules, attenuating oxidative stress and restoring the balance of neurotransmitter synthetase by MET in the PVN and ARC.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Animals , Astrocytes/drug effects , Blood Glucose/drug effects , Body Weight/drug effects , Diabetes Mellitus, Experimental/drug therapy , Gene Expression Regulation, Enzymologic/drug effects , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Male , Oxidative Stress , Rats , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
4.
Front Endocrinol (Lausanne) ; 12: 775233, 2021.
Article in English | MEDLINE | ID: mdl-34795643

ABSTRACT

Traditionally, the anteroventral periventricular (AVPV) nucleus has been the brain area associated with luteinizing hormone (LH) surge secretion in rodents. However, the role of the other population of hypothalamic kisspeptin neurons, in the arcuate nucleus (ARC), has been less well characterized with respect to surge generation. Previous experiments have demonstrated ARC kisspeptin knockdown reduced the amplitude of LH surges, indicating that they have a role in surge amplification. The present study used an optogenetic approach to selectively stimulate ARC kisspeptin neurons and examine the effect on LH surges in mice with different hormonal administrations. LH level was monitored from 13:00 to 21:00 h, at 30-minute intervals. Intact Kiss-Cre female mice showed increased LH secretion during the stimulation period in addition to displaying a spontaneous LH surge around the time of lights off. In ovariectomized Kiss-Cre mice, optogenetic stimulation was followed by a surge-like secretion of LH immediately after the stimulation period. Ovariectomized Kiss-Cre mice with a low dose of 17ß-estradiol (OVX+E) replacement displayed a surge-like increase in LH release during period of optic stimulation. No LH response to the optic stimulation was observed in OVX+E mice on the day of estradiol benzoate (EB) treatment (day 1). However, after administration of progesterone (day 2), all OVX+E+EB+P mice exhibited an LH surge during optic stimulation. A spontaneous LH surge also occurred in these mice at the expected time. Taken together, these results help to affirm the fact that ARC kisspeptin may have a novel amplificatory role in LH surge production, which is dependent on the gonadal steroid milieu.


Subject(s)
Arcuate Nucleus of Hypothalamus , Estradiol/pharmacology , Luteinizing Hormone/metabolism , Neurons/drug effects , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Estradiol/metabolism , Female , Humans , Kisspeptins/genetics , Kisspeptins/metabolism , Mice , Mice, Transgenic , Neurons/metabolism , Optogenetics , Ovariectomy , Ovary/metabolism , Progesterone/pharmacology
5.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360816

ABSTRACT

Hypothalamic dysfunction is an initial event following diet-induced obesity, primarily involving areas regulating energy balance such as arcuate nucleus (Arc) and median eminence (ME). To gain insights into the early hypothalamic diet-induced alterations, adult CD1 mice fed a high-fat diet (HFD) for 6 weeks were studied and compared with normo-fed controls. Transmission and scanning electron microscopy and histological staining were employed for morphological studies of the ME, while Raman spectroscopy was applied for the biochemical analysis of the Arc-ME complex. In HFD mice, ME ß2-tanycytes, glial cells dedicated to blood-liquor crosstalk, exhibited remarkable ultrastructural anomalies, including altered alignment, reduced junctions, degenerating organelles, and higher content of lipid droplets, lysosomes, and autophagosomes. Degenerating tanycytes also displayed an electron transparent cytoplasm filled with numerous vesicles, and they were surrounded by dilated extracellular spaces extending up to the subependymal layer. Consistently, Raman spectroscopy analysis of the Arc-ME complex revealed higher glycogen, collagen, and lipid bands in HFD mice compared with controls, and there was also a higher band corresponding to the cyanide group in the former compared to the last. Collectively, these data show that ME ß2-tanycytes exhibit early structural and chemical alterations due to HFD and reveal for the first-time hypothalamic cyanide presence following high dietary lipids consumption, which is a novel aspect with potential implications in the field of obesity.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Diet, High-Fat/adverse effects , Median Eminence/drug effects , Animals , Arcuate Nucleus of Hypothalamus/pathology , Energy Metabolism , Male , Median Eminence/pathology , Mice , Obesity/pathology
6.
Life Sci ; 284: 119897, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34450172

ABSTRACT

AIM: Contradiction overwhelms chemerin link to feeding behavior. Neither the chemerin central role on appetite regulation nor its relation to hypothalamic histamine and AMPK is verified. MAIN METHODS: Food intake, body weight and hypothalamic biochemical changes were assessed after a single intra-cerebroventricular or intraperitoneal injection (ip) (1 µg/kg or 16 µg/kg, respectively) or chronic ip administration (8 µg/kg/day) of chemerin for 14 or 28 days. Hypothalamic neurobiochemical changes in chemerin/histamine/AMPK induced by either 8-week high fat diet (HFD) or food restriction were also investigated. To confirm chemerin-histamine crosstalk, these neurobiochemical changes were assessed under settings of H1-receptor agonism and/or antagonism by betahistine and/or olanzapine, respectively for 3 weeks. KEY FINDINGS: Chemerin-injected rats exhibited anorexigenic behavior in both acute and chronic studies that was associated with a decreased AMPK activity in the arcuate nucleus (ARC). However, with long-term administration, chemerin anorexigenic effect gradually ceased. Contrarily to food restriction, 8-week HFD increased ARC expression of chemerin and its receptor CMKLR1, reducing food intake via an interplay of H1-receptors and AMPK activity. Blockage of H1-receptors by olanzapine disrupted chemerin signaling pathway with an increased AMPK activity, augmenting food intake. These changes were reversed to normal by betahistine coadministration. SIGNIFICANCE: Chemerin is an anorexigenic adipokine, whose dysregulation is implicated in diet, and olanzapine-induced obesity through a histamine/AMPK axis in the ARC. Hypothalamic chemerin/CMKLR1 expression is a dynamic time-dependent response to changes in body weight and/or food intake. Targeting chemerin as a novel therapeutic approach against antipsychotic- or diet-induced obesity is worth to be further delineated.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Chemokines/metabolism , Diet , Histamine/metabolism , Hypothalamus/metabolism , Obesity/chemically induced , Obesity/metabolism , Olanzapine/adverse effects , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Betahistine/administration & dosage , Body Weight/drug effects , Caloric Restriction , Chemokines/administration & dosage , Diet, High-Fat , Feeding Behavior/drug effects , Female , Histamine H1 Antagonists/pharmacology , Injections, Intraperitoneal , Rats, Wistar , Receptors, Chemokine/metabolism , Receptors, Histamine H1/metabolism
7.
PLoS One ; 16(8): e0256148, 2021.
Article in English | MEDLINE | ID: mdl-34407144

ABSTRACT

In females, estrogens have two main modes of action relating to gonadotropin secretion: positive feedback and negative feedback. Estrogen positive and negative feedback are controlled by different regions of the hypothalamus: the preoptic area/anterior portion (mainly the anteroventral periventricular nucleus, AVPV) of the hypothalamus is associated with estrogen positive feedback while the mediobasal hypothalamus (mainly the arcuate nucleus of the hypothalamus, ARH), is associated with estrogen negative feedback. In this study, we examined the temporal pattern of gene transcription in these two regions following estrogen treatment. Adult, ovariectomized, Long Evans rats received doses of estradiol benzoate (EB) or oil every 4 days for 3 cycles. On the last EB priming cycle, hypothalamic tissues were dissected into the AVPV+ and ARH+ at 0 hrs (baseline/oil control), 6 hrs, or 24 hrs after EB treatment. RNA was extracted and sequenced using bulk RNA sequencing. Differential gene analysis, gene ontology, and weighted correlation network analysis (WGCNA) was performed. Overall, we found that the AVPV+ and ARH+ respond differently to estradiol stimulation. In both regions, estradiol treatment resulted in more gene up-regulation than down-regulation. S100g was very strongly up-regulated by estradiol in both regions at 6 and 24 hrs after EB treatment. In the AVPV+ the highest number of differentially expressed genes occurred 24 hrs after EB. In the ARH+, the highest number of genes differentially expressed by EB occurred between 6 and 24 hrs after EB, while in the AVPV+, the fewest genes changed their expression between these time points, demonstrating a temporal difference in the way that EB regulates transcription these two areas. Several genes strongly implicated in gonadotropin release were differentially affected by estradiol including Esr1, encoding estrogen receptor-α and Kiss1, encoding kisspeptin. As an internal validation, Kiss1 was up-regulated in the AVPV+ and down-regulated in the ARH+. Gene network analysis revealed the vastly different clustering of genes modulated by estradiol in the AVPV+ compared with the ARH+. These results indicate that gene expression in these two hypothalamic regions have specific responses to estradiol in timing and direction.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Estradiol/pharmacology , Gene Expression Regulation/drug effects , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus, Anterior/metabolism , Hypothalamus/metabolism , Sequence Analysis, RNA/methods , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Female , Hypothalamus/drug effects , Hypothalamus, Anterior/drug effects , Kisspeptins/metabolism , Models, Animal , Ovariectomy/methods , Rats , Rats, Long-Evans
8.
Elife ; 102021 07 22.
Article in English | MEDLINE | ID: mdl-34292152

ABSTRACT

GnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances. Prostaglandin E2 (PGE2), synthesized primarily by astrocytes, increases GnRH neuron activity and downstream pituitary release of luteinizing hormone (LH). We hypothesized that glial fibrillary acidic protein (GFAP)-expressing astrocytes play a role in regulating GnRH and/or KNDy neuron activity and LH release. We used adeno-associated viruses to target designer receptors exclusively activated by designer drugs (DREADDs) to GFAP-expressing cells to activate Gq- or Gi-mediated signaling. Activating Gq signaling in the preoptic area, near GnRH neurons, but not in the arcuate, increases LH release in vivo and GnRH firing in vitro via a mechanism in part dependent upon PGE2. These data suggest that astrocytes can activate GnRH/LH release in a manner independent of KNDy neurons.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Glial Fibrillary Acidic Protein/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Luteinizing Hormone/drug effects , Neurons/metabolism , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Male , Mice , Mice, Transgenic , Pituitary Gland/metabolism , Preoptic Area/metabolism
9.
Neuropeptides ; 89: 102180, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34293597

ABSTRACT

Appetite loss or anorexia substantially decreases the quality of life in patients with cancer, depression and gastrointestinal disorders, and can lead to sarcopenia and frailty. Foods that restore appetite have been sought-for but are not currently available. Historically, onion intake was adopted to treat a variety of diseases with reduced appetite including cancer and gastrointestinal disturbances. While isoalliin is a core component of onion, the effects of isoalliin on feeding behavior and feeding centers remain unknown. Neuropeptide Y (NPY) and ghrelin are the most potent central and peripheral inducers of appetite. A Japanese kampo medicine Ninjin'yoeito activates ghrelin-responsive NPY neurons in the hypothalamic arcuate nucleus (ARC) and counteracts anorexia induced by an anti-cancer drug cisplatin. This study explored the effects of isoalliin on feeding behavior and activities of ARC neurons in mice. Isoalliin, injected intraperitoneally, dose-dependently increased food intake during dark phase (DP) and daily without altering light phase (LP) food intake. We measured cytosolic Ca2+ concentration ([Ca2+]i) in single ARC neurons including NPY neurons identified by GFP fluorescence. Isoalliin increased [Ca2+]i in 10 of 18 (55.6%) NPY neurons, a majority of which also responded to ghrelin with [Ca2+]i increases, indicating that the ARC ghrelin-responsive NPY neuron is the major target of isoalliin. Isoalliin also increased [Ca2+]i in the ARC neurons that responded to Ninjin'yoeito. These results indicate that isoalliin enhances feeding at the active period and activates ARC ghrelin-responsive NPY neurons and Ninjin'yoeito-responsive neurons. These abilities of isoalliin to stimulate DP feeding and activate ARC orexigenic neurons provide scientific evidence for the health beneficial effects of onion experienced historically and globally.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Cysteine/analogs & derivatives , Drugs, Chinese Herbal/pharmacology , Eating/drug effects , Ghrelin/pharmacology , Neurons/drug effects , Neuropeptide Y/pharmacology , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Calcium/metabolism , Cysteine/pharmacology , Dose-Response Relationship, Drug , Mice
10.
J Neurosci ; 41(26): 5734-5746, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34031163

ABSTRACT

Obesity is a serious global health problem because of its increasing prevalence and comorbidities, but its treatments are limited. The serotonin 2C receptor (5-HT2CR), a G-protein-coupled receptor, activates proopiomelanocortin (POMC) neurons in the arcuate nucleus of hypothalamus (ARH) to reduce appetite and weight gain. However, several 5-HT analogs targeting this receptor, e.g., lorcaserin (Lor), suffer from diminished efficacy to reduce weight after prolonged administration. Here, we show that barbadin (Bar), a novel ß-arrestin/ß2-adaptin inhibitor, can prevent 5-HT2CR internalization in cells and potentiate long-term effects of Lor to reduce appetite and body weight in male mice. Mechanistically, we demonstrate that Bar co-treatment can effectively maintain the sensitivity of the 5-HT2CR in POMCARH neurons, despite prolonged Lor exposure, thereby allowing these neurons to be activated through opening the transient receptor potential cation (TRPC) channels. Thus, our results prove the concept that inhibition of 5-HT2CR desensitization can be a valid strategy to improve the long-term weight loss effects of Lor or other 5-HT2CR agonists, and also provide an intellectual framework to develop effective long-term management of weight by targeting 5-HT2CR desensitization.SIGNIFICANCE STATEMENT By demonstrating that the combination of barbadin (Bar) with a G-protein-coupled receptor (GPCR) agonist can provide prolonged weight-lowering benefits in a preclinical setting, our work should call for additional efforts to validate Bar as a safe and effective medicine or to use Bar as a lead compound to develop more suitable compounds for obesity treatment. These results prove the concept that inhibition of serotonin 2C receptor (5-HT2CR) desensitization can be a valid strategy to improve the long-term weight loss effects of lorcaserin (Lor) or other 5-HT2CR agonists. Since GPCRs represent a major category as therapeutic targets for various human diseases and desensitization of GPCRs is a common issue, our work may provide a conceptual framework to enhance effects of a broad range of GPCR medicines.


Subject(s)
Benzazepines/pharmacology , Neurons/drug effects , Pyrimidines/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Weight Loss/drug effects , Animals , Appetite/drug effects , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Pro-Opiomelanocortin/metabolism , Receptor, Serotonin, 5-HT2C/drug effects , Time
11.
Endocr Regul ; 55(2): 120-130, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34020528

ABSTRACT

It is apparent that the c-Fos and FosB/ΔFosB immunohistochemistry has generally become a useful tool for determining the different antipsychotic (AP) drugs activities in the brain. It is also noteworthy that there are no spatial limits, while to the extent of their identification over the whole brain axis. In addition, they can be in a parallel manner utilized in the unmasking of the brain cell phenotype character activated by APs and by this way also to identify the possible brain circuits underwent to the APs action. However, up to date, the number of APs involved in the extra-striatal studies is still limited, what prevents the possibility to fully understand their extra-striatal effects as a complex as well as differentiate their extra-striatal impact in qualitative and quantitative dimensions. Actually, it is very believable that more and more anatomical/functional knowledge might bring new insights into the APs extra-striatal actions by identifying new region-specific activities of APs as well as novel cellular targets affected by APs, which might reveal more details of their possible side effects of the extra-striatal origin.


Subject(s)
Amygdala/drug effects , Antipsychotic Agents/pharmacology , Arcuate Nucleus of Hypothalamus/drug effects , Locus Coeruleus/drug effects , Midline Thalamic Nuclei/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Amygdala/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Humans , Locus Coeruleus/metabolism , Midline Thalamic Nuclei/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
12.
Peptides ; 142: 170546, 2021 08.
Article in English | MEDLINE | ID: mdl-33794282

ABSTRACT

Metabolic stress resulting from either lack or excess of nutrients often causes infertility in both sexes. Kisspeptin-neurokinin B-dynorphin A (KNDy) neurons in the arcuate nucleus (ARC) has been suggested to be a key players in reproduction via direct stimulation of the pulsatile gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. In this study, we investigated the effect of high-fat diet (HFD) on hypothalamic KNDy gene expression to examine the pathogenic mechanism underlying obesity-induced infertility in male and female rats. Male and female rats at 7 weeks of age were fed with either a standard or HFD for 4 months. In the male rats, the HFD caused a significant suppression of ARC Kiss1 and Pdyn gene expressions, but did not affect the plasma luteinizing hormone (LH) levels and sizes of the morphology of the testis and epididymis. In the female rats, 58% of the HFD-fed female rats exhibited irregular estrous cycles, whereas the remaining rats showed regular cycles. Two of the 10 rats that showed HFD-induced irregular estrous cycles showed profound suppression of LH pulse frequency and the number of ARC Kiss1-expressing cells, whereas the other females showed normal LH pulses and ARC Kiss1 expression. Our finding shows that suppression of ARC Kiss1 expression might be the initial pathological change of hypogonadotropic hypogonadism in HFD-fed male rats, while the obese-related infertility in the female rats may be mainly induced by KNDy-independent pathways. Taken together, ARC kisspeptin neurons in male rats may be susceptible to HFD-induced obesity compared with those in female rats.


Subject(s)
Arcuate Nucleus of Hypothalamus/pathology , Gonadal Steroid Hormones/pharmacology , Hypogonadism/pathology , Luteinizing Hormone/metabolism , Metabolic Diseases/complications , Neurons/pathology , Obesity/complications , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Diet, High-Fat , Dynorphins/genetics , Dynorphins/metabolism , Female , Hypogonadism/etiology , Hypogonadism/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Male , Neurokinin B/genetics , Neurokinin B/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Wistar
13.
Endocr J ; 68(8): 933-941, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-33867395

ABSTRACT

The brain mechanism responsible for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) is important for maintaining reproductive function in mammals. Accumulating evidence suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH and subsequent gonadotropin secretion. Dynorphin A (Dyn) and its receptor, kappa-opioid receptor (KOR, encoded by Oprk1), have been shown to be involved in the suppression of pulsatile GnRH/luteinizing hormone (LH) release. On the other hand, it is still unclear whether the inhibitory Dyn signaling affects KNDy neurons or KOR-expressing non-KNDy cells in the ARC or other brain regions. We therefore aimed to clarify the role of ARC-specific Dyn-KOR signaling in the regulation of pulsatile GnRH/LH release by the ARC specific cell deletion of KOR-expressing cells using Dyn-conjugated-saporin (Dyn-SAP). Estrogen-primed ovariectomized female rats were administered Dyn-SAP to the ARC. In situ hybridization of Oprk1 showed that ARC Dyn-SAP administration significantly decreased the number of Oprk1-expressing cells in the ARC, but not in the ventromedial hypothalamic nucleus and paraventricular nucleus. The frequency of LH pulses significantly increased in animals bearing the ARC Dyn-SAP administration. The number of Kiss1-expressing cells in the ARC was not affected by ARC Dyn-SAP treatment. Dyn-KOR signaling within the ARC seems to mediate the suppression of the frequency of pulsatile GnRH/LH release, and ARC non-KNDy KOR neurons may be involved in the mechanism modulating GnRH/LH pulse generation.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Luteinizing Hormone/blood , Neurons/metabolism , Receptors, Opioid, kappa/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Dynorphins/administration & dosage , Female , Neurons/drug effects , Rats , Rats, Wistar , Saponins/administration & dosage
14.
Chem Biol Interact ; 337: 109379, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33453195

ABSTRACT

Cadmium (Cd) is a toxic metal, which seems to be crucial during the prepubertal period. Cd can destroy the structural integrity of the blood-brain barrier (BBB) and enters into the brain. Although the brain is susceptible to neurotoxicity induced by Cd, the effects of Cd on the brain, particularly hypothalamic transcriptome, are still relatively poorly understood. Therefore, we investigated the molecular effects of Cd exposure on the hypothalamus by profiling the transcriptomic response of the hypothalamus to high dose of Cd (25 mg/kg bw/day cadmium chloride (CdCl2)) during the prepubertal period in Sprague-Dawley female rats. After sequencing and annotation, differential expression analysis revealed 1656 genes that were differentially expressed that 108 of them were classified into 37 transcription factor (TF) families. According to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, these differentially expressed genes (DEGs) were involved in different biological processes and neurological disorders including Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), prolactin signaling pathway, PI3K/Akt signaling, and dopaminergic synapse. Five transcripts were selected for further analyses with Real-time quantitative PCR (RT-qPCR). The RT-qPCR results were mostly consistent with those from the high throughput RNA sequencing (RNA-seq). Cresyl violet staining clearly showed an increased neuronal degeneration in the dorsomedial hypothalamus (DMH) and arcuate (Arc) nuclei of the CdCl2 group. Overall, this study demonstrates that prepubertal exposure to high doses of Cd induces hypothalamic injury through transcriptome profiling alteration in female rats, which reveals the new mechanisms of pathogenesis of Cd in the hypothalamus.


Subject(s)
Cadmium Chloride/toxicity , Hypothalamus/drug effects , Transcriptome/drug effects , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Blood Glucose/analysis , Down-Regulation/drug effects , Female , Gene Ontology , Gene Regulatory Networks/drug effects , Hypothalamus/metabolism , Hypothalamus/pathology , Immune System/drug effects , Immune System/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Prolactin/blood , Rats , Rats, Sprague-Dawley , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation/drug effects
15.
Front Endocrinol (Lausanne) ; 12: 772909, 2021.
Article in English | MEDLINE | ID: mdl-34987476

ABSTRACT

Central administration of fibroblast growth factor-1 (FGF1) results in long-lasting resolution of hyperglycemia in various rodent models, but the pre- and postsynaptic mechanisms mediating the central effects of FGF1 are unknown. Here we utilize electrophysiology recordings from neuronal populations in the arcuate nucleus of the hypothalamus (ARH), nucleus of the solitary tract (NTS), and area postrema (AP) to investigate the mechanisms underlying FGF1 actions. While FGF1 did not alter membrane potential in ARH-NPY-GFP neurons, it reversibly depolarized 83% of ARH-POMC-EGFP neurons and decreased the frequency of inhibitory inputs onto ARH-POMC-EGFP neurons. This depolarizing effect persisted in the presence of FGF receptor (R) blocker FIIN1, but was blocked by pretreatment with the voltage-gated sodium channel (VGSC) blocker tetrodotoxin (TTX). Non-FGF1 subfamilies can activate vascular endothelial growth factor receptors (VEGFR). Surprisingly, the VEGFR inhibitors axitinib and BMS605541 blocked FGF1 effects on ARH-POMC-EGFP neurons. We also demonstrate that FGF1 induces c-Fos in the dorsal vagal complex, activates NTS-NPY-GFP neurons through a FGFR mediated pathway, and requires VGSCs to activate AP neurons. We conclude that FGF1 acts in multiple brain regions independent of FGFRs. These studies present anatomical and mechanistic pathways for the future investigation of the pharmacological and physiological role of FGF1 in metabolic processes.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Area Postrema/drug effects , Fibroblast Growth Factor 1/pharmacology , Neurons/drug effects , Solitary Nucleus/drug effects , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Area Postrema/metabolism , Membrane Potentials/drug effects , Mice , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Solitary Nucleus/metabolism
16.
Neuroendocrinology ; 111(1-2): 45-69, 2021.
Article in English | MEDLINE | ID: mdl-32028278

ABSTRACT

OBJECTIVE: We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS: Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS: In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS: These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Energy Metabolism/physiology , Neurons/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Pro-Opiomelanocortin , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Transient Receptor Potential Channels/physiology , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Electrophysiological Phenomena , Energy Metabolism/drug effects , Female , Guinea Pigs , Homeostasis , Male , Mice , Mice, Transgenic , Neurons/drug effects , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Transient Receptor Potential Channels/drug effects
17.
Domest Anim Endocrinol ; 74: 106465, 2021 01.
Article in English | MEDLINE | ID: mdl-32599450

ABSTRACT

Central administration of adrenomedullin (AM), a 52-amino acid peptide, is associated with anorexigenic effects in some species, including rodents and chickens. However, the associated hypothalamic mechanisms remain unclear and it is unknown if this peptide exerts satiety-inducing effects in other avian species. The objective of this study was thus to investigate AM-induced anorexigenic effects in 7-day-old Japanese quail (Coturnix japonica). After intracerebroventricular injection of 0.3, 1.0, or 3.0 nmol of AM, quail injected with 3.0 nmol of AM ate and drank less than vehicle-injected quail at 180 min after injection. Except for the 1.0 nmol dose of AM exerting an anorexigenic effect at 90 min after injection, no other inhibitory effects on food or water intake were observed. At 60 min after injection, the AM-injected quail had more c-Fos immunoreactive cells in the arcuate nucleus (ARC) than vehicle-injected birds. In the ARC, AM injection was associated with increased proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) mRNAs. In conclusion, the results suggest that the anorexigenic effect of AM is possibly influenced by the synergistic effect of POMC and CART in the ARC.


Subject(s)
Adrenomedullin/pharmacology , Arcuate Nucleus of Hypothalamus/drug effects , Coturnix , Feeding Behavior/drug effects , Nerve Tissue Proteins/metabolism , Pro-Opiomelanocortin/metabolism , Animals , Antihypertensive Agents/pharmacology , Arcuate Nucleus of Hypothalamus/metabolism , Nerve Tissue Proteins/genetics , Pro-Opiomelanocortin/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Domest Anim Endocrinol ; 74: 106499, 2021 01.
Article in English | MEDLINE | ID: mdl-32858465

ABSTRACT

Vasoactive intestinal polypeptide (VIP) is involved in gastric smooth muscle relaxation, vasodilation, and gastric secretions. It is also associated with appetite regulation, eliciting an anorexigenic response in mammals, birds, and fish; however, the molecular mechanism mediating this response is not well understood. The aim of the present study was thus to investigate hypothalamic mechanisms mediating VIP-induced satiety in 7-d old Japanese quail. In experiment 1, chicks that received intracerebroventricular (ICV) injection of VIP had reduced food intake for up to 180 min after injection and reduced water intake for 90 min. In experiment 2, VIP-treated chicks that were food restricted did not reduce water intake. In experiment 3, there was increased c-Fos immunoreactivity in the arcuate (ARC) and dorsomedial (DMN) nuclei of the hypothalamus in VIP-injected quail. In experiment 4, ICV VIP was associated with decreased neuropeptide Y mRNA in the ARC and DMN and an increase in corticotropin releasing factor mRNA in the DMN. In experiment 5, VIP-treated chicks displayed fewer feed pecks and locomotor behaviors. These results demonstrate that central VIP causes anorexigenic effects that are likely associated with reductions in orexigenic tone involving the ARC and DMN.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Coturnix , Dorsomedial Hypothalamic Nucleus/drug effects , Vasoactive Intestinal Peptide/pharmacology , Animals , Arcuate Nucleus of Hypothalamus/physiology , Behavior, Animal/drug effects , Dorsomedial Hypothalamic Nucleus/physiology , Dose-Response Relationship, Drug , Drinking/drug effects , Feeding Behavior/drug effects , Immunohistochemistry/veterinary , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Vasoactive Intestinal Peptide/administration & dosage
19.
Am J Physiol Endocrinol Metab ; 320(3): E467-E474, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33356996

ABSTRACT

The arcuate nucleus (ARC) of the hypothalamus comprises two antagonistic neuron populations critical for energy balance, namely, the anorexigenic pro-opiomelanocortin (POMC) and the orexigenic agouti-related peptide (AgRP) neurons that act as agonists and antagonists, respectively, for neurons expressing the type IV melanocortin receptor (MC4R) (Andermann ML and Lowell BB. Neuron 95: 757-778, 2017). MC4R activation increases energy expenditure and decreases food intake during positive energy balance states to prevent diet-induced obesity (DIO). Work from our group identified aberrant neuronal cell cycle events both as a novel biomarker and druggable target in the ARC for the treatment of DIO, demonstrating pharmacological restoration of retinoblastoma protein function in the ARC using cyclin-dependent kinase 4/6 (CDK4/6) inhibitors could treat DIO in mice by increasing lipid oxidation to selectively decrease fat mass. However, the role of CDK4/6 inhibitors on food intake was not examined. Four-week-old Mc4r-loxTB mice were continuously administered high-fat diet (60% kcal fat). At 8 wk of age, animals were administered 60 mg/kg abemaciclib orally or a saline control and monitored every 2 wk for fat mass changes by MRI. At 11 wk of age, all animals were injected bilaterally in the paraventricular hypothalamus with AAV8 serotype virus expressing a Cre-mCherry and monitored for another 5 wk. Restoration of Mc4r expression in the paraventricular hypothalamic nucleus (PVN/PVH) reduced food intake in hyperphagic obese mice when given CDK4/6 inhibitor therapy. The reduced food intake was responsible for reduced fat mass in mice treated with abemaciclib. These results indicate that targeting POMC neurons could be an effective strategy in treating diet-related obesity.NEW & NOTEWORTHY We have defined some of the necessary components to prevent high-fat diet-induced obesity at the molecular and cellular level. Within POMC neurons, the retinoblastoma protein must remain active and prevented from phosphoinactivation by cyclin-dependent kinases. The downstream neurons within the PVH must also properly express MC4R for the circuit to appropriately regulate feeding behavior.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Melanocortins/metabolism , Nerve Net/drug effects , Obesity/drug therapy , Paraventricular Hypothalamic Nucleus/drug effects , Protein Kinase Inhibitors/therapeutic use , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , Nerve Net/metabolism , Nerve Net/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/pathology , Protein Kinase Inhibitors/pharmacology , Receptor, Melanocortin, Type 4/genetics , Signal Transduction/drug effects
20.
Neuroendocrinology ; 111(10): 986-997, 2021.
Article in English | MEDLINE | ID: mdl-33152734

ABSTRACT

Glucagon-like peptide-1 (GLP-1) exerts its anorexigenic effect at least partly via the proopiomelanocortin (POMC) neurons of the arcuate (ARC) nucleus. These neurons are known to express GLP-1 receptor (GLP-1R). The aim of the study was to determine whether in addition to its direct effect, GLP-1 also modulates how neuronal inputs can regulate the POMC neurons by acting on presynaptic terminals, ultrastructural and electrophysiological studies were performed on tissues of adult male mice. GLP-1R-immunoreactivity was associated with the cell membrane of POMC neurons and with axon terminals forming synapses on these cells. The GLP-1 analog exendin 4 (Ex4) markedly increased the firing rate of all examined POMC neurons and depolarized these cells. These effects of Ex4 were prevented by intracellular administration of the G-protein blocker guanosine 5'-[ß-thio]diphosphate trilithium salt (GDP-ß-S). Ex4 also influenced the miniature postsynaptic currents (mPSCs) and evoked PSCs of POMC neurons. Ex4 increased the frequency of miniature excitatory PSCs (EPSCs) and the amplitude of the evoked EPSCs in half of the POMC neurons. Ex4 increased the frequency of miniature inhibitory PSCs (IPSCs) and the amplitudes of the evoked IPSCs in one-third of neurons. These effects of Ex4 were not influenced by intracellular GDP-ß-S, indicating that GLP-1 signaling directly stimulates a population of axon terminals innervating the POMC neurons. The different Ex4 responsiveness of their mPSCs indicates the heterogeneity of the POMC neurons of the ARC. In summary, our data demonstrate that in addition to its direct excitatory effect on the POMC neurons, GLP-1 signaling also facilitates the presynaptic input of these cells by acting on presynaptically localized GLP-1R.


Subject(s)
Arcuate Nucleus of Hypothalamus/drug effects , Excitatory Postsynaptic Potentials/drug effects , Exenatide/pharmacology , Glucagon-Like Peptide 1/metabolism , Hypoglycemic Agents/pharmacology , Neurons/drug effects , Pro-Opiomelanocortin/drug effects , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Glucagon-Like Peptide 1/analysis , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Pro-Opiomelanocortin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...