Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
1.
Clin Dysmorphol ; 33(1): 43-49, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37865865

ABSTRACT

Argininosuccinate lyase (ASL) deficiency is an autosomal recessive disorder of the urea cycle with a diverse spectrum of clinical presentation that is detectable in newborn screening. We report an 8-year-old girl with ASL deficiency who was detected through newborn screening and was confirmed using biochemical and functional assay. She is compound heterozygous for a likely pathogenic variant NM_000048.4(ASL):c.283C>T (p.Arg95Cys) and a likely benign variant NM_000048.4(ASL): c.1319T>C (p.Leu440Pro). Functional characterisation of the likely benign genetic variant in ASL was performed. Genomic sequencing was performed on the index patient presenting with non-specific symptoms of poor feeding and lethargy and shown to have increased serum and urine argininosuccinic acid. Functional assay using HEK293T cell model was performed. ASL enzymatic activity was reduced for Leu440Pro. This study highlights the role of functional testing of a variant that may appear benign in a patient with a phenotype consistent with ASL deficiency, and reclassifies NM_000048.4(ASL): c.1319T>C (p.Leu440Pro) variant as likely pathogenic.


Subject(s)
Argininosuccinic Aciduria , Infant, Newborn , Female , Humans , Child , Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/genetics , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/chemistry , Argininosuccinate Lyase/metabolism , Neonatal Screening , HEK293 Cells , Base Sequence
2.
Mol Cell ; 82(20): 3919-3931.e7, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36270249

ABSTRACT

Cancer-specific TERT promoter mutations have been linked to the reactivation of epigenetically silenced TERT gene by creating de novo binding motifs for E-Twenty-Six transcription factors, especially GABPA. How these mutations switch on TERT from epigenetically repressed states to expressed states have not been defined. Here, we revealed that EGFR activation induces ERK1/2-dependent phosphorylation of argininosuccinate lyase (ASL) at Ser417 (S417), leading to interactions between ASL and GABPA at the mutant regions of TERT promoters. The ASL-generated fumarate inhibits KDM5C, leading to enhanced trimethylation of histone H3 Lys4 (H3K4me3), which in turn promotes the recruitment of c-Myc to TERT promoters for TERT expression. Expression of ASL S417A, which abrogates its binding with GABPA, results in reduced TERT expression, inhibited telomerase activity, shortened telomere length, and impaired brain tumor growth in mice. This study reveals an unrecognized mechanistic insight into epigenetically activation of mutant TERT promoters where GABPA-interacted ASL plays an instrumental role.


Subject(s)
Glioblastoma , Telomerase , Animals , Mice , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Cell Line, Tumor , ErbB Receptors/genetics , Fumarates , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Histones/genetics , Histones/metabolism , Mutation , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism , Telomere Shortening , Transcription Factors/metabolism , Promoter Regions, Genetic
3.
Plant Mol Biol ; 110(1-2): 13-22, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35583703

ABSTRACT

KEY MESSAGE: This study revealed different catalytic efficiencies of cyanobacterial argininosuccinate lyases in non-nitrogen-fixing and nitrogen-fixing cyanobacteria, demonstrating that L-arginine inhibition of L-argininosuccinate lyase is conserved among enzymes of three cyanobacterial orders. Arginine is a nitrogen-rich amino acid that uses a nitrogen reservoir, and its biosynthesis is strictly controlled by feedback inhibition. Argininosuccinate lyase (EC 4.3.2.1) is the final enzyme in arginine biosynthesis that catalyzes the conversion of argininosuccinate to L-arginine and fumarate. Cyanobacteria synthesize intracellular cyanophycin, which is a nitrogen reservoir composed of aspartate and arginine. Arginine is an important source of nitrogen for cyanobacteria. We expressed and purified argininosuccinate lyases, ArgHs, from Synechocystis sp. PCC 6803, Nostoc sp. PCC 7120, and Arthrospira platensis NIES-39. The catalytic efficiency of the Nostoc sp. PCC 7120 ArgH was 2.8-fold higher than those of Synechocystis sp. PCC 6803 and Arthrospira platensis NIES-39. All three ArgHs were inhibited in the presence of arginine, and their inhibitory effects were lowered at pH 7.0, compared to those at pH 8.0. These results indicate that arginine inhibition of ArgH is widely conserved among the three cyanobacterial orders. The current results demonstrate the conserved regulation of enzymes in the cyanobacterial aspartase/fumarase superfamily.


Subject(s)
Lyases , Synechocystis , Arginine/metabolism , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lyases/metabolism , Nitrogen/metabolism , Spirulina , Synechocystis/genetics , Synechocystis/metabolism
4.
Hum Genet ; 140(10): 1471-1485, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34417872

ABSTRACT

Argininosuccinate lyase (ASL) is essential for the NO-dependent regulation of tyrosine hydroxylase (TH) and thus for catecholamine production. Using a conditional mouse model with loss of ASL in catecholamine neurons, we demonstrate that ASL is expressed in dopaminergic neurons in the substantia nigra pars compacta, including the ALDH1A1 + subpopulation that is pivotal for the pathogenesis of Parkinson disease (PD). Neuronal loss of ASL results in catecholamine deficiency, in accumulation and formation of tyrosine aggregates, in elevation of α-synuclein, and phenotypically in motor and cognitive deficits. NO supplementation rescues the formation of aggregates as well as the motor deficiencies. Our data point to a potential metabolic link between accumulations of tyrosine and seeding of pathological aggregates in neurons as initiators for the pathological processes involved in neurodegeneration. Hence, interventions in tyrosine metabolism via regulation of NO levels may be therapeutic beneficial for the treatment of catecholamine-related neurodegenerative disorders.


Subject(s)
Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Dopaminergic Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Animals , Disease Models, Animal , Humans , Mice , Phenotype , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism
5.
Front Immunol ; 12: 653571, 2021.
Article in English | MEDLINE | ID: mdl-34054815

ABSTRACT

Macrophages are indispensable immune cells tasked at eliminating intracellular pathogens. Mycobacterium tuberculosis (Mtb), one of the most virulent intracellular bacterial pathogens known to man, infects and resides within macrophages. While macrophages can be provoked by extracellular stimuli to inhibit and kill Mtb bacilli, these host defense mechanisms can be blocked by limiting nutritional metabolites, such as amino acids. The amino acid L-arginine has been well described to enhance immune function, especially in the context of driving macrophage nitric oxide (NO) production in mice. In this study, we aimed to establish the necessity of L-arginine on anti-Mtb macrophage function independent of NO. Utilizing an in vitro system, we identified that macrophages relied on NO for only half of their L-arginine-mediated host defenses and this L-arginine-mediated defense in the absence of NO was associated with enhanced macrophage numbers and viability. Additionally, we observed macrophage glycolysis to be driven by both L-arginine and mechanistic target of rapamycin (mTOR), and inhibition of glycolysis or mTOR reduced macrophage control of Mtb as well as macrophage number and viability in the presence of L-arginine. Our data underscore L-arginine as an essential nutrient for macrophage function, not only by fueling anti-mycobacterial NO production, but also as a central regulator of macrophage metabolism and additional host defense mechanisms.


Subject(s)
Arginine/metabolism , Dietary Supplements , Macrophages/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/diet therapy , Animals , Arginine/administration & dosage , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Cell Survival , Disease Models, Animal , Humans , Macrophage Activation , Macrophages/metabolism , Mice , Mice, Knockout , Nitric Oxide/metabolism , Primary Cell Culture , RAW 264.7 Cells , Tuberculosis/immunology , Tuberculosis/microbiology
6.
Nitric Oxide ; 108: 12-19, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33338599

ABSTRACT

Despite the saturating concentrations of intracellular l-arginine, nitric oxide (NO) production in endothelial cells (EC) can be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox" led to the discovery of an arginine recycling pathway in which l-citrulline is recycled to l-arginine by utilizing two important urea cycle enzymes argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Prior work has shown that ASL is present in a NO synthetic complex containing hsp90 and endothelial NO synthase (eNOS). However, it is unclear whether hsp90 forms functional complexes with ASS and ASL and if it is involved regulating their activity. Thus, elucidating the role of hsp90 in the arginine recycling pathway was the goal of this study. Our data indicate that both ASS and ASL are chaperoned by hsp90. Inhibiting hsp90 activity with geldanamycin (GA), decreased the activity of both ASS and ASL and decreased cellular l-arginine levels in bovine aortic endothelial cells (BAEC). hsp90 inhibition led to a time-dependent decrease in ASS and ASL protein, despite no changes in mRNA levels. We further linked this protein loss to a proteasome dependent degradation of ASS and ASL via the E3 ubiquitin ligase, C-terminus of Hsc70-interacting protein (CHIP) and the heat shock protein, hsp70. Transient over-expression of CHIP was sufficient to stimulate ASS and ASL degradation while the over-expression of CHIP mutant proteins identified both TPR- and U-box-domain as essential for ASS and ASL degradation. This study provides a novel insight into the molecular regulation l-arginine recycling in EC and implicates the proteasome pathway as a possible therapeutic target to stimulate NO signaling.


Subject(s)
Arginine/metabolism , HSP90 Heat-Shock Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Animals , Argininosuccinate Lyase/chemistry , Argininosuccinate Lyase/metabolism , Argininosuccinate Synthase/chemistry , Argininosuccinate Synthase/metabolism , Cattle , Endothelial Cells , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
7.
Respir Physiol Neurobiol ; 285: 103598, 2021 03.
Article in English | MEDLINE | ID: mdl-33326865

ABSTRACT

Short-term hypoxic states can influence the health and life activities of lowlanders who travel shortly to high altitudes, in transitory situations, such as surgical ischemia-reperfusion (to one or several organs), and in some sporting activities, such as parachuting and extreme skiing, mountain rescue teams, regular commercial flight crews, in which the subject may not even notice the hypoxia. NO is an integral part of the human physiological response to hypoxia. Until recently, the urea cycle (UC) was only considered as an important mechanism for neutralizing ammonia. We are the first to reveal an interrelation in hypoxic states between the activities of NO-synthase and UC enzymes in male rats' liver, kidney and brain. In the presented work, we have shown that during short-term intermittent hypobaric hypoxia (IHH) all enzymes of UC play an important role in the maintenance of NO quantity. The results allow thinking that kidney and brain argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) and liver ASS and ASL can be different isoenzymes. It is worth mentioning that the results have revealed new sides of l-arginine metabolism in a hypoxic state in male rats.


Subject(s)
Brain/enzymology , Hypoxia/enzymology , Kidney/enzymology , Liver/enzymology , Nitric Oxide/metabolism , Urea/metabolism , Animals , Argininosuccinate Lyase/metabolism , Argininosuccinate Synthase/metabolism , Disease Models, Animal , Male , Metabolic Networks and Pathways/physiology , Rats , Rats, Wistar
8.
Acta Biochim Pol ; 67(3): 347-351, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32931185

ABSTRACT

Argininosuccinic aciduria is an autosomal, recessive amino acid disorder that is caused by a deficiency of the argininosuccinate lyase enzyme. Citrulline is the most significant marker to detect this disorder. We used the High-performance liquid chromatography with fluorescence detection with 450 nm emission and 330 nm excitation wavelengths, 15 mmol/L potassium dihydrogen phosphate and 5 mmol/L dipotassium hydrogen phosphate as Mobile Phase A, and 50 mL water, 250 mL acetonitrile, and 200 mL methanol as Mobile Phase B in gradient mode with flow rate of 1.2 mL/min. The citrulline concentration was 22 µmol/L in healthy infants and 220 µmol/L in infants suffering from the disorder.


Subject(s)
Amino Acids/blood , Amino Acids/chemistry , Argininosuccinic Aciduria/blood , Acetonitriles/chemistry , Amino Acids/classification , Argininosuccinate Lyase/metabolism , Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/enzymology , Biomarkers/blood , Biomarkers/chemistry , Case-Control Studies , Chromatography, High Pressure Liquid/methods , Citrulline/blood , Citrulline/chemistry , Humans , Infant , Infant, Newborn , Iran , Methanol/chemistry , Phosphates/chemistry , Potassium Compounds/chemistry , Spectrometry, Fluorescence/methods , Water/chemistry
9.
Anal Chem ; 92(17): 11505-11510, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32794704

ABSTRACT

We developed a simple and rapid method for analyzing nonproteinogenic amino acids that does not require conventional chromatographic equipment. In this technique, nonproteinogenic amino acids were first converted to a proteinogenic amino acid through in vitro metabolism in a cell extract. The proteinogenic amino acid generated from the nonproteinogenic precursors were then incorporated into a reporter protein using a cell-free protein synthesis system. The titers of the nonproteinogenic amino acids could be readily quantified by measuring the activity of reporter proteins. This method, which combines the enzymatic conversion of target amino acids with translational analysis, makes amino acid analysis more accessible while minimizing the cost and time requirements. We anticipate that the same strategy could be extended to the detection of diverse biochemical molecules with clinical and industrial implications.


Subject(s)
Cell Extracts/chemistry , Citrulline/chemistry , Ornithine/chemistry , Proteins/chemistry , Amino Acid Sequence , Arginine/chemistry , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Carboxyl and Carbamoyl Transferases/genetics , Carboxyl and Carbamoyl Transferases/metabolism , Citrulline/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Ornithine/metabolism , Protein Processing, Post-Translational , Proteomics , Stereoisomerism , Substrate Specificity
10.
Hum Mutat ; 41(5): 946-960, 2020 05.
Article in English | MEDLINE | ID: mdl-31943503

ABSTRACT

Argininosuccinic aciduria (ASA) is an inherited urea cycle disorder and has a highly variable phenotypic spectrum ranging from individuals with lethal hyperammonemic encephalopathy, liver dysfunction, and cognitive deterioration, to individuals with a mild disease course. As it is difficult to predict the phenotypic severity, we aimed at identifying a reliable disease prediction model. We applied a biallelic expression system to assess the functional impact of pathogenic argininosuccinate lyase (ASL) variants and to determine the enzymatic activity of ASL in 58 individuals with ASA. This cohort represented 42 ASL gene variants and 42 combinations in total. Enzymatic ASL activity was compared with biochemical and clinical endpoints from the UCDC and E-IMD databases. Enzymatic ASL activity correlated with peak plasma ammonium concentration at initial presentation and with the number of hyperammonemic events (HAEs) per year of observation. Individuals with ≤9% of enzymatic activity had more severe initial decompensations and a higher annual frequency of HAEs than individuals above this threshold. Enzymatic ASL activity also correlated with the cognitive outcome and the severity of the liver disease, enabling a reliable severity prediction for individuals with ASA. Thus, enzymatic activity measured by this novel expression system can serve as an important marker of phenotypic severity.


Subject(s)
Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Phenotype , Adolescent , Adult , Argininosuccinate Lyase/blood , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Argininosuccinic Aciduria/metabolism , Biomarkers , Child , Child, Preschool , Enzyme Activation , Female , Gene Expression , Genetic Association Studies/methods , Humans , Kidney/metabolism , Liver/metabolism , Male , Middle Aged , Mutation , RNA, Messenger/genetics , Severity of Illness Index , Young Adult
11.
JCI Insight ; 5(4)2020 02 27.
Article in English | MEDLINE | ID: mdl-31990680

ABSTRACT

BACKGROUNDLiver disease in urea cycle disorders (UCDs) ranges from hepatomegaly and chronic hepatocellular injury to cirrhosis and end-stage liver disease. However, the prevalence and underlying mechanisms are unclear.METHODSWe estimated the prevalence of chronic hepatocellular injury in UCDs using data from a multicenter, longitudinal, natural history study. We also used ultrasound with shear wave elastography and FibroTest to evaluate liver stiffness and markers of fibrosis in individuals with argininosuccinate lyase deficiency (ASLD), a disorder with high prevalence of elevated serum alanine aminotransferase (ALT). To understand the human observations, we evaluated the hepatic phenotype of the AslNeo/Neo mouse model of ASLD.RESULTSWe demonstrate a high prevalence of elevated ALT in ASLD (37%). Hyperammonemia and use of nitrogen-scavenging agents, 2 markers of disease severity, were significantly (P < 0.001 and P = 0.001, respectively) associated with elevated ALT in ASLD. In addition, ultrasound with shear wave elastography and FibroTest revealed increased echogenicity and liver stiffness, even in individuals with ASLD and normal aminotransferases. The AslNeo/Neo mice mimic the human disorder with hepatomegaly, elevated aminotransferases, and excessive hepatic glycogen noted before death (3-5 weeks of age). This excessive hepatic glycogen is associated with impaired hepatic glycogenolysis and decreased glycogen phosphorylase and is rescued with helper-dependent adenovirus expressing Asl using a liver-specific (ApoE) promoter.CONCLUSIONOur results link urea cycle dysfunction and impaired hepatic glucose metabolism and identify a mouse model of liver disease in the setting of urea cycle dysfunction.TRIAL REGISTRATIONThis study has been registered at ClinicalTrials.gov (NCT03721367, NCT00237315).FUNDINGFunding was provided by NIH, Burroughs Wellcome Fund, NUCDF, Genzyme/ACMG Foundation, and CPRIT.


Subject(s)
Argininosuccinate Lyase/metabolism , Liver Diseases/metabolism , Liver Glycogen/metabolism , Alanine Transaminase/blood , Animals , Chronic Disease , Disease Models, Animal , Humans , Liver Diseases/complications , Liver Diseases/enzymology , Longitudinal Studies , Mice , Urea Cycle Disorders, Inborn/complications
12.
Genomics ; 112(3): 2247-2260, 2020 05.
Article in English | MEDLINE | ID: mdl-31884157

ABSTRACT

The air-breathing magur catfish (Clarias magur) is a potential ureogenic teleost because of its functional ornithine-urea cycle (OUC), unlike typical freshwater teleosts. The ability to convert ammonia waste to urea was a significant step towards land-based life forms from aquatic predecessors. Here we investigated the molecular characterization of some OUC genes and the molecular basis of stimulation of ureogenesis via the OUC in magur catfish. The deduced amino acid sequences from the complete cDNA coding sequences of ornithine transcarbamyolase, argininosuccinate synthase, and argininosuccinate lyase indicated that phylogenetically magur catfish is very close to other ureogenic catfishes. Ammonia exposure led to a significant induction of major OUC genes and the gene products in hepatic and in certain non-hepatic tissues of magur catfish. Hence, it is reasonable to assume that the induction of ureogenesis in magur catfish under hyper-ammonia stress is mediated through the activation of OUC genes as an adaptational strategy.


Subject(s)
Argininosuccinate Lyase/metabolism , Argininosuccinate Synthase/metabolism , Catfishes/metabolism , Fish Proteins/metabolism , Ornithine Carbamoyltransferase/metabolism , Ornithine/metabolism , Urea/metabolism , Ammonia/toxicity , Animals , Argininosuccinate Lyase/biosynthesis , Argininosuccinate Lyase/chemistry , Argininosuccinate Lyase/genetics , Argininosuccinate Synthase/biosynthesis , Argininosuccinate Synthase/chemistry , Argininosuccinate Synthase/genetics , Catfishes/genetics , Fish Proteins/biosynthesis , Fish Proteins/chemistry , Fish Proteins/genetics , Ornithine Carbamoyltransferase/biosynthesis , Ornithine Carbamoyltransferase/chemistry , Ornithine Carbamoyltransferase/genetics , Phylogeny , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, Protein , Tissue Distribution
13.
Cell Rep ; 29(8): 2144-2153.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31747589

ABSTRACT

Patients with germline mutations in the urea-cycle enzyme argininosuccinate lyase (ASL) are at risk for developing neurobehavioral and cognitive deficits. We find that ASL is prominently expressed in the nucleus locus coeruleus (LC), the central source of norepinephrine. Using natural history data, we show that individuals with ASL deficiency are at risk for developing attention deficits. By generating LC-ASL-conditional knockout (cKO) mice, we further demonstrate altered response to stressful stimuli with increased seizure reactivity in LC-ASL-cKO mice. Depletion of ASL in LC neurons leads to reduced amount and activity of tyrosine hydroxylase (TH) and to decreased catecholamines synthesis, due to decreased nitric oxide (NO) signaling. NO donors normalize catecholamine levels in the LC, seizure sensitivity, and the stress response in LC-ASL-cKO mice. Our data emphasize ASL importance for the metabolic regulation of LC function with translational relevance for ASL deficiency (ASLD) patients as well as for LC-related pathologies.


Subject(s)
Argininosuccinate Lyase/metabolism , Locus Coeruleus/metabolism , Tyrosine 3-Monooxygenase/metabolism , Urea Cycle Disorders, Inborn/metabolism , Animals , Catecholamines/metabolism , Cell Nucleus/metabolism , Mice , Mice, Knockout , Nitric Oxide/metabolism , Seizures/metabolism
14.
Biomed Res Int ; 2019: 3530198, 2019.
Article in English | MEDLINE | ID: mdl-31183366

ABSTRACT

Pathogenic variants in the argininosuccinate lyase (ASL) gene have been shown to cause argininosuccinate lyase deficiency (ASLD); therefore, sequencing analysis offers advantages for prenatal testing and counseling in families afflicted with this condition. Here, we performed a genetic analysis of an ASLD patient and his family with an aim to offer available information for clinical diagnosis. The research subjects were a 23-month-old patient with a high plasma level of citrulline and his unaffected parents. Whole-exome sequencing identified potential related ASL gene mutations in this trio. Enzymatic activity was detected spectrophotometrically by a coupled assay using arginase and measuring urea production. We identified a novel nonsynonymous mutation (c.206A>G, p.Lys69Arg) and a stop mutation (c.637C>T, p.Arg213∗) in ASL in a Chinese Han patient with ASLD. The enzymatic activity of a p.Lys69Arg ASL construct in human embryonic kidney 293T cells was significantly reduced compared to that of the wild-type construct, and no significant activity was observed for the p.Arg213∗ construct. Compound heterozygous p.Lys69Arg and p.Arg213∗ mutations that resulted in reduced ASL enzyme activity were found in a patient with ASLD. This finding expands the clinical spectrum of ASL pathogenic variants.


Subject(s)
Argininosuccinate Lyase , Argininosuccinic Aciduria , Exome Sequencing , Heterozygote , Mutation, Missense , Amino Acid Substitution , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Argininosuccinic Aciduria/enzymology , Argininosuccinic Aciduria/genetics , Citrulline/blood , Citrulline/genetics , HEK293 Cells , Humans , Infant , Male
15.
Plasmid ; 103: 25-35, 2019 05.
Article in English | MEDLINE | ID: mdl-30954454

ABSTRACT

The development of CRISPR interference (CRISPRi) technology has dramatically increased the pace and the precision of target identification during platform strain development. In order to develop a simple, reliable, and dual-inducible CRISPRi system for the industrially relevant Corynebacterium glutamicum, we combined two different inducible repressor systems in a single plasmid to separately regulate the expression of dCas9 (anhydro-tetracycline-inducible) and a given single guide RNA (IPTG-inducible). The functionality of the resulting vector was demonstrated by targeting the l-arginine biosynthesis pathway in C. glutamicum. By co-expressing dCas9 and a specific single guide RNA targeting the 5'-region of the argininosuccinate lyase gene argH, the specific activity of the target enzyme was down-regulated and in a l-arginine production strain, l-arginine formation was shifted towards citrulline formation. The system was also employed for down-regulation of multiple genes by concatenating sgRNA sequences encoded on one plasmid. Simultaneous down-regulated expression of both argH and the phosphoglucose isomerase gene pgi proved the potential of the system for multiplex targeting. The system can be a promising tool for further pathway engineering in C. glutamicum. Cumulative effects on targeted genes can be rapidly evaluated avoiding tedious and time-consuming traditional gene knockout approaches.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Corynebacterium glutamicum/genetics , Gene Expression Regulation, Bacterial/drug effects , Gene Targeting/methods , Plasmids/chemistry , Arginine/biosynthesis , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/metabolism , Bacterial Proteins/metabolism , Base Pairing , Base Sequence , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Citrulline/biosynthesis , Corynebacterium glutamicum/drug effects , Corynebacterium glutamicum/metabolism , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Isopropyl Thiogalactoside/pharmacology , Plasmids/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Tetracyclines/pharmacology
16.
Sci Adv ; 5(1): eaau7314, 2019 01.
Article in English | MEDLINE | ID: mdl-30613774

ABSTRACT

Currently available cell culture media may not reproduce the in vivo metabolic environment of tumors. To demonstrate this, we compared the effects of a new physiological medium, Plasmax, with commercial media. We prove that the disproportionate nutrient composition of commercial media imposes metabolic artifacts on cancer cells. Their supraphysiological concentrations of pyruvate stabilize hypoxia-inducible factor 1α in normoxia, thereby inducing a pseudohypoxic transcriptional program. In addition, their arginine concentrations reverse the urea cycle reaction catalyzed by argininosuccinate lyase, an effect not observed in vivo, and prevented by Plasmax in vitro. The capacity of cancer cells to form colonies in commercial media was impaired by lipid peroxidation and ferroptosis and was rescued by selenium present in Plasmax. Last, an untargeted metabolic comparison revealed that breast cancer spheroids grown in Plasmax approximate the metabolic profile of mammary tumors better. In conclusion, a physiological medium improves the metabolic fidelity and biological relevance of in vitro cancer models.


Subject(s)
Culture Media , Models, Biological , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/physiology , Arginine/metabolism , Argininosuccinate Lyase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Ferroptosis/drug effects , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipid Peroxidation/drug effects , Pyruvic Acid/metabolism , Sodium Selenite/pharmacology , Spheroids, Cellular/metabolism , Urea/metabolism
17.
IUBMB Life ; 71(5): 643-652, 2019 05.
Article in English | MEDLINE | ID: mdl-30615268

ABSTRACT

Argininosuccinate lyase catalyses the reversible breakdown of argininosuccinate into arginine and fumarate and is known to form tetramers in its quaternary association. The absence of structures involving competent enzymes bound to substrate/products came in the way of the precise elucidation of the catalytic mechanism of this family of proteins. Crystal structures of the enzyme from Mycobacterium tuberculosis in an unliganded form and its complex with the substrate/products have now been determined at 2.2 and 2.7 Å, respectively. The refinement of the structure of the complex was bedevilled by the presence of a lattice translocation defect. The two tetramers in the apo-crystals and the one in the crystals of the liganded protein, have the same structure except for the movements associated with enzyme action. Each molecule consists of an N-domain, an M-domain, and a C-domain. The molecule consists of four binding sites, each made up of peptide stretches from three subunits. Three binding sites appear to be occupied by the ligand in the transition state, while the products occupy the fourth site. The structure exhibits the movement of a loop in the M-domain and parts of the C-domain. This is the first instance when the appropriate movements are observed in a complex with bound substrate/product. The detailed picture of the binding site, active site residues and the movements associated with catalysis thus obtained, enabled a revisit of the mechanism of action of the enzyme. © 2019 IUBMB Life, 71(5):643-652, 2019.


Subject(s)
Argininosuccinate Lyase/chemistry , Argininosuccinate Lyase/metabolism , Mycobacterium tuberculosis/enzymology , Protein Conformation , Binding Sites , Catalysis , Catalytic Domain , Crystallography, X-Ray , Ligands , Models, Molecular , Protein Binding , Substrate Specificity
18.
Nat Commun ; 9(1): 3505, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158522

ABSTRACT

Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases.


Subject(s)
Argininosuccinate Lyase/metabolism , Argininosuccinic Aciduria/metabolism , Argininosuccinic Aciduria/therapy , Animals , Argininosuccinate Lyase/genetics , Argininosuccinic Aciduria/genetics , Brain Diseases/genetics , Brain Diseases/metabolism , Brain Diseases/therapy , Citrulline/metabolism , Genetic Therapy , Hyperammonemia/genetics , Hyperammonemia/metabolism , Hyperammonemia/therapy , Liver/cytology , Mice , Neurons/metabolism , Nitric Oxide/metabolism , Nitrosative Stress/genetics , Nitrosative Stress/physiology
19.
Cell Rep ; 23(7): 1962-1976, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768197

ABSTRACT

Nitric oxide (NO) plays an established role in numerous physiological and pathological processes, but the specific cellular sources of NO in disease pathogenesis remain unclear, preventing the implementation of NO-related therapy. Argininosuccinate lyase (ASL) is the only enzyme able to produce arginine, the substrate for NO generation by nitric oxide synthase (NOS) isoforms. Here, we generated cell-specific conditional ASL knockout mice in combination with genetic and chemical colitis models. We demonstrate that NO derived from enterocytes alleviates colitis by decreasing macrophage infiltration and tissue damage, whereas immune cell-derived NO is associated with macrophage activation, resulting in increased severity of inflammation. We find that induction of endogenous NO production by enterocytes with supplements that upregulate ASL expression and complement its substrates results in improved epithelial integrity and alleviation of colitis and of inflammation-associated colon cancer.


Subject(s)
Colitis/metabolism , Colitis/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Enterocytes/metabolism , Enterocytes/pathology , Inflammation/pathology , Nitric Oxide/metabolism , Animals , Arginine/biosynthesis , Argininosuccinate Lyase/metabolism , Epithelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout
20.
J Alzheimers Dis ; 62(1): 279-291, 2018.
Article in English | MEDLINE | ID: mdl-29439324

ABSTRACT

Urea cycle enzymes may play important yet poorly characterized roles in Alzheimer's disease (AD). Our previous results showed that amyloid-ß (Aß) affects urea cycle enzymes in rat pheochromocytoma (PC12) cells. The aim of the present study was to investigate the changes in arginases, other urea cycle enzymes, and nitric oxide synthases (NOSs) in PC12 cells transfected with AßPP bearing the double 'Swedish' mutation (APPsw, K670M/N671L) and in postmortem sporadic AD brain hippocampus; the mutation intensifies Aß production and strongly associates with AD neuropathology. mRNA expression was analyzed using real-time PCR in cell cultures and DNA microarrays in hippocampal CA1 area of human AD brains. Arginase activity was measured spectrophotometrically, and arginine, ornithine, and citrulline levels by high-performance liquid chromatography. Our data demonstrated that the expression and activity of arginases (Arg1 and Arg2), as well as the expression of argininosuccinate synthase (Ass) were significantly reduced in APPsw cells compared to control. However, argininosuccinate lyase (Asl) was upregulated in APPsw cells. Real-time PCR analysis revealed significant elevation of neuronal nitric oxide synthase (Nnos) mRNA in APPsw cells, without changes in the endothelial Enos, whereas inducible Inos was undetectable. The changes were found to follow closely those observed in the human hippocampal CA1 region of sporadic AD brains. The changes in enzyme expression were accompanied in APPsw cells by significantly elevated citrulline, ornithine, and arginine. Our findings demonstrate that AßPP/Aß alters arginine metabolism and induces a shift of cellular homeostasis that may support the oxidative/nitrosative stress observed in AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Arginase/metabolism , CA1 Region, Hippocampal/metabolism , Nitric Oxide Synthase/metabolism , Urea/metabolism , Alzheimer Disease/pathology , Animals , Arginine/metabolism , Argininosuccinate Lyase/metabolism , Argininosuccinate Synthase/metabolism , CA1 Region, Hippocampal/pathology , Gene Expression Regulation , Homeostasis/physiology , Humans , PC12 Cells , RNA, Messenger/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...