Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 341
Filter
1.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710705

ABSTRACT

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Subject(s)
Argininosuccinate Synthase , Cell Proliferation , Phosphoglycerate Dehydrogenase , Serine , Triple Negative Breast Neoplasms , Phosphoglycerate Dehydrogenase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Serine/metabolism , Serine/biosynthesis , Humans , Female , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Animals , Argininosuccinate Synthase/metabolism , Argininosuccinate Synthase/genetics , Cell Line, Tumor , Mice, Nude , Ubiquitination , Mice , Glycine/metabolism
2.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759626

ABSTRACT

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Subject(s)
Arginine , Cysteine , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , Proteome , Humans , Cysteine/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Proteome/metabolism , Arginine/metabolism , Mutation , Argininosuccinate Synthase/metabolism , Argininosuccinate Synthase/genetics , Cisplatin/pharmacology , Cell Line, Tumor , Proteomics/methods , Gene Expression Regulation, Neoplastic , Cell Survival/drug effects , RNA, Transfer/metabolism , RNA, Transfer/genetics
3.
Oncogene ; 43(3): 216-223, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38049565

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor with a poor prognosis due to a lack of early detection. Indeed, the mechanisms underlying ESCC progression remain unclear. Here, we discovered that abnormal arginine metabolism contributes to ESCC progression. Based on transcriptomic and metabolomic analyses, we found that argininosuccinate synthetase 1 (ASS1) and argininosuccinate lyase (ASL) levels were increased in primary tumor tissues but decreased in lymph-metastatic tumor tissues. Intriguingly, FOXO3a was inversely correlated with ASS1 and ASL in primary and metastatic tumor tissues, suggesting that FOXO3a dissimilarly regulates ASS1 and ASL at different stages of ESCC. Silencing ASS1/ASL inhibited primary tumor growth and promoted metastasis. Conversely, overexpression of ASS1/ASL or increased arginine supply promoted tumor proliferation but suppressed metastasis. In addition, FOXO3a activation inhibited primary tumor growth by repressing ASS1 and ASL transcription, whereas inactivation of FOXO3a impeded metastasis by releasing ASS1 and ASL transcription. Together, the finding sheds light on metastatic reprogramming in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Neoplasms/genetics , Arginine/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism
4.
Mol Genet Metab ; 141(1): 108097, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113552

ABSTRACT

Citrullinemia type 1 (CTLN1) is a rare autosomal recessive urea cycle disorder caused by deficiency of the cytosolic enzyme argininosuccinate synthetase 1 (ASS1) due to pathogenic variants in the ASS1 gene located on chromosome 9q34.11. Even though hyperammenomia is considered the major pathomechanistic factor for neurological impairment and cognitive dysfunction, a relevant subset of individuals presents with a neurodegenerative course in the absence of hyperammonemic decompensations. Here we show, that ASS1 deficiency induced by antisense-mediated knockdown of the zebrafish ASS1 homologue is associated with defective neuronal differentiation ultimately causing neuronal cell loss and consecutively decreased brain size in zebrafish larvae in vivo. Whereas ASS1-deficient zebrafish larvae are characterized by markedly elevated concentrations of citrulline - the biochemical hallmark of CTLN1, accumulation of L-citrulline, hyperammonemia or therewith associated secondary metabolic alterations did not account for the observed phenotype. Intriguingly, coinjection of the human ASS1 mRNA not only normalized citrulline concentration but also reversed the morphological cerebral phenotype and restored brain size, confirming conserved functional properties of ASS1 across species. The results of the present study imply a novel, potentially non-enzymatic (moonlighting) function of the ASS1 protein in neurodevelopment.


Subject(s)
Citrullinemia , Hyperammonemia , Animals , Humans , Citrullinemia/pathology , Zebrafish/genetics , Citrulline , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Phenotype , Hyperammonemia/genetics
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(11): 1345-1349, 2023 Nov 10.
Article in Chinese | MEDLINE | ID: mdl-37906139

ABSTRACT

OBJECTIVE: To analyze the clinical and genetic characteristics of three Chinese pedigrees affected with Citrullinemia type I (CTLN1). METHODS: Three children diagnosed at the Children's Hospital Affiliated to Shandong University from 2017 to 2020 were selected as the study subjects. Genomic DNA was extracted from peripheral blood samples of the probands and their parents. Next generation sequencing (NGS) was carried out to detect pathological variants of the probands. Sanger sequencing was used for validating the candidate variant among the pedigrees. RESULTS: The probands have respectively carried compound heterozygous variants of c.207_209delGGA and c.1168G>A, c.349G>A and c.364-1G>A, c.470G>A and c.970G>A of the ASS1 gene, which were respectively inherited from their parents. CONCLUSION: The newly discovered c.207_209delGGA and c.364-1G>A variants have enriched the mutational spectrum of the ASS1 gene. And the mutation spectrum of Chinese CTLN1 patients is heterogeneous.


Subject(s)
Argininosuccinate Synthase , Citrullinemia , Child , Humans , Argininosuccinate Synthase/genetics , Citrullinemia/genetics , East Asian People , Mutation , Pedigree
6.
Clin Cancer Res ; 29(16): 3189-3202, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37339179

ABSTRACT

PURPOSE: Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN: Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS: Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS: Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Humans , Animals , Mice , Sarcoma/drug therapy , Hydrolases/pharmacology , Polyethylene Glycols/pharmacology , Polyethylene Glycols/therapeutic use , Cell Line, Tumor , Argininosuccinate Synthase/genetics , Arginine/metabolism , Soft Tissue Neoplasms/drug therapy , Tumor Microenvironment
7.
Protein Pept Lett ; 30(7): 587-596, 2023.
Article in English | MEDLINE | ID: mdl-37254538

ABSTRACT

BACKGROUND: Hepatocellular carcinoma is a primary liver cancer and 6th most common cancer globally. Inefficient diagnostic strategies and the limited availability of treatments are the foremost reasons. Variable factors directly impact the disease burden, among them, molecular alterations have been found to play a significant role. In liver, argininosuccinate synthase-1 is a center of arginine metabolism and rate limiting enzyme of urea cycle. It also triggers multiple mechanisms that lead to HCC pathogenesis. OBJECTIVES: The aim of this study is to analyze the ASS1 gene expression, its polymorphic genotype and microsatellite instability among HCC patients from our Pakistani population. METHOD: Blood samples were collected from disease and healthy control individuals. Allele-Specific PCR was performed for SNP analysis. MSI of tri and tetra nucleotide repeats were analyzed by PCR. The differential expression of ASS1 gene was also investigated. Furthermore, the reactome database and STRING software were utilized for finding correlations between ASS1 gene with other associated gene/proteins. RESULTS: The GG wild-type genotype was more prevailed in the disease group as compared to the control. Significant downregulation in ASS1 and NOS2 genes was observed. Bioinformatics analysis reveals the correlation between ASS1 polymorphism and HCC development appears to be linked with the EMT pathway and polyamine production. Furthermore, MSI significantly resided in the disease group. Results were analyzed statistically to calculate the significance of obtained results. CONCLUSION: Study concludes that the insight of HCC mechanism through population-specific genetic mutations and altered gene expression of ASS1 might be helpful in early diagnostic and therapeutic purposes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Arginine/genetics
8.
Pharmacol Rep ; 75(3): 570-584, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37010783

ABSTRACT

BACKGROUND: Pegylated arginine deiminase (ADI-PEG20; pegargiminase) depletes arginine and improves survival outcomes for patients with argininosuccinate synthetase 1 (ASS1)-deficient malignant pleural mesothelioma (MPM). Optimisation of ADI-PEG20-based therapy will require a deeper understanding of resistance mechanisms, including those mediated by the tumor microenvironment. Here, we sought to reverse translate increased tumoral macrophage infiltration in patients with ASS1-deficient MPM relapsing on pegargiminase therapy. METHODS: Macrophage-MPM tumor cell line (2591, MSTO, JU77) co-cultures treated with ADI-PEG20 were analyzed by flow cytometry. Microarray experiments of gene expression profiling were performed in ADI-PEG20-treated MPM tumor cells, and macrophage-relevant genetic "hits" were validated by qPCR, ELISA, and LC/MS. Cytokine and argininosuccinate analyses were performed using plasma from pegargiminase-treated patients with MPM. RESULTS: We identified that ASS1-expressing macrophages promoted viability of ADI-PEG20-treated ASS1-negative MPM cell lines. Microarray gene expression data revealed a dominant CXCR2-dependent chemotactic signature and co-expression of VEGF-A and IL-1α in ADI-PEG20-treated MPM cell lines. We confirmed that ASS1 in macrophages was IL-1α-inducible and that the argininosuccinate concentration doubled in the cell supernatant sufficient to restore MPM cell viability under co-culture conditions with ADI-PEG20. For further validation, we detected elevated plasma VEGF-A and CXCR2-dependent cytokines, and increased argininosuccinate in patients with MPM progressing on ADI-PEG20. Finally, liposomal clodronate depleted ADI-PEG20-driven macrophage infiltration and suppressed growth significantly in the MSTO xenograft murine model. CONCLUSIONS: Collectively, our data indicate that ADI-PEG20-inducible cytokines orchestrate argininosuccinate fuelling of ASS1-deficient mesothelioma by macrophages. This novel stromal-mediated resistance pathway may be leveraged to optimize arginine deprivation therapy for mesothelioma and related arginine-dependent cancers.


Subject(s)
Drug Resistance, Neoplasm , Macrophages , Mesothelioma, Malignant , Mesothelioma , Animals , Humans , Mice , Arginine/metabolism , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Cell Line, Tumor , Mesothelioma/drug therapy , Mesothelioma/genetics , Neoplasm Recurrence, Local , Polyethylene Glycols/pharmacology , Tumor Microenvironment , Vascular Endothelial Growth Factor A
9.
Mol Cancer Res ; 21(5): 411-427, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36669126

ABSTRACT

The nuclear deubiquitylase BRCA1-associated protein 1 (BAP1) is frequently inactivated in malignant pleural mesothelioma (MPM) and germline BAP1 mutation predisposes to cancers including MPM. To explore the influence on cell physiology and drug sensitivity, we sequentially edited a predisposition mutation (w-) and a promoter trap (KO) into human mesothelial cells. BAP1w-/KO MeT5A cells express less BAP1 protein and phenocopy key aspects of BAP1 loss in MPM. Stable isotope labeling with amino acids in cell culture-mass spectrometry revealed evidence of metabolic adaptation, with concomitant alteration of cellular metabolites. In MeT5A, BAP1 deficiency reduces glycolytic enzyme levels but increases enzymes involved in the tricarboxylic acid cycle and anaplerotic pathways. Notably both argininosuccinate synthase 1 (ASS1), essential for cellular synthesis of arginine, and its substrate aspartate, are elevated in BAP1w-/KO MeT5A cells. Likewise, ASS1 expression is higher in BAP1-altered MPM cell lines, and inversely correlates with BAP1 in The Cancer Genome Atlas MESO dataset. Elevated ASS1 is also evident by IHC staining in epithelioid MPM lacking nuclear BAP1 expression, with improved survival among patients with BAP1-negative/ASS1-expressing tumors. Alterations in arginine metabolism may sensitize cells to metabolic drugs and we find that BAP1-negative/ASS1-expressing MPM cell lines are more sensitive to ASS1 inhibition, although not to inhibition of purine synthesis by mizoribine. Importantly, BAP1w-/KO MeT5A become desensitized to arginine deprivation by pegylated arginine deiminase (ADI-PEG20), phenocopying BAP1-negative/ASS1-expressing MPM cell lines. IMPLICATIONS: Our data reveal an interrelationship between BAP1 and arginine metabolism, providing a potential means of identifying patients with epithelioid MPM likely to benefit from ADI-PEG20.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Ubiquitin Thiolesterase/genetics , Amino Acids , Arginine/metabolism , Mesothelioma/drug therapy , Mesothelioma/genetics , Cell Line, Tumor , Tumor Suppressor Proteins/genetics
10.
Mol Genet Genomic Med ; 11(2): e2058, 2023 02.
Article in English | MEDLINE | ID: mdl-36680390

ABSTRACT

BACKGROUND: Citrullinemia type 1 (CTLN1) is a rare autosomal recessive disease caused by argininosuccinate synthetase (ASS) deficiency. Manifestations vary from the acute neonatal or "classic" form to a milder, late-onset, or "unconventional" form. To date, more than 93 variants in the ASS1 gene located on chromosome 9q43.11 (OMIM #215700) are reportedly responsible for CTLN1. Their incidence and distribution vary according to geographic origins and ethnicity, and a correlation, although not clearly delineated, has been established between the genotype and the phenotype of the disease. Though, in the Middle East, national descriptions of CTLN1 are still lacking. METHODS: A total of ten unrelated Middle Eastern families, five Lebanese, two Syrians, and three Iraqis with citrullinemia index cases, were included in this study. Upon informed consent, DNA was extracted from the whole blood of the index patients as well as their parents and siblings. Genetic analysis was carried out by Sanger sequencing of the ASS1 gene. RESULTS: Seven different variants were identified. Two novel variants, c.286C>A (p.(Pro96Thr), RNA not analyzed) in exon 5 and deletion c.685_688+6del(p.(Lys229Glyfs*4), RNA not analyzed) in exon 10, were found in one Lebanese and one Syrian family, respectively, and were correlated with early-onset and severe clinical presentation. Five other known variants: c.535T>C (p.(Trp179Arg), RNA not analyzed) in exon 8, c.787G>A (p.(Val263Met), RNA not analyzed) in exon 12, c.847G>A (p.(Glu283Lys), RNA not analyzed) in exon 13, c.910C>T (p.(Arg304Trp), RNA not analyzed) in exon 13, and c.1168G>A (p.(Gly390Arg), RNA not analyzed) in exon 15, were found in Lebanese, Syrian, and Iraqi families, and were associated with diverse clinical presentations. CONCLUSION: Two novel variants and five known variants were found in a total of ten unrelated Middle Eastern families.


Subject(s)
Citrullinemia , Humans , Citrullinemia/genetics , Argininosuccinate Synthase/genetics , Mutation , Genotype , RNA
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009301

ABSTRACT

OBJECTIVE@#To analyze the clinical and genetic characteristics of three Chinese pedigrees affected with Citrullinemia type I (CTLN1).@*METHODS@#Three children diagnosed at the Children's Hospital Affiliated to Shandong University from 2017 to 2020 were selected as the study subjects. Genomic DNA was extracted from peripheral blood samples of the probands and their parents. Next generation sequencing (NGS) was carried out to detect pathological variants of the probands. Sanger sequencing was used for validating the candidate variant among the pedigrees.@*RESULTS@#The probands have respectively carried compound heterozygous variants of c.207_209delGGA and c.1168G>A, c.349G>A and c.364-1G>A, c.470G>A and c.970G>A of the ASS1 gene, which were respectively inherited from their parents.@*CONCLUSION@#The newly discovered c.207_209delGGA and c.364-1G>A variants have enriched the mutational spectrum of the ASS1 gene. And the mutation spectrum of Chinese CTLN1 patients is heterogeneous.


Subject(s)
Child , Humans , Argininosuccinate Synthase/genetics , Citrullinemia/genetics , East Asian People , Mutation , Pedigree
12.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499263

ABSTRACT

Citrullinemia type I (CTLN1) is a rare autosomal recessive disorder caused by mutations in the gene encoding argininosuccinate synthetase 1 (ASS1) that catalyzes the third step of the urea cycle. CTLN1 patients suffer from impaired elimination of nitrogen, which leads to neurotoxic levels of circulating ammonia and urea cycle byproducts that may cause severe metabolic encephalopathy, death or irreversible brain damage. Standard of care (SOC) of CTLN1 consists of daily nitrogen-scavenger administration, but patients remain at risk of life-threatening decompensations. We evaluated the therapeutic efficacy of a recombinant adeno-associated viral vector carrying the ASS1 gene under the control of a liver-specific promoter (VTX-804). When administered to three-week-old CTLN1 mice, all the animals receiving VTX-804 in combination with SOC gained body weight normally, presented with a normalization of ammonia and reduction of citrulline levels in circulation, and 100% survived for 7 months. Similar to what has been observed in CTLN1 patients, CTLN1 mice showed several behavioral abnormalities such as anxiety, reduced welfare and impairment of innate behavior. Importantly, all clinical alterations were notably improved after treatment with VTX-804. This study demonstrates the potential of VTX-804 gene therapy for future clinical translation to CTLN1 patients.


Subject(s)
Ammonia , Citrullinemia , Mice , Animals , Nitrogen , Citrullinemia/genetics , Citrullinemia/therapy , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Genetic Therapy , Urea/metabolism
13.
Fish Shellfish Immunol ; 127: 991-1000, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35868475

ABSTRACT

Fish are at high risk of exposure to ammonia in aquaculture systems. When ammonia stress occurs, fish are more prone to disease outbreaks, but the mechanism is not very clear. The argininosuccinate synthetase (ASS) plays an important role in the regulation of urea synthesis and nitric oxide synthesis. We speculated that there must be some relationship between ASS expression and disease outbreak. In this study, ASS was cloned from the yellow catfish. The full-length cDNAs of ASS was 1558 bp, with open reading frames of 1236 bp. The mRNA expression of ASS gene was the highest in liver, kidney and brain. This study consists of two parts: 1) For ammonia challenge in vivo, yellow catfish (15.00 ± 1.50 g) were divided into control group, low ammonia group (1/10 96 h LC50), and high ammonia group (1/2 96 h LC50). The experiment continued for 192 h. The results showed that ammonia stress elevated serum ammonia content, and inhibited urea synthesis enzymes activities but up-regulated the expression levels of related genes except ARG, and induced arginine accumulation and nitric oxide synthase (nNOS and iNOS) different expression, and decreased resistance to Aeromonas hydrophage; 2) For ammonia challenge in vitro, the primary culture of liver cell was divided into four groups: control group, BPP group (Bj-BPP-10c was added as ASS activator), Amm group (96 h LC50), and Amm + BPP group. The experiment continued for 96 h. The results showed that the Bj-BPP-10c can inhibit nNOS activity and improve cell survival rate, and enhance iNOS activity and immune response (lysozyme, complement, respiratory burst, and phagocytic index) by activate ASS when ammonia stress occurred. Our results indicated that targeted regulation of ASS can improve iNOS activity, and enhance the immune response of yellow catfish under ammonia stress.


Subject(s)
Argininosuccinate Synthase , Catfishes , Ammonia , Animals , Arginine/metabolism , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Nitric Oxide/metabolism , Urea
14.
Mol Genet Genomic Med ; 10(9): e2007, 2022 09.
Article in English | MEDLINE | ID: mdl-35726796

ABSTRACT

INTRODUCTION: Citrullinemia Type 1 (CTLN1) is an autosomal recessive disorder caused by variants in the ASS1 gene. This study intends to clarify the etiology of false positives in newborn screening for citrullinemia. METHOD: Newborns who had elevated dried-blood spot citrulline levels were enrolled, and medical records were reviewed retrospectively. Common ASS1 variants were screened using high-resolution melting analysis. RESULT: Between 2011 and 2021, 130 newborns received confirmatory testing for citrullinemia, 4 were found to be patients for CTLN1; 11 were patients with citrin deficiency; and 49 newborns were confirmed to be carrying one pathogenic ASS1 variant. The incidence of CTLN1 was 1 in 188,380 (95% confidence interval: 1 in 73,258 to 1 in 484,416). All ASS1 variants studied in this cohort were located in exons 11 to 15, which encode the tetrameric interface regions of the ASS1 protein. Among 10 ASS1 carriers with elevated citrulline levels and complete sequence data, four (40%) revealed additional non-benign ASS1 variants; in contrast, only 2 of the 26 controls (7.7%), with normal citrulline levels, had additional ASS1 variants. CONCLUSION: Heterozygote ASS1 variants may lead to a mild elevation of blood citrulline levels: about 2-6 times the population mean. Molecular testing and family studies remain critical for precise diagnosis, genetic counseling, and management.


Subject(s)
Citrullinemia , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Citrulline/genetics , Citrulline/metabolism , Citrullinemia/diagnosis , Citrullinemia/genetics , Heterozygote , Humans , Infant, Newborn , Retrospective Studies
15.
Biochem Biophys Res Commun ; 611: 31-37, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35477090

ABSTRACT

Previous studies demonstrated that arginine biosynthesis was frequently impaired in acute liver injury. However, the underlying mechanisms remain elusive. In this study, we found that Argininosuccinate synthetase 1 (ASS1), a rate-limiting enzyme in arginine metabolism, was downregulated in the TAA-induced liver injury model. Single-cell RNA-seq data found that ASS1 was highly enriched in the hepatocytes. The reduction of ASS1 was attributed to the decreased expression of Farnesoid X receptor (FXR), which is a bile acid-activated nuclear hormone receptor with high expression in the liver. Subsequent studies demonstrated that activation of FXR by its agonist obeticholic acid (OCA) directly promoted ASS1 transcription and enhanced arginine synthesis, leading to the alleviation of TAA-mediated liver injury. Further experiments found that OCA, ASS1, and arginine supplement can rescue TAA-mediated hepatocytes apoptosis by decreasing the protein levels of Cyto C, PARP, and Caspase 3. Taken together, our study illustrated a protective role of the FXR/ASS1 axis in TAA-induced liver injury by targeting arginine metabolism, which might shed light on the development of novel therapeutic approaches for acute liver injury.


Subject(s)
Arginine , Argininosuccinate Synthase , Chemical and Drug Induced Liver Injury, Chronic , Receptors, Cytoplasmic and Nuclear , Animals , Arginine/metabolism , Argininosuccinate Synthase/genetics , Argininosuccinate Synthase/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism
16.
Mol Ther ; 30(6): 2354-2369, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35192933

ABSTRACT

Amino acids metabolism, especially aspartate metabolism, is often altered in human cancers including hepatocellular carcinoma (HCC) and this metabolic remodeling is required for supporting cancer cell malignant activities. Argininosuccinate synthase 1 (ASS1), as a crucial rate-limiting enzyme in aspartate metabolism, participates in repressing tumor progression. However, the roles of long noncoding RNAs (lncRNAs) in aspartate metabolism remodeling and the underlying mechanisms remain unclear. Here, we screen LINC01234 as an aspartate metabolism-related lncRNA in HCC. Clinically, LINC01234 was highly expressed in HCC, and a high LINC01234 expression level was correlated with a poor prognosis of patients with HCC. LINC01234 promoted cell proliferation, migration, and drug resistance by orchestrating aspartate metabolic reprogramming in HCC cells. Mechanistically, LINC01234 downregulated the expression of ASS1, leading to am increased aspartate level and activation of the mammalian target of rapamycin pathway. LINC01234 bound to the promoter of ASS1 and inhibited transcriptional activation of ASS1 by transcriptional factors, including p53. Finally, inhibiting LINC01234 dramatically impaired tumor growth in nude mice and sensitized HCC cells to sorafenib. These findings demonstrate that LINC01234 promotes HCC progression by modulating aspartate metabolic reprogramming and might be a prognostic or therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Animals , Argininosuccinate Synthase/genetics , Aspartic Acid/genetics , Aspartic Acid/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Mammals , Mice , Mice, Nude , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
17.
J Clin Invest ; 132(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35113813

ABSTRACT

New approaches for the management of glioblastoma (GBM) are an urgent and unmet clinical need. Here, we illustrate that the efficacy of radiotherapy for GBM is strikingly potentiated by concomitant therapy with the arginine-depleting agent ADI-PEG20 in a non-arginine-auxotrophic cellular background (argininosuccinate synthetase 1 positive). Moreover, this combination led to durable and complete radiological and pathological response, with extended disease-free survival in an orthotopic immune-competent model of GBM, with no significant toxicity. ADI-PEG20 not only enhanced the cellular sensitivity of argininosuccinate synthetase 1-positive GBM to ionizing radiation by elevated production of nitric oxide (˙NO) and hence generation of cytotoxic peroxynitrites, but also promoted glioma-associated macrophage/microglial infiltration into tumors and turned their classical antiinflammatory (protumor) phenotype into a proinflammatory (antitumor) phenotype. Our results provide an effective, well-tolerated, and simple strategy to improve GBM treatment that merits consideration for early evaluation in clinical trials.


Subject(s)
Antineoplastic Agents , Glioblastoma , Antineoplastic Agents/therapeutic use , Arginine , Argininosuccinate Synthase/genetics , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Humans , Hydrolases , Microglia , Polyethylene Glycols
18.
Bioengineered ; 13(1): 1858-1871, 2022 01.
Article in English | MEDLINE | ID: mdl-35012429

ABSTRACT

Glioma is one of the leading causes of tumor-related deaths worldwide, but its potential mechanism remains unclear. This study aimed to explore the biological role and potential mechanism of argininosuccinate synthase 1 (ASS1) in glioma. The relative expression levels of ASS1 in glioma specimens and cell lines were calculated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. The biological functions of ASS1 were demonstrated using the 5-ethynyl-2'-deoxyuridine (EdU) assay, transwell assay, and in vivo experiments. In addition, methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), and luciferase reporter assays were performed to explore the molecular mechanism of ASS1 in glioma. ASS1 expression levels were found to be downregulated in glioma specimens and cell lines. Functionally, we confirmed that ASS1 inhibited glioma cell proliferation, migration, invasion, and growth both. Furthermore, we found that ASS1 was a target of N(6)-adenosine-methyltransferase-14 (METTL14)-mediated N6-methyladenosine (m6A) modification. Overexpression of METTL14 markedly elevated ASS1 mRNA m6A modification and suppressed ASS1 mRNA expression. We also revealed that METTL14-mediated ASS1 mRNA degradation relied on the YTH m6A RNA-binding protein 2 (YTHDF2)-dependent pathway. We confirmed that decreased ASS1 expression promoted the cell proliferation, migration, and invasion in glioma, and that the METTL14/ASS1/YTHDF2 regulatory axis may be an effective therapeutic target for glioma.


Subject(s)
Adenosine/analogs & derivatives , Argininosuccinate Synthase/genetics , Brain Neoplasms/pathology , Glioma/pathology , Methyltransferases/genetics , RNA-Binding Proteins/genetics , Adenosine/metabolism , Animals , Argininosuccinate Synthase/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Case-Control Studies , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/metabolism , Humans , Male , Methyltransferases/metabolism , Mice , Neoplasm Transplantation , Prognosis , RNA-Binding Proteins/metabolism , Survival Analysis
19.
Mol Cell ; 82(3): 527-541.e7, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35016033

ABSTRACT

Citrulline can be converted into argininosuccinate by argininosuccinate synthetase (ASS1) in the urea cycle and the citrulline-nitric oxide cycle. However, the regulation and biological function of citrulline metabolism remain obscure in the immune system. Unexpectedly, we found that macrophage citrulline declines rapidly after interferon gamma (IFN-γ) and/or lipopolysaccharide (LPS) stimulation, which is required for efficient proinflammatory signaling activation. Mechanistically, IFN-γ and/or LPS stimulation promotes signal transducers and activators of transcription 1 (STAT1)-mediated ASS1 transcription and Janus kinase2 (JAK2)-mediated phosphorylation of ASS1 at tyrosine 87, thereby leading to citrulline depletion. Reciprocally, increased citrulline directly binds to JAK2 and inhibits JAK2-STAT1 signaling. Blockage of ASS1-mediated citrulline depletion suppresses the host defense against bacterial infection in vivo. We therefore define a central role for ASS1 in controlling inflammatory macrophage activation and antibacterial defense through depletion of cellular citrulline and, further, identify citrulline as an innate immune-signaling metabolite that engages a metabolic checkpoint for proinflammatory responses.


Subject(s)
Argininosuccinate Synthase/metabolism , Citrulline/metabolism , Immunity, Innate , Inflammation/enzymology , Listeriosis/enzymology , Macrophage Activation , Macrophages/enzymology , Animals , Argininosuccinate Synthase/genetics , Disease Models, Animal , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Listeria monocytogenes/immunology , Listeriosis/genetics , Listeriosis/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , RAW 264.7 Cells , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction
20.
Cell Death Dis ; 12(10): 897, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599156

ABSTRACT

The epithelial signaling pathways involved in damage and regeneration, and neoplastic transformation are known to be similar. We noted upregulation of argininosuccinate synthetase (ASS1) in hyperproliferative intestinal epithelium. Since ASS1 leads to de novo synthesis of arginine, an important amino acid for the growth of intestinal epithelial cells, its upregulation can contribute to epithelial proliferation necessary to be sustained during oncogenic transformation and regeneration. Here we investigated the function of ASS1 in the gut epithelium during tissue regeneration and tumorigenesis, using intestinal epithelial conditional Ass1 knockout mice and organoids, and tissue specimens from colorectal cancer patients. We demonstrate that ASS1 is strongly expressed in the regenerating and Apc-mutated intestinal epithelium. Furthermore, we observe an arrest in amino acid flux of the urea cycle, which leads to an accumulation of intracellular arginine. However, loss of epithelial Ass1 does not lead to a reduction in proliferation or increase in apoptosis in vivo, also in mice fed an arginine-free diet. Epithelial loss of Ass1 seems to be compensated by altered arginine metabolism in other cell types and the liver.


Subject(s)
Argininosuccinate Synthase/metabolism , Carcinogenesis/pathology , Epithelial Cells/enzymology , Intestines/pathology , Regeneration , Adenoma/blood , Adenoma/genetics , Adenoma/pathology , Adenomatous Polyposis Coli/blood , Adenomatous Polyposis Coli/genetics , Amino Acids/metabolism , Animals , Arginine/metabolism , Argininosuccinate Synthase/genetics , Cell Line, Tumor , Diet , Disease Models, Animal , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Intestinal Mucosa/pathology , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Organoids/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...