Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Commun Biol ; 4(1): 726, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117353

ABSTRACT

Argonaute 2 (AGO2) is an indispensable component of the RNA-induced silencing complex, operating at the translational or posttranscriptional level. It is compartmentalized into structures such as GW- and P-bodies, stress granules and adherens junctions as well as the midbody. Here we show using immunofluorescence, image and bioinformatic analysis and cytogenetics that AGO2 also resides in membrane protrusions such as open- and close-ended tubes. The latter are cytokinetic bridges where AGO2 colocalizes at the midbody arms with cytoskeletal components such as α-Τubulin and Aurora B, and various kinases. AGO2, phosphorylated on serine 387, is located together with Dicer at the midbody ring in a manner dependent on p38 MAPK activity. We further show that AGO2 is stress sensitive and important to ensure the proper chromosome segregation and cytokinetic fidelity. We suggest that AGO2 is part of a regulatory mechanism triggered by cytokinetic stress to generate the appropriate micro-environment for local transcript homeostasis.


Subject(s)
Argonaute Proteins/physiology , Cell Division , p38 Mitogen-Activated Protein Kinases/metabolism , Actins/metabolism , Argonaute Proteins/metabolism , Cell Line , Cytokinesis , Cytoskeleton/metabolism , Fluorescent Antibody Technique , HCT116 Cells , Hep G2 Cells , Humans , Pseudopodia/metabolism , Tubulin/metabolism , p38 Mitogen-Activated Protein Kinases/physiology
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972443

ABSTRACT

Lung cancer is the deadliest malignancy in the United States. Non-small cell lung cancer (NSCLC) accounts for 85% of cases and is frequently driven by activating mutations in the gene encoding the KRAS GTPase (e.g., KRASG12D). Our previous work demonstrated that Argonaute 2 (AGO2)-a component of the RNA-induced silencing complex (RISC)-physically interacts with RAS and promotes its downstream signaling. We therefore hypothesized that AGO2 could promote KRASG12D-dependent NSCLC in vivo. To test the hypothesis, we evaluated the impact of Ago2 knockout in the KPC (LSL-KrasG12D/+;p53f/f;Cre) mouse model of NSCLC. In KPC mice, intratracheal delivery of adenoviral Cre drives lung-specific expression of a stop-floxed KRASG12D allele and biallelic ablation of p53 Simultaneous biallelic ablation of floxed Ago2 inhibited KPC lung nodule growth while reducing proliferative index and improving pathological grade. We next applied the KPHetC model, in which the Clara cell-specific CCSP-driven Cre activates KRASG12D and ablates a single p53 allele. In these mice, Ago2 ablation also reduced tumor size and grade. In both models, Ago2 knockout inhibited ERK phosphorylation (pERK) in tumor cells, indicating impaired KRAS signaling. RNA sequencing (RNA-seq) of KPC nodules and nodule-derived organoids demonstrated impaired canonical KRAS signaling with Ago2 ablation. Strikingly, accumulation of pERK in KPC organoids depended on physical interaction of AGO2 and KRAS. Taken together, our data demonstrate a pathogenic role for AGO2 in KRAS-dependent NSCLC. Given the prevalence of this malignancy and current difficulties in therapeutically targeting KRAS signaling, our work may have future translational relevance.


Subject(s)
Argonaute Proteins/physiology , Carcinoma, Non-Small-Cell Lung/etiology , Lung Neoplasms/etiology , Proto-Oncogene Proteins p21(ras)/physiology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Disease Models, Animal , Disease Progression , Lung Neoplasms/genetics , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Signal Transduction/physiology
3.
Hum Cell ; 34(2): 550-563, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33389678

ABSTRACT

PIWI (P element induced wimpy testis) integrating RNAs (piRNAs) are small non-coding RNAs with the length of approximately 30 nucleotides that plays crucial roles in germ cells and adult stem cells. Recently, accumulating data have shown that piRNA and PIWI proteins are involved in tumorigenesis. However, the roles of PIWI proteins and piRNAs in pancreatic cancer are still elusive. Here, we showed that piR-017061 is significantly downregulated in pancreatic cancer patients' samples and pancreatic cancer cell lines. Furthermore, we studied the function of piR-017061 in pancreatic cancer and our data revealed that piR-017061 inhibits pancreatic cancer cell growth in vitro and in vivo. Moreover, we analyzed the genomic loci around piR-017061 and identified EFNA5 as a novel target of piR-017061. Importantly, our data further revealed a direct binding between piR-017061 and EFNA5 mRNA mediated by PIWIL1. Mechanically, piR-017061 cooperates with PIWIL1 to facilitate EFNA5 mRNA degradation and loss of piR-017061 results in accumulation of EFNA5 which facilitates pancreatic cancer development. Hence, our data provided novel insights into PIWI/piRNA-mediated gene regulation and their function in pancreatic cancer. Since PIWI proteins and piRNA predominately express in germline and cancer cells, our study provided novel therapeutic strategy for pancreatic cancer treatment.


Subject(s)
Argonaute Proteins/physiology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Proliferation/genetics , Ephrin-A5/genetics , Ephrin-A5/metabolism , Epistasis, Genetic/genetics , Epistasis, Genetic/physiology , Gene Expression Regulation, Neoplastic/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA, Small Interfering/physiology , Cell Line, Tumor , Humans , Molecular Targeted Therapy
4.
PLoS Genet ; 16(11): e1009058, 2020 11.
Article in English | MEDLINE | ID: mdl-33180792

ABSTRACT

Uncovering the mechanisms that recognise a microRNA (miRNA) target is 1 of the biggest challenges because the Ago-miRNA complex is able to overcome different derogations of complementarity when binding targets. However, the recently solved crystallographic structure of Argonaute2 (Ago2) and a high-throughput analysis that used repurposed sequencing techniques has brought us closer to achieving this goal.


Subject(s)
Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Animals , Argonaute Proteins/physiology , Humans , Mammals/genetics , Mammals/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/genetics
5.
J Vis Exp ; (161)2020 07 31.
Article in English | MEDLINE | ID: mdl-32894261

ABSTRACT

Micro(mi)RNAs are short, non-coding RNAs that mediate the RNA interference (RNAi) by post-transcriptional mechanisms. Specific miRNAs are recruited to the cytoplasmic RNA induced silencing complex (RISC). Argonaute2 (Ago2), an essential component of RISC, facilitates binding of miRNA to the target-site on mRNA, followed by cleaving the miRNA-mRNA duplex with its endonuclease activity. RNAi is mediated by a specific pool of miRNAs recruited to RISC, and thus is referred to as the functional pool. The cellular levels of many miRNAs are affected by the cytokine Transforming Growth Factor-ß1 (TGF-ß1). However, little is known about whether the TGF-ß1 affects the functional pools of these miRNAs. The Ago2-miRNA-co-IP assay, discussed in this manuscript, is designed to examine effects of TGF-ß1 on the recruitment of miRNAs to RISC and it helps to determine whether changes in the cellular miRNA levels correlate with changes in the RISC-associated, functional pools. The general principles of the assay are as follows. Cultured cells treated with TGF-ß1 or vehicle control are lysed and the endogenous Ago2 is immunoprecipitated with immobilized anti-Ago2 antibody, and the active miRNAs complexed with Ago2 are isolated with a RISC immunoprecipitation (RIP) assay kit. The miRNAs are identified with quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) using miRNA-specific stem-looped primers during reverse transcription, followed by PCR using miRNA-specific forward and reverse primers, and TaqMan hydrolysis probes.


Subject(s)
Argonaute Proteins/physiology , MicroRNAs/metabolism , RNA-Induced Silencing Complex/metabolism , Transforming Growth Factor beta1/pharmacology , Cells, Cultured , Humans , Immunoprecipitation
6.
Plant J ; 103(5): 1796-1809, 2020 08.
Article in English | MEDLINE | ID: mdl-32506562

ABSTRACT

Arabidopsis encodes 10 ARGONAUTE (AGO) effectors of RNA silencing, canonically loaded with either 21-22 nucleotide (nt) long small RNAs (sRNAs) to mediate post-transcriptional gene silencing (PTGS) or 24 nt sRNAs to promote RNA-directed DNA methylation. Using full-locus constructs, we characterized the expression, biochemical properties and possible modes of action of AGO3. Although AGO3 arose from a recent duplication at the AGO2 locus, their expression patterns differ drastically, with AGO2 being expressed in both male and female gametes whereas AGO3 accumulates in aerial vascular terminations and specifically in chalazal seed integuments. Accordingly, AGO3 downregulation alters gene expression in siliques. Similar to AGO2, AGO3 binds sRNAs with a strong 5' adenosine bias, but unlike Arabidopsis AGO2, it binds 24 nt sRNAs most efficiently. AGO3 immunoprecipitation experiments in siliques revealed that these sRNAs mostly correspond to genes and intergenic regions in a manner reflecting their respective accumulation from their loci of origin. AGO3 localizes to the cytoplasm and co-fractionates with polysomes to possibly mediate PTGS via translation inhibition.


Subject(s)
Arabidopsis Proteins/physiology , Argonaute Proteins/physiology , Flowers/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Flowers/physiology , Gene Duplication
7.
Mol Cell ; 79(1): 167-179.e11, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32497496

ABSTRACT

The identification of microRNA (miRNA) targets by Ago2 crosslinking-immunoprecipitation (CLIP) methods has provided major insights into the biology of this important class of non-coding RNAs. However, these methods are technically challenging and not easily applicable to an in vivo setting. To overcome these limitations and facilitate the investigation of miRNA functions in vivo, we have developed a method based on a genetically engineered mouse harboring a conditional Halo-Ago2 allele expressed from the endogenous Ago2 locus. By using a resin conjugated to the HaloTag ligand, Ago2-miRNA-mRNA complexes can be purified from cells and tissues expressing the endogenous Halo-Ago2 allele. We demonstrate the reproducibility and sensitivity of this method in mouse embryonic stem cells, developing embryos, adult tissues, and autochthonous mouse models of human brain and lung cancers. This method and the datasets we have generated will facilitate the characterization of miRNA-mRNA networks in vivo under physiological and pathological conditions.


Subject(s)
Argonaute Proteins/physiology , Embryonic Stem Cells/metabolism , Glioma/metabolism , MicroRNAs/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Embryonic Stem Cells/cytology , Female , Gene Expression Regulation , Glioma/genetics , Glioma/pathology , High-Throughput Nucleotide Sequencing , Hydrolases/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , Protein Binding , RNA, Messenger/genetics , Recombinant Fusion Proteins/genetics
8.
Cell Host Microbe ; 28(1): 89-103.e8, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32504578

ABSTRACT

Small RNA-mediated RNA silencing is an important antiviral mechanism in higher plants. It has been shown that RNA silencing components can be upregulated by viral infection. However, the mechanisms underlying the upregulation remain largely unknown. Here, we show that jasmonate (JA) signaling transcriptionally activates Argonaute 18 (AGO18), a core RNA silencing component that promotes rice antiviral defense through sequestering miR168 and miR528, which repress key antiviral defense proteins. Mechanistically, the JA-responsive transcription factor JAMYB directly binds to the AGO18 promoter to activate AGO18 transcription. Rice stripe virus (RSV) coat protein (CP) triggers JA accumulation and upregulates JAMYB to initiate this host defense network. Our study reveals that regulatory crosstalk exists between the JA signaling and antiviral RNA silencing pathways and elucidates a molecular mechanism for CP-mediated viral resistance in monocot crops.


Subject(s)
Argonaute Proteins/physiology , Cyclopentanes/pharmacology , Oryza/physiology , Oxylipins/pharmacology , Plant Proteins/physiology , RNA Interference , Tenuivirus/pathogenicity , Antiviral Agents/pharmacology , Gene Expression Regulation, Plant/drug effects , Oryza/drug effects , Oryza/virology , Plant Diseases/virology , Plant Immunity , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/physiology , Up-Regulation
9.
Nucleic Acids Res ; 48(10): 5555-5571, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32374844

ABSTRACT

Host microRNA (miRNA) dependency is a hallmark of the human pathogen hepatitis C virus (HCV) and was also described for the related pestiviruses, which are important livestock pathogens. The liver-specific miR-122 binds within the HCV 5' untranslated region (UTR), whereas the broadly expressed let-7 and miR-17 families bind two sites (S1 and S2, respectively) in the pestiviral 3' UTR. Here, we dissected the mechanism of miRNA dependency of the pestivirus bovine viral diarrhea virus (BVDV). Argonaute 2 (AGO2) and miR-17 binding were essential for viral replication, whereas let-7 binding was mainly required for full translational efficiency. Furthermore, using seed site randomized genomes and evolutionary selection experiments, we found that tropism could be redirected to different miRNAs. AGO cross-linking and immunoprecipitation (CLIP) experiments and miRNA antagonism demonstrated that these alternative variants bound and depended on the corresponding miRNAs. Interestingly, we also identified miRNA-independent variants that were obtained through acquisition of compensatory mutations near the genomic 3' terminus. Rescue experiments demonstrated that miRNA binding and 3' mutagenesis contribute to replication through mutually exclusive mechanisms. Altogether, our findings suggest that pestiviruses, although capable of miRNA-independent replication, took advantage of miRNAs as essential host factors, suggesting a favorable path during evolutionary adaptation.


Subject(s)
Diarrhea Virus 1, Bovine Viral/genetics , MicroRNAs/metabolism , 3' Untranslated Regions , Animals , Argonaute Proteins/physiology , Diarrhea Virus 1, Bovine Viral/metabolism , Diarrhea Virus 1, Bovine Viral/physiology , Dogs , Evolution, Molecular , Genetic Variation , Madin Darby Canine Kidney Cells , Protein Biosynthesis , Virus Replication
10.
Proc Natl Acad Sci U S A ; 117(12): 6942-6950, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32139605

ABSTRACT

Pluripotent embryonic stem cells (ESCs) contain the potential to form a diverse array of cells with distinct gene expression states, namely the cells of the adult vertebrate. Classically, diversity has been attributed to cells sensing their position with respect to external morphogen gradients. However, an alternative is that diversity arises in part from cooption of fluctuations in the gene regulatory network. Here we find ESCs exhibit intrinsic heterogeneity in the absence of external gradients by forming interconverting cell states. States vary in developmental gene expression programs and display distinct activity of microRNAs (miRNAs). Notably, miRNAs act on neighborhoods of pluripotency genes to increase variation of target genes and cell states. Loss of miRNAs that vary across states reduces target variation and delays state transitions, suggesting variable miRNAs organize and propagate variation to promote state transitions. Together these findings provide insight into how a gene regulatory network can coopt variation intrinsic to cell systems to form robust gene expression states. Interactions between intrinsic heterogeneity and environmental signals may help achieve developmental outcomes.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/physiology , Gene Expression Regulation, Developmental , Gene Regulatory Networks , MicroRNAs/genetics , Animals , Argonaute Proteins/physiology , Embryonic Stem Cells/cytology , Gene Expression Profiling , Mice , Mice, Knockout , Nanog Homeobox Protein/physiology , RNA-Binding Proteins/physiology , SOXB1 Transcription Factors/physiology , Signal Transduction
11.
Nat Struct Mol Biol ; 26(8): 720-731, 2019 08.
Article in English | MEDLINE | ID: mdl-31384064

ABSTRACT

The PIWI-interacting RNA (piRNA) pathway protects genome integrity in part through establishing repressive heterochromatin at transposon loci. Silencing requires piRNA-guided targeting of nuclear PIWI proteins to nascent transposon transcripts, yet the subsequent molecular events are not understood. Here, we identify SFiNX (silencing factor interacting nuclear export variant), an interdependent protein complex required for Piwi-mediated cotranscriptional silencing in Drosophila. SFiNX consists of Nxf2-Nxt1, a gonad-specific variant of the heterodimeric messenger RNA export receptor Nxf1-Nxt1 and the Piwi-associated protein Panoramix. SFiNX mutant flies are sterile and exhibit transposon derepression because piRNA-loaded Piwi is unable to establish heterochromatin. Within SFiNX, Panoramix recruits heterochromatin effectors, while the RNA binding protein Nxf2 licenses cotranscriptional silencing. Our data reveal how Nxf2 might have evolved from an RNA transport receptor into a cotranscriptional silencing factor. Thus, NXF variants, which are abundant in metazoans, can have diverse molecular functions and might have been coopted for host genome defense more broadly.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Heterochromatin/metabolism , Nuclear Proteins/physiology , Nucleocytoplasmic Transport Proteins/physiology , RNA, Small Interfering/genetics , RNA-Binding Proteins/physiology , Amino Acid Sequence , Animals , Argonaute Proteins/physiology , Binding Sites , Crystallography, X-Ray , DNA Transposable Elements/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Gene Expression Regulation , Gene Silencing , Genome, Insect , Models, Molecular , Multiprotein Complexes , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/genetics , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Transcription, Genetic
12.
PLoS One ; 14(5): e0216982, 2019.
Article in English | MEDLINE | ID: mdl-31095623

ABSTRACT

White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes, have been considered the hematopoietic organ of the cephalopods. Its glandular appearance and its lobular morphology suggest that different parts of the WB may perform different functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this study is to describe the transcriptomic profile of WB to better understand its functions, with emphasis on the difference between sexes during reproductive events. Then, validation via qPCR was performed using different tissues to find out tissue-specific transcripts. High differentiation in signaling pathways was observed in the comparison of female and male transcriptomic profiles. For instance, the expression of genes involved in the androgen receptor-signaling pathway were detected only in males, whereas estrogen receptor showed higher expression in females. Highly expressed genes in males enriched oxidation-reduction and apoptotic processes, which are related to the immune response. On the other hand, expression of genes involved in replicative senescence and the response to cortisol were only detected in females. Moreover, the transcripts with higher expression in females enriched a wide variety of signaling pathways mediated by molecules like neuropeptides, integrins, MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide transcripts, showed higher expression in females' WB and were not detected in other analyzed tissues. These results suggest that the differentiation in signaling pathways in white bodies of O. maya influences the physiological dimorphism between females and males during the reproductive phase.


Subject(s)
Octopodiformes/physiology , Reproduction/physiology , Signal Transduction , Transcriptome , Adaptor Proteins, Signal Transducing/physiology , Animals , Argonaute Proteins/physiology , Cell Differentiation , DEAD-box RNA Helicases/physiology , Estradiol Dehydrogenases/physiology , Female , Gene Expression Profiling , Hydrocortisone/physiology , MAP Kinase Signaling System , Male , Membrane Proteins/physiology , Octopodiformes/genetics , Phylogeny , Receptors, Corticotropin-Releasing Hormone/physiology , Receptors, Estrogen/physiology , Sex Factors
13.
Cell Cycle ; 18(10): 1056-1067, 2019 05.
Article in English | MEDLINE | ID: mdl-31014212

ABSTRACT

Human telomerase holoenzyme consists of the catalytic component TERT and the template RNA TERC. However, a network of accessory proteins plays key roles in its assembly, localization and stability. Defects in genes involved in telomerase biology affect the renewal of critical stem cell populations and cause disorders such as telomeropathies. Moreover, activation of telomerase in somatic cells allows neoplastic cells to proliferate indefinitely, thus contributing to tumorigenesis. For these reasons, identification of new players involved in telomerase regulation is crucial for the determination of novel therapeutic targets and biomarkers. In the very last years, increasing evidence describes components of the RNAi machinery as a new layer of complexity in human telomerase activity. In this review, we will discuss how AGO2 and other proteins which collaborate with AGO2 in RNAi pathway play a pivotal role in TERC stability and function.


Subject(s)
Argonaute Proteins/physiology , RNA Interference , RNA/physiology , Telomerase/physiology , Argonaute Proteins/metabolism , Humans , Models, Genetic , RNA/chemistry , RNA/metabolism , Telomerase/chemistry , Telomerase/metabolism
15.
Addict Biol ; 24(3): 498-508, 2019 05.
Article in English | MEDLINE | ID: mdl-29516602

ABSTRACT

microRNA (miRNA) play important roles in drug addiction and act as a post-transcriptional regulator of gene expression. We previously reported extensive downregulation of miRNAs in the nucleus accumbens (NAc) of methamphetamine (METH)-sensitized mice. However, the regulatory mechanism of this METH-induced downregulation of miRNAs has yet to be elucidated. Thus, we examined METH-induced changes in the expression of miRNAs and their precursors, as well as the expression levels of mRNA and the proteins involved in miRNA biogenesis such as Dicer1 and Ago2, in the nucleus accumbens of METH-induced locomotor sensitized mice. miRNAs and Ago2 were significantly downregulated, while the expression of miRNA precursors remained unchanged or upregulated, which suggests that the downregulation of miRNAs was likely due to a reduction in Ago2-mediated splicing but unlikely to be regulated at the transcription level. Interestingly, the expression level of Dicer1, which is a potential target of METH-induced decreased miRNAs, such as miR-124, miR-212 and miR-29b, was significantly increased. In conclusion, this study indicates that miRNA biogenesis (such as Ago2 and Dicer1) and their miRNA products may have a role in the development of METH addiction.


Subject(s)
Argonaute Proteins/physiology , Central Nervous System Stimulants/pharmacology , DEAD-box RNA Helicases/physiology , Locomotion/drug effects , Methamphetamine/pharmacology , MicroRNAs/metabolism , Ribonuclease III/physiology , Amphetamine-Related Disorders/physiopathology , Animals , Down-Regulation/drug effects , Male , Mice, Inbred C57BL , Nucleus Accumbens/drug effects
16.
BMB Rep ; 52(3): 196-201, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30103846

ABSTRACT

The Alu element, the most abundant transposable element, is transcribed to Alu RNA. We hypothesized that the PIWI protein regulates the expression of Alu RNA in retinal pigment epithelial (RPE) cells, where accumulated Alu RNA leads to macular degeneration. Alu transcription was induced in RPE cells treated with H2O2. At an early stage of oxidative stress, PIWIL4 was translocated into the nucleus; however, subsequently it was sequestered into cytoplasmic stress granules, resulting in the accumulation of Alu RNA. An elevated amount of Alu RNA was positively correlated with the disruption of the epithelial features of RPE via induction of mesenchymal transition. Therefore, we suggest that oxidative stress causes Alu RNA accumulation via PIWIL4 sequestration into the cytoplasmic stress granules. [BMB Reports 2019; 52(3): 196-201].


Subject(s)
Alu Elements/genetics , Argonaute Proteins/physiology , Argonaute Proteins/metabolism , Cell Line , Gene Expression Regulation/genetics , Humans , Hydrogen Peroxide/metabolism , Macular Degeneration , Oxidative Stress/genetics , Oxidative Stress/physiology , RNA/metabolism , RNA-Binding Proteins , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/physiology
17.
Parasitology ; 146(2): 197-205, 2019 02.
Article in English | MEDLINE | ID: mdl-29966536

ABSTRACT

Extensive insecticide use has led to the resistance of mosquitoes to these insecticides, posing a major barrier to mosquito control. Previous Solexa high-throughput sequencing of Culex pipiens pallens in the laboratory has revealed that the abundance of a novel microRNA (miRNA), miR-13664, was higher in a deltamethrin-sensitive (DS) strain than a deltamethrin-resistant (DR) strain. Real-time quantitative PCR revealed that the miR-13664 transcript level was lower in the DR strain than in the DS strain. MiR-13664 oversupply in the DR strain increased the susceptibility of these mosquitoes to deltamethrin, whereas inhibition of miR-13664 made the DS strain more resistant to deltamethrin. Results of bioinformatic analysis, quantitative reverse-transcriptase polymerase chain reaction, luciferase assay and miR mimic/inhibitor microinjection revealed CpCYP314A1 to be a target of miR-13664. In addition, downregulation of CpCYP314A1 expression in the DR strain reduced the resistance of mosquitoes to deltamethrin. Taken together, our results indicate that miR-13664 could regulate deltamethrin resistance by interacting with CpCYP314A1, providing new insights into mosquito resistance mechanisms.


Subject(s)
Culex/genetics , Cytochrome P-450 Enzyme System/physiology , Insecticide Resistance , Insecticides , MicroRNAs/genetics , Nitriles , Pyrethrins , Animals , Argonaute Proteins/physiology , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Female , Insecticide Resistance/genetics , MicroRNAs/physiology , Mosquito Control/methods , Reverse Transcriptase Polymerase Chain Reaction
18.
mBio ; 9(6)2018 12 18.
Article in English | MEDLINE | ID: mdl-30563906

ABSTRACT

Members of the ancient family of Argonaute (Ago) proteins are present in all domains of life. The common feature of Ago proteins is the ability to bind small nucleic acid guides and use them for sequence-specific recognition-and sometimes cleavage-of complementary targets. While eukaryotic Ago (eAgo) proteins are key players in RNA interference and related pathways, the properties and functions of these proteins in archaeal and bacterial species have just started to emerge. We undertook comprehensive exploration of prokaryotic Ago (pAgo) proteins in sequenced genomes and revealed their striking diversity in comparison with eAgos. Many pAgos contain divergent variants of the conserved domains involved in interactions with nucleic acids, while having extra domains that are absent in eAgos, suggesting that they might have unusual specificities in the nucleic acid recognition and cleavage. Many pAgos are associated with putative nucleases, helicases, and DNA binding proteins in the same gene or operon, suggesting that they are involved in target processing. The great variability of pAgos revealed by our analysis opens new ways for exploration of their functions in host cells and for their use as potential tools in genome editing.IMPORTANCE The eukaryotic Ago proteins and the RNA interference pathways they are involved in are widely used as a powerful tool in research and as potential therapeutics. In contrast, the properties and functions of prokaryotic Ago (pAgo) proteins have remained poorly understood. Understanding the diversity and functions of pAgos holds a huge potential for discovery of new cellular pathways and novel tools for genome manipulations. Only few pAgos have been characterized by structural or biochemical approaches, while previous genomic studies discovered about 300 proteins in archaeal and eubacterial genomes. Since that time the number of bacterial strains with sequenced genomes has greatly expanded, and many previously sequenced genomes have been revised. We undertook comprehensive analysis of pAgo proteins in sequenced genomes and almost tripled the number of known genes of this family. Our research thus forms a foundation for further experimental characterization of pAgo functions that will be important for understanding of the basic biology of these proteins and their adoption as a potential tool for genome engineering in the future.


Subject(s)
Archaea/physiology , Argonaute Proteins/physiology , Bacteria/metabolism , Genome , Archaeal Proteins/physiology , Bacterial Proteins/physiology , Eukaryota/genetics , Gene Editing , Gene Transfer, Horizontal , Protein Binding , RNA Interference
19.
Nat Commun ; 9(1): 5165, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30514832

ABSTRACT

Recognition and repression of RNA targets by Argonaute proteins guided by small RNAs is the essence of RNA interference in eukaryotes. Argonaute proteins with diverse structures are also found in many bacterial and archaeal genomes. Recent studies revealed that, similarly to their eukaryotic counterparts, prokaryotic Argonautes (pAgos) may function in cell defense against foreign genetic elements but, in contrast, preferably act on DNA targets. Many crucial details of the pAgo action, and the roles of a plethora of pAgos with non-conventional architecture remain unknown. Here, we review available structural and biochemical data on pAgos and discuss their possible functions in host defense and other genetic processes in prokaryotic cells.


Subject(s)
Argonaute Proteins/chemistry , Argonaute Proteins/physiology , DNA/physiology , Prokaryotic Cells/physiology , Argonaute Proteins/genetics , Catalysis , Catalytic Domain , Eukaryota/genetics , Eukaryota/physiology , Eukaryotic Cells/physiology , Genetic Engineering , Immune System , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , RNA/physiology , RNA Interference/physiology , RNA, Small Interfering/physiology
20.
Mol Cell ; 71(6): 1040-1050.e8, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30146314

ABSTRACT

In mammals, gene silencing by the RNA-induced silencing complex (RISC) is a well-understood cytoplasmic posttranscriptional gene regulatory mechanism. Here, we show that embryonic stem cells (ESCs) contain high levels of nuclear AGO proteins and that in ESCs nuclear AGO protein activity allows for the onset of differentiation. In the nucleus, AGO proteins interact with core RISC components, including the TNRC6 proteins and the CCR4-NOT deadenylase complex. In contrast to cytoplasmic miRNA-mediated gene silencing that mainly operates on cis-acting elements in mRNA 3' untranslated (UTR) sequences, in the nucleus AGO binding in the coding sequence and potentially introns also contributed to post-transcriptional gene silencing. Thus, nuclear localization of AGO proteins in specific cell types leads to a previously unappreciated expansion of the miRNA-regulated transcriptome.


Subject(s)
Argonaute Proteins/physiology , Gene Silencing/physiology , MicroRNAs/physiology , Animals , Argonaute Proteins/genetics , Cell Differentiation/genetics , Cell Line , Cell Nucleus , Cytoplasm , Embryonic Stem Cells/metabolism , Humans , Mammals , Mice , MicroRNAs/genetics , RNA Interference , RNA Stability , RNA, Messenger , RNA, Small Interfering , RNA-Binding Proteins , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...