Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Biochem Biophys Res Commun ; 714: 149940, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38677008

ABSTRACT

Orthostatic hypotension (OH) is a common condition. Many potential etiologies of OH have been identified, but in clinical practice the underlying cause of OH is often unknown. In the present study, we identified a novel and extraordinary etiology of OH. We describe a first case of acquired severe OH with syncope, and the female patient had extremely low levels of catecholamines and serotonin in plasma, urine and cerebrospinal fluid (CSF). Her clinical and biochemical evidence showed a deficiency of the enzyme aromatic l-amino acid decarboxylase (AADC), which converts l-DOPA to dopamine, and 5-hydroxytryptophan to serotonin, respectively. The consequence of pharmacologic stimulation of catecholaminergic nerves and radionuclide examination revealed her catecholaminergic nerves denervation. Moreover, we found that the patient's serum showed presence of autoantibodies against AADC, and that isolated peripheral blood mononuclear cells (PBMCs) from the patient showed cytokine-induced toxicity against AADC. These observations suggest that her autoimmunity against AADC is highly likely to cause toxicity to adrenal medulla and catecholaminergic nerves which contain AADC, resulting in hypocatecholaminemia and severe OH. Administration of vitamin B6, an essential cofactor of AADC, enhanced her residual AADC activity and drastically improved her symptoms. Our data thus provide a new insight into pathogenesis and pathophysiology of OH.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases , Autoimmunity , Hypotension, Orthostatic , Female , Humans , Middle Aged , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Autoantibodies/blood , Autoantibodies/immunology , Catecholamines , Dopamine/metabolism , Hypotension, Orthostatic/etiology , Hypotension, Orthostatic/physiopathology , Serotonin/metabolism
3.
Mol Genet Metab ; 141(3): 108148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302374

ABSTRACT

BACKGROUND: Aromatic l-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal-recessive neurometabolic disorder caused by variants in dopa decarboxylase (DDC) gene, resulting in a severe combined deficiency of serotonin, dopamine, norepinephrine, and epinephrine. Birth prevalence of AADCD varies by population. In pilot studies, 3-O-methyldopa (3-OMD) was shown to be a reliable biomarker for AADCD in high-throughput newborn screening (NBS) allowing an early diagnosis and access to gene therapy. To evaluate the usefulness of this method for routine NBS, 3-OMD screening results from the largest three German NBS centers were analyzed. METHODS: A prospective, multicenter (n = 3) NBS pilot study evaluated screening for AADCD by quantifying 3-OMD in dried blood spots (DBS) using tandem mass spectrometry (MS/MS). RESULTS: In total, 766,660 neonates were screened from January 2021 until June 2023 with 766,647 with unremarkable AADCD NBS (766,443 by 1st-tier analysis and 204 by 2nd-tier analysis) and 13 with positive NBS result recalled for confirmatory diagnostics (recall-rate about 1:59,000). Molecular genetic analysis confirmed AADCD (c.79C > T p.[Arg27Cys] in Exon 2 und c.215 A > C p.[His72Pro] in Exon 3) in one infant. Another individual was highly suspected with AADCD but died before confirmation (overall positive predictive value 0.15). False-positive results were caused by maternal L-Dopa use (n = 2) and prematurity (30th and 36th week of gestation, n = 2). However, in 63% (n = 7) the underlying etiology for false positive results remained unexplained. Estimated birth prevalence (95% confidence interval) was 1:766,660 (95% CI 1:775,194; 1:769,231) to 1:383,330 (95% CI 1:384,615; 1:383,142). The identified child remained asymptomatic until last follow up at the age of 9 months. CONCLUSIONS: The proposed screening strategy with 3-OMD detection in DBS is feasible and effective to identify individuals with AADCD. The estimated birth prevalence supports earlier estimations and confirms AADCD as a very rare disorder. Pre-symptomatic identification by NBS allows a disease severity adapted drug support to diminish clinical complications until individuals are old enough for the application of the gene therapy.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Tandem Mass Spectrometry , Infant , Infant, Newborn , Child , Humans , Neonatal Screening/methods , Pilot Projects , Prevalence , Prospective Studies , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/genetics
5.
J Hum Genet ; 69(3-4): 153-157, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216729

ABSTRACT

Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter disorder caused by pathogenic DOPA decarboxylase (DDC) variants. We previously reported Japanese siblings with AADC deficiency, which was confirmed by the lack of enzyme activity; however, only a heterozygous missense variant was detected. We therefore performed targeted long-read sequencing by adaptive sampling to identify any missing variants. Haplotype phasing and variant calling identified a novel deep intronic variant (c.714+255 C > A), which was predicted to potentially activate the noncanonical splicing acceptor site. Minigene assay revealed that wild-type and c.714+255 C > A alleles had different impacts on splicing. Three transcripts, including the canonical transcript, were detected from the wild-type allele, but only the noncanonical cryptic exon was produced from the variant allele, indicating that c.714+255 C > A was pathogenic. Target long-read sequencing may be used to detect hidden pathogenic variants in unresolved autosomal recessive cases with only one disclosed hit variant.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Dopa Decarboxylase , Humans , Dopa Decarboxylase/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Introns , Mutation, Missense
6.
J Am Med Inform Assoc ; 31(3): 692-704, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38134953

ABSTRACT

OBJECTIVES: Electronic health record (EHR) data may facilitate the identification of rare diseases in patients, such as aromatic l-amino acid decarboxylase deficiency (AADCd), an autosomal recessive disease caused by pathogenic variants in the dopa decarboxylase gene. Deficiency of the AADC enzyme results in combined severe reductions in monoamine neurotransmitters: dopamine, serotonin, epinephrine, and norepinephrine. This leads to widespread neurological complications affecting motor, behavioral, and autonomic function. The goal of this study was to use EHR data to identify previously undiagnosed patients who may have AADCd without available training cases for the disease. MATERIALS AND METHODS: A multiple symptom and related disease annotated dataset was created and used to train individual concept classifiers on annotated sentence data. A multistep algorithm was then used to combine concept predictions into a single patient rank value. RESULTS: Using an 8000-patient dataset that the algorithms had not seen before ranking, the top and bottom 200 ranked patients were manually reviewed for clinical indications of performing an AADCd diagnostic screening test. The top-ranked patients were 22.5% positively assessed for diagnostic screening, with 0% for the bottom-ranked patients. This result is statistically significant at P < .0001. CONCLUSION: This work validates the approach that large-scale rare-disease screening can be accomplished by combining predictions for relevant individual symptoms and related conditions which are much more common and for which training data is easier to create.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Natural Language Processing , Rare Diseases , Humans , Dopamine , Machine Learning
7.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232540

ABSTRACT

Aromatic amino acid decarboxylase (AADC) deficiency is a rare monogenic disease due to mutations in the ddc gene producing AADC, a homodimeric pyridoxal 5'-phosphate-dependent enzyme. The disorder is often fatal in the first decade and is characterized by profound motor impairments and developmental delay. In the last two years, there has been a net rise in the number of patients and variants identified, maybe also pushed by the ongoing gene therapy trials. The majority of the identified genotypes are compound heterozygous (about 70%). Efforts are underway to reach early diagnosis, find possible new markers/new fast methods, and predict clinical outcome. However, no clear correlation of genotype-to-phenotype exists to date. Nevertheless, for homozygous patients, reliable results have been obtained using genetic methods combined with available computational tools on crystal structures corroborated by biochemical investigations on recombinant homodimeric AADC variants that have been obtained and characterized in solution. For these variants, the molecular basis for the defect has been suggested and validated, since it correlates quite well with mildness/severity of the homozygous phenotype. Instead, prediction for compound heterozygous patients is more difficult since complementation effects could happen. Here, by analyzing the existing literature on compound heterozygosity in AADC deficiency and other genetic disorders, we highlight that, in order to assess pathogenicity, the measurement of activity of the AADC heterodimeric variant should be integrated by bioinformatic, structural, and functional data on the whole protein constellation theoretically present in such patients. A wider discussion on symptomatic heterozygosity in AADC deficiency is also presented.


Subject(s)
Carboxy-Lyases , Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Carboxy-Lyases/genetics , Phenotype , Phosphates , Pyridoxal
9.
Drugs ; 82(13): 1427-1432, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36103022

ABSTRACT

Eladocagene exuparvovec (Upstaza™) is a gene therapy developed by PTC Therapeutics for the treatment of human aromatic L-amino acid decarboxylase (AADC) deficiency. Eladocagene exuparvovec comprises an adeno-associated virus vector that delivers the dopa decarboxylase (DDC) gene, the gene for human AADC. Eladocagene exuparvovec was approved in July 2022 in the EU for the treatment of patients aged 18 months and older with a clinical, molecular, and genetically confirmed diagnosis of AADC deficiency with a severe phenotype (i.e. patients who cannot sit, stand or walk). This article summarizes the milestones in the development of eladocagene exuparvovec leading to this first approval for the treatment of patients aged 18 months and older with AADC deficiency.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Dopa Decarboxylase , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acids , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Humans
10.
Cell Mol Life Sci ; 79(6): 305, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35593933

ABSTRACT

Aromatic amino acid decarboxylase (AADC) deficiency is a rare monogenic disease, often fatal in the first decade, causing severe intellectual disability, movement disorders and autonomic dysfunction. It is due to mutations in the gene coding for the AADC enzyme responsible for the synthesis of dopamine and serotonin. Using whole exome sequencing, we have identified a novel homozygous c.989C > T (p.Pro330Leu) variant of AADC causing AADC deficiency. Pro330 is part of an essential structural and functional element: the flexible catalytic loop suggested to cover the active site as a lid and properly position the catalytic residues. Our investigations provide evidence that Pro330 concurs in the achievement of an optimal catalytic competence. Through a combination of bioinformatic approaches, dynamic light scattering measurements, limited proteolysis experiments, spectroscopic and in solution analyses, we demonstrate that the substitution of Pro330 with Leu, although not determining gross conformational changes, results in an enzymatic species that is highly affected in catalysis with a decarboxylase catalytic efficiency decreased by 674- and 194-fold for the two aromatic substrates. This defect does not lead to active site structural disassembling, nor to the inability to bind the pyridoxal 5'-phosphate (PLP) cofactor. The molecular basis for the pathogenic effect of this variant is rather due to a mispositioning of the catalytically competent external aldimine intermediate, as corroborated by spectroscopic analyses and pH dependence of the kinetic parameters. Altogether, we determined the structural basis for the severity of the manifestation of AADC deficiency in this patient and discussed the rationale for a precision therapy.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Catalysis , Dopamine/metabolism , Humans
11.
Curr Med Res Opin ; 38(7): 1115-1123, 2022 07.
Article in English | MEDLINE | ID: mdl-35575170

ABSTRACT

BACKGROUND: Aromatic L-amino acid decarboxylase deficiency (AADCd) is an ultra-rare genetic neurometabolic disorder caused by mutations in the DDC gene. OBJECTIVE: This retrospective, noninterventional study was designed to describe the burden of AADCd including the associated healthcare resource utilization in Southern Europe. METHODS: Eleven clinicians completed a patient case study survey for patients with AADCd currently or previously under their care, followed by an interview with each clinician to assess healthcare resource utilization, patient characteristics, and symptoms. RESULTS: Clinicians provided data for 20 patients with AADCd, of whom 60% were male. All patients experienced movement disorders, 90% exhibited developmental delay, 85% reported sleeping problems, and 80% experienced gastrointestinal problems. The symptoms varied with disease severity. Patients with AADCd received care from more than 16 different specialists including both medical and paramedical healthcare professionals. Hospitalizations and visits to accident and emergency departments were also frequent. CONCLUSION: In terms of symptoms and healthcare resource utilization, the burden of illness of AADCd is substantial. This study provides insights into several aspects of the disease that are difficult to ascertain from published case reports.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases , Physicians , Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Cost of Illness , Female , Humans , Male , Retrospective Studies
12.
Orphanet J Rare Dis ; 17(1): 128, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35313922

ABSTRACT

BACKGROUND: Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare neurological disorder associated with a range of symptoms and functional impairments. The aim of this study was to describe the experience of AADC deficiency across five different motor milestone health states. METHODS: Qualitative interviews were conducted with caregivers of individuals with AADC deficiency in Italy, Spain, Portugal and the United States. An interview guide was developed with input from clinical experts and caregivers, and explored the symptoms and impacts of AADC deficiency. Interviews were conducted by telephone and were recorded and transcribed. Data were analysed using thematic analysis and the symptoms and impacts were compared across health states. RESULTS: Fourteen caregivers took part, who provided care to 13 individuals with AADC deficiency aged 1-15 years. Six individuals were in the 'no motor function' health state, one in the 'sitting unsupported' health state, one in the 'standing/stepping when fully supported' health state and five in the 'walking with minimal support' health state. The results highlight a substantial impact of AADC deficiency, even among those who were able to walk with minimal support. Overall, those with better motor function also had better functional hand use, communication skills, ability to eat and perform other activities independently, and interact with their peers. The burden of caring was high across all health states, but caregivers of individuals in the walking health state were better able to participate in social and leisure activities. CONCLUSION: Individuals with higher levels of motor function had less severe symptoms and were better able to perform their daily, leisure and social activities. Treatments which improve motor function have the potential to improve other aspects of the lives of individuals with AADC deficiency and their caregivers.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Carboxy-Lyases , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acids , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Humans , Italy
13.
Mol Ther ; 30(2): 509-518, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34763085

ABSTRACT

Aromatic L-amino acid decarboxylase deficiency results in decreased neurotransmitter levels and severe motor dysfunction. Twenty-six patients without head control received bilateral intraputaminal infusions of a recombinant adeno-associated virus type 2 vector containing the human aromatic L-amino acid decarboxylase gene (eladocagene exuparvovec) and have completed 1-year evaluations. Rapid improvements in motor and cognitive function occurred within 12 months after gene therapy and were sustained during follow-up for >5 years. An increase in dopamine production was demonstrated by positron emission tomography and neurotransmitter analysis. Patient symptoms (mood, sweating, temperature, and oculogyric crises), patient growth, and patient caretaker quality of life improved. Although improvements were observed in all treated participants, younger age was associated with greater improvement. There were no treatment-associated brain injuries, and most adverse events were related to underlying disease. Post-surgery complications such as cerebrospinal fluid leakage were managed with standard of care. Most patients experienced mild to moderate dyskinesia that resolved in a few months. These observations suggest that eladocagene exuparvovec treatment for aromatic L-amino acid decarboxylase deficiency provides durable and meaningful benefits with a favorable safety profile.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Quality of Life , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Aromatic-L-Amino-Acid Decarboxylases/cerebrospinal fluid , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Dopamine , Genetic Therapy/adverse effects , Humans
14.
Article in English | MEDLINE | ID: mdl-34715572

ABSTRACT

5-hydroxytryptophan (5HTP) and 3-O-methyldopa (3OMD) are CSF diagnostic biomarkers of the defect of aromatic L-amino acid decarboxylase (AADC), a rare inherited disorder of neurotransmitter synthesis which, if untreated, results in severely disabling neurological impairment. In the last few years, different methods to detect 3OMD in dried blood spot (DBS) were published. We developed and validated a fast and specific diagnostic tool to detect 5HTP alongside 3OMD. After extraction from DBS, 3OMD and 5HTP were separated by ultra-performance liquid chromatography (UPLC) and detected by tandem mass spectrometry (MS/MS). Instrument parameters were optimized to obtain the best sensitivity and specificity. Chromatographic separation was accomplished in 13 min. The limit of detection was 2.4 and 1.4 nmol/L of blood for 3OMD and 5HTP respectively, and response was linear over the blood range of 25-5000 nmol/L. Between-run imprecision was less than 9% for 3OMD and <13% for 5HTP. An age-specific continuous reference range was established, revealing a marked and continuous 3OMD decline with aging. The effect of age on 5HTP was less evident, showing only a slight decrease with age after the first week of life. A marked increase of both 3OMD and 5HTP was found in four patients affected by AADC deficiency (1780.6 ± 773.1 nmol/L, rv 71.0-144.9; and 94.8 ± 19.0 nmol/L, rv 15.2-42.8, respectively) while an isolated increase of 3OMD (6159.6 ± 3449.1 nmol/L, rv 73.2-192.2) was detected in three subjects affected by inherited disorders of dopamine synthesis under levodopa/carbidopa treatment (a marginal increase of 5HTP was detected in one of them). Simultaneous measurement of 5HTP and 3OMD in DBS leads to an improvement in specificity and sensitivity for the biochemical diagnosis of AADC deficiency.


Subject(s)
5-Hydroxytryptophan/blood , Amino Acid Metabolism, Inborn Errors/diagnosis , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Chromatography, High Pressure Liquid/methods , Dried Blood Spot Testing/methods , Tandem Mass Spectrometry/methods , Tyrosine/analogs & derivatives , Adolescent , Adult , Amino Acid Metabolism, Inborn Errors/blood , Amino Acid Metabolism, Inborn Errors/enzymology , Aromatic-L-Amino-Acid Decarboxylases/blood , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Tyrosine/blood , Young Adult
15.
Brain Dev ; 43(10): 1023-1028, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34481663

ABSTRACT

BACKGROUND: Aromatic L-amino acid decarboxylase (AADC) deficiency, caused by a pathogenic variant in the dopa decarboxylase (DDC) gene, is a rare neurometabolic disorder in which catecholamine and serotonin are not synthesized. From a large number of reports, it has been recognized that most affected patients show severe developmental delay in a bedridden state and are unable to speak. On the other hand, patients with a mild phenotype with AADC deficiency have been reported, but they number only a few cases. Therefore, the variation of phenotypes of the disease appears to be broad, and it may be challenging to diagnose an atypical phenotype as AADC deficiency. CASE REPORT: We report novel compound heterozygous variants in DDC (c.202G > A and c.254C > T) in two sisters, whose main complaint was mild developmental delay, by whole-exome sequencing (WES). Additionally, we describe their clinical features and provide an image that shows the variants located at different sites responsible for the catalysis of AADC in a three-dimensional structure. The patients were prescribed a Monoamine oxidase (MAO) inhibitor after diagnosis. INTERPRETATION: Our cases indicate that a comprehensive genomic approach helps to diagnose AADC deficiency with atypical features, and underscore the significance of understanding the variations of this disorder for diagnosis and appropriate treatment.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Developmental Disabilities , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/physiopathology , Aromatic-L-Amino-Acid Decarboxylases/genetics , Child , Developmental Disabilities/etiology , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Female , Humans , Phenotype , Siblings , Exome Sequencing
16.
Mol Genet Metab ; 134(1-2): 147-155, 2021.
Article in English | MEDLINE | ID: mdl-34479793

ABSTRACT

Compound heterozygosis is the most diffuse and hardly to tackle condition in aromatic amino acid decarboxylase (AADC) deficiency, a genetic disease leading to severe neurological impairment. Here, by using an appropriate vector, we succeeded in obtaining high yields of AADC protein and characterizing two new heterodimers, T69M/S147R and C281W/M362T, detected in two AADC deficiency patients. We performed an extensive biochemical characterization of the heterodimeric recombinant proteins and of the related homodimers, by a combination of dichroic and fluorescence spectroscopy and activity assays together with bioinformatic analyses. We found that T69M/S147R exhibits negative complementation in terms of activity but it is more stable than the average of the homodimeric counterparts. The heterodimer C281W/M362T retains a nearly good catalytic efficiency, whereas M362T homodimer is less affected and C281W homodimer is recovered as insoluble. These results, which are consistent with the related phenotypes, and the data emerging from previous studies, suggest that the severity of AADC deficiency is not directly explained by positive or negative complementation phenomena, but rather depends on: i) the integrity of one or both active sites; ii) the structural and functional properties of the entire pool of AADC proteins expressed. Overall, this integrated and cross-sectional approach enables proper characterization and depicts the functional result of subunit interactions in the dimeric structure and will help to elucidate the physio-pathological mechanisms in AADC deficiency.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Heterozygote , Phenotype , Adolescent , Adult , Aromatic-L-Amino-Acid Decarboxylases/genetics , Computational Biology , Female , Humans , Male , Mutation , Recombinant Proteins , Young Adult
17.
Curr Med Res Opin ; 37(10): 1821-1828, 2021 10.
Article in English | MEDLINE | ID: mdl-34259573

ABSTRACT

BACKGROUND: Aromatic l-amino acid decarboxylase (AADC) deficiency is a rare neurological condition, associated with a wide range of symptoms and functional issues, such as profound motor impairment and learning disability. Most individuals with AADC deficiency are completely dependent on their caregivers. This study explored the impact of caring for an individual with AADC deficiency. METHODS: Qualitative interviews were conducted with caregivers of individuals with AADC deficiency in Italy, Portugal, Spain and the United States. An interview guide was developed with input from clinical experts and caregivers and included questions on the impact of caring for an individual with AADC deficiency. Interviews were conducted by telephone/videoconference and were recorded and transcribed. Data were analysed using thematic analysis. RESULTS: Fourteen caregivers took part who provided care to 13 individuals with AADC deficiency aged 1-15 years. Caregivers reported that their lives centred around the individual with AADC deficiency, due to their need for 24-hour care and regular healthcare appointments. They reported both proximal impacts (impact on time, planning, physical health and emotional wellbeing), and distal impacts (impact on social/leisure activities, relationships, work and finances). These concepts and relationships were illustrated in a conceptual model. CONCLUSIONS: This is the first qualitative study to report on the experience of caring for an individual with AADC deficiency. Caregivers reported that caring had a substantial multifaceted impact on their lives. These findings highlight the importance of considering the caregiver experience when evaluating the burden of AADC deficiency.


Subject(s)
Amino Acid Metabolism, Inborn Errors/therapy , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Caregiver Burden , Humans , Italy , Portugal , Spain , United States
18.
Nat Commun ; 12(1): 4251, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253733

ABSTRACT

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder characterized by deficient synthesis of dopamine and serotonin. It presents in early infancy, and causes severe developmental disability and lifelong motor, behavioral, and autonomic symptoms including oculogyric crises (OGC), sleep disorder, and mood disturbance. We investigated the safety and efficacy of delivery of a viral vector expressing AADC (AAV2-hAADC) to the midbrain in children with AADC deficiency (ClinicalTrials.gov Identifier NCT02852213). Seven (7) children, aged 4-9 years underwent convection-enhanced delivery (CED) of AAV2-hAADC to the bilateral substantia nigra (SN) and ventral tegmental area (VTA) (total infusion volume: 80 µL per hemisphere) in 2 dose cohorts: 1.3 × 1011 vg (n = 3), and 4.2 × 1011 vg (n = 4). Primary aims were to demonstrate the safety of the procedure and document biomarker evidence of restoration of brain AADC activity. Secondary aims were to assess clinical improvement in symptoms and motor function. Direct bilateral infusion of AAV2-hAADC was safe, well-tolerated and achieved target coverage of 98% and 70% of the SN and VTA, respectively. Dopamine metabolism was increased in all subjects and FDOPA uptake was enhanced within the midbrain and the striatum. OGC resolved completely in 6 of 7 subjects by Month 3 post-surgery. Twelve (12) months after surgery, 6/7 subjects gained normal head control and 4/7 could sit independently. At 18 months, 2 subjects could walk with 2-hand support. Both the primary and secondary endpoints of the study were met. Midbrain gene delivery in children with AADC deficiency is feasible and safe, and leads to clinical improvements in symptoms and motor function.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Dependovirus/genetics , Dopaminergic Neurons/metabolism , Gene Transfer Techniques , Genetic Therapy , Magnetic Resonance Imaging , Mesencephalon/pathology , Amino Acid Metabolism, Inborn Errors/cerebrospinal fluid , Amino Acid Metabolism, Inborn Errors/physiopathology , Aromatic-L-Amino-Acid Decarboxylases/cerebrospinal fluid , Aromatic-L-Amino-Acid Decarboxylases/genetics , Child , Child, Preschool , Dyskinesias/physiopathology , Female , Genetic Therapy/adverse effects , Humans , Male , Metabolome , Motor Activity , Neurotransmitter Agents/cerebrospinal fluid , Neurotransmitter Agents/metabolism , Time Factors
19.
Clin Chim Acta ; 521: 40-44, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34161777

ABSTRACT

BACKGROUND: Aromatic L-amino acid decarboxylase deficiency is a rare neurometabolic disease due to impaired decarboxylation of neurotransmitter precursors to its active form. CASE: We retrospectively reviewed 8 cases from 2008 to 2019 with cerebrospinal fluid neurotransmitter analysis performed at our centre. All cases had an elevated urine vanillactic acid and, in most cases, with N-acetylvanilalanine detected. Cerebrospinal fluid analysis showed low downstream metabolites vanillylmandelic acid, homovanillic acid but high 3-O-methyl-L-DOPA, 5-hydroxytryptophan. Cerebrospinal fluid pterins were normal. Genotyping in DDC confirms the diagnosis. Urine organic acid analysis provided the first clue to diagnosis in four of the cases, which then triggered cerebrospinal fluid neurotransmitter and genetic analysis. We also developed a diagnostic decision support system to assist the interpretation of the mass spectrometry data from urine organic acids. CONCLUSIONS: Urine organic acid could be essential in guiding subsequent investigations for the diagnosis of aromatic L-amino acid decarboxylase deficiency. We propose to screen suspected cases first with urine organic acids, specifically looking for vanillactic acid and N-acetylvanilalanine. Suggestive findings should be followed with target analysis for c.714 + 4A > T in ethnically Chinese patients. The assistive tool allowed expedite interpretation of profile data generated from urine organic acids analysis. It may also reduce interpreter's bias when peaks of interest are minor peaks in the spectrum.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/genetics , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Humans , Prevalence , Retrospective Studies
20.
Int J Mol Sci ; 22(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808712

ABSTRACT

Aromatic amino acid decarboxylase (AADC) deficiency is a rare, autosomal recessive neurometabolic disorder caused by mutations in the DDC gene, leading to a deficit of AADC, a pyridoxal 5'-phosphate requiring enzyme that catalyzes the decarboxylation of L-Dopa and L-5-hydroxytryptophan in dopamine and serotonin, respectively. Although clinical and genetic studies have given the major contribution to the diagnosis and therapy of AADC deficiency, biochemical investigations have also helped the comprehension of this disorder at a molecular level. Here, we reported the steps leading to the elucidation of the functional and structural features of the enzyme that were useful to identify the different molecular defects caused by the mutations, either in homozygosis or in heterozygosis, associated with AADC deficiency. By revisiting the biochemical data available on the characterization of the pathogenic variants in the purified recombinant form, and interpreting them on the basis of the structure-function relationship of AADC, it was possible: (i) to define the enzymatic phenotype of patients harboring pathogenic mutations and at the same time to propose specific therapeutic managements, and (ii) to identify residues and/or regions of the enzyme relevant for catalysis and/or folding of AADC.


Subject(s)
Amino Acid Metabolism, Inborn Errors/etiology , Amino Acid Metabolism, Inborn Errors/metabolism , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Disease Susceptibility , Aromatic-L-Amino-Acid Decarboxylases/chemistry , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Biomarkers , Catalysis , Dopamine/metabolism , Homozygote , Humans , Models, Molecular , Mutation , Protein Conformation , Protein Interaction Domains and Motifs , Serotonin/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...