Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.447
Filter
1.
J Am Heart Assoc ; 13(12): e032357, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842296

ABSTRACT

BACKGROUND: We recently demonstrated that acute administration of ibrutinib, a Bruton's tyrosine kinase inhibitor used in chemotherapy for blood malignancies, increases ventricular arrhythmia (VA) vulnerability. A pathway of ibrutinib-induced vulnerability to VA that can be modulated for cardioprotection remains unclear. METHODS AND RESULTS: The effects of ibrutinib on cardiac electrical activity and Ca2+ dynamics were investigated in Langendorff-perfused hearts using optical mapping. We also conducted Western blotting analysis to evaluate the impact of ibrutinib on various regulatory and Ca2+-handling proteins in rat cardiac tissues. Treatment with ibrutinib (10 mg/kg per day) for 4 weeks was associated with an increased VA inducibility (72.2%±6.3% versus 38.9±7.0% in controls, P<0.002) and shorter action potential durations during pacing at various frequencies (P<0.05). Ibrutinib also decreased heart rate thresholds for beat-to-beat duration alternans of the cardiac action potential (P<0.05). Significant changes in myocardial Ca2+ transients included lower amplitude alternans ratios (P<0.05), longer times-to-peak (P<0.05), and greater spontaneous intracellular Ca2+ elevations (P<0.01). We also found lower abundance and phosphorylation of myocardial AMPK (5'-adenosine monophosphate-activated protein kinase), indicating reduced AMPK activity in hearts after ibrutinib treatment. An acute treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside ameliorated abnormalities in action potential and Ca2+ dynamics, and significantly reduced VA inducibility (37.1%±13.4% versus 72.2%±6.3% in the absence of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside, P<0.05) in hearts from ibrutinib-treated rats. CONCLUSIONS: VA vulnerability inflicted by ibrutinib may be mediated in part by an impairment of myocardial AMPK activity. Pharmacological activation of AMPK may be a protective strategy against ibrutinib-induced cardiotoxicity.


Subject(s)
AMP-Activated Protein Kinases , Action Potentials , Adenine , Arrhythmias, Cardiac , Piperidines , Pyrazoles , Pyrimidines , Animals , Adenine/analogs & derivatives , Adenine/pharmacology , Piperidines/pharmacology , Action Potentials/drug effects , Pyrimidines/pharmacology , AMP-Activated Protein Kinases/metabolism , Pyrazoles/pharmacology , Male , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Protein Kinase Inhibitors/pharmacology , Heart Rate/drug effects , Isolated Heart Preparation , Calcium/metabolism , Rats , Disease Models, Animal , Rats, Sprague-Dawley , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Calcium Signaling/drug effects , Time Factors
2.
Cardiovasc Toxicol ; 24(7): 656-666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851664

ABSTRACT

Antiviral therapies for treatment of COVID-19 may be associated with significant proarrhythmic potential. In the present study, the potential cardiotoxic side effects of these therapies were evaluated using a Langendorff model of the isolated rabbit heart. 51 hearts of female rabbits were retrogradely perfused, employing a Langendorff-setup. Eight catheters were placed endo- and epicardially to perform an electrophysiology study, thus obtaining cycle length-dependent action potential duration at 90% of repolarization (APD90), QT intervals and dispersion of repolarization. After generating baseline data, the hearts were assigned to four groups: In group 1 (HXC), hearts were treated with 1 µM hydroxychloroquine. Thereafter, 3 µM hydroxychloroquine were infused additionally. Group 2 (HXC + AZI) was perfused with 3 µM hydroxychloroquine followed by 150 µM azithromycin. In group 3 (LOP) the hearts were perfused with 3 µM lopinavir followed by 5 µM and 10 µM lopinavir. Group 4 (REM) was perfused with 1 µM remdesivir followed by 5 µM and 10 µM remdesivir. Hydroxychloroquine- and azithromycin-based therapies have a significant proarrhythmic potential mediated by action potential prolongation and an increase in dispersion. Lopinavir and remdesivir showed overall significantly less pronounced changes in electrophysiology. In accordance with the reported bradycardic events under remdesivir, it significantly reduced the rate of the ventricular escape rhythm.


Subject(s)
Action Potentials , Antiviral Agents , Isolated Heart Preparation , Animals , Rabbits , Female , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Action Potentials/drug effects , COVID-19 Drug Treatment , Hydroxychloroquine/toxicity , Hydroxychloroquine/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Cardiotoxicity , Alanine/analogs & derivatives , Alanine/pharmacology , Heart Rate/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/toxicity , Adenosine Monophosphate/pharmacology , Heart/drug effects
3.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892396

ABSTRACT

Cardiac arrhythmias remain a significant concern with Ibrutinib (IBR), a first-generation Bruton's tyrosine kinase inhibitor (BTKi). Acalabrutinib (ABR), a next-generation BTKi, is associated with reduced atrial arrhythmia events. However, the role of ABR in ventricular arrhythmia (VA) has not been adequately evaluated. Our study aimed to investigate VA vulnerability and ventricular electrophysiology following chronic ABR therapy in male Sprague-Dawley rats utilizing epicardial optical mapping for ventricular voltage and Ca2+ dynamics and VA induction by electrical stimulation in ex-vivo perfused hearts. Ventricular tissues were snap-frozen for protein analysis for sarcoplasmic Ca2+ and metabolic regulatory proteins. The results show that both ABR and IBR treatments increased VA vulnerability, with ABR showing higher VA regularity index (RI). IBR, but not ABR, is associated with the abbreviation of action potential duration (APD) and APD alternans. Both IBR and ABR increased diastolic Ca2+ leak and Ca2+ alternans, reduced conduction velocity (CV), and increased CV dispersion. Decreased SERCA2a expression and AMPK phosphorylation were observed with both treatments. Our results suggest that ABR treatment also increases the risk of VA by inducing proarrhythmic changes in Ca2+ signaling and membrane electrophysiology, as seen with IBR. However, the different impacts of these two BTKi on ventricular electrophysiology may contribute to differences in VA vulnerability and distinct VA characteristics.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Arrhythmias, Cardiac , Benzamides , Piperidines , Rats, Sprague-Dawley , Animals , Benzamides/pharmacology , Benzamides/therapeutic use , Male , Rats , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced , Piperidines/pharmacology , Piperidines/therapeutic use , Action Potentials/drug effects , Ventricular Remodeling/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Calcium/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/adverse effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Pyrimidines/pharmacology , Calcium Signaling/drug effects , Pyrazoles/pharmacology
4.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(6): 690-697, 2024 Jun 24.
Article in Chinese | MEDLINE | ID: mdl-38880749

ABSTRACT

Objective: To evaluate the incidence of arrhythmias and electrocardiographic (ECG) characteristics in cancer patients treated with immune checkpoint inhibitors (ICIs). Methods: This was a cohort study conducted in the Fourth Hospital of Hebei Medical University. Cancer patients initiating ICIs treatments from November 2020 to September 2022 were included in this study. Baseline 12-leads ECG before ICIs initiation and post-treatment ECG were analyzed. An abnormal ECG was defined as the presence of any of the following changes: sinus arrhythmias, atrial fibrillation, atrial flutter, paroxysmal supraventricular tachycardia, ventricular tachycardia, premature contractions, conduction disorder, and ST-T changes. Results: A total of 87 patients were enrolled, aged 63 (57, 68) years, with 66 (75.9%) males. And 44.8% (39/87) of patients presented with at least one confirmed cardiovascular disease or cardiovascular risk factor at baseline. The incidence of abnormal ECG increased from 31.0% (27/87) at baseline to 65.5% (57/87) after receiving (5.0±2.7) cycles of ICIs treatment (P<0.001). The incidence of sinus arrhythmias was significantly increased after ICIs treatment (23.0% (20/87) vs. 9.2% (8/87), P=0.023), of which only the incidence of sinus tachycardia was significantly increased (11.5% (10/87) vs. 2.3% (2/87), P=0.039). There was also a significantly increased incidence of ST-T changes after ICIs treatment (31.0% (27/87) vs. 17.2% (15/87), P=0.012), which mainly attributed to the T wave changes (29.9% (26/87) vs. 13.8% (12/87), P=0.001). The incidence of premature contractions was also significantly increased after ICIs treatment (9.2% (8/87) vs. 0, P=0.008). Additionally, compared with baseline, the P wave axis was significantly increased after ICIs treatment ((56.94±21.01)° vs. (52.00±22.69)°, P=0.043). After ICIs treatment, the heart rate was significantly increased ((79.07±15.37) beats/min vs. (75.64±13.37) beats/min, P=0.029). Sokolow-Lyon index ((2.21±0.81)mV vs. (2.33±0.75)mV, P=0.138), QTc interval ((431.44±36.04)ms vs. (428.00±30.05)ms, P=0.415) all showed signs of change after treatment, but did not reach the traditional significant level. Conclusions: The incidence of abnormal ECG is significantly increased after ICIs treatment, especially for sinus tachycardia, premature contractions and T wave changes; the P wave axis and heart rate is also significantly increased after treatment. It is important to perform regular ECG monitoring in patients receiving ICIs treatment.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Immune Checkpoint Inhibitors , Neoplasms , Humans , Male , Middle Aged , Female , Neoplasms/drug therapy , Aged , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/epidemiology , Immune Checkpoint Inhibitors/adverse effects , Cohort Studies , Incidence , Risk Factors
5.
Toxicology ; 505: 153830, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754619

ABSTRACT

The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of "cellrhythmia" (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 µM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase-substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Fingding indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally,three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs. Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.


Subject(s)
Action Potentials , Arrhythmias, Cardiac , Myocytes, Cardiac , Piperidines , Proteomics , Pyrimidines , Quinazolines , Humans , Arrhythmias, Cardiac/chemically induced , Animals , Proteomics/methods , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Piperidines/pharmacology , Piperidines/toxicity , Pyrimidines/toxicity , Pyrimidines/pharmacology , Quinazolines/toxicity , Quinazolines/pharmacology , Action Potentials/drug effects , Protein Kinase Inhibitors/toxicity , Protein Kinase Inhibitors/pharmacology , Phosphorylation , ERG1 Potassium Channel/metabolism , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/genetics , Guinea Pigs , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Male , KCNQ1 Potassium Channel/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/drug effects , Phosphoproteins/metabolism , Dose-Response Relationship, Drug
6.
Front Biosci (Landmark Ed) ; 29(5): 201, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38812314

ABSTRACT

BACKGROUND: Ibrutinib could increase the risk of atrial fibrillation (AF) in chronic lymphocytic leukemia (CLL) patients. However, the precise mechanism underlying ibrutinib-induced AF remains incompletely elucidated. METHODS: We investigated the proportion of ibrutinib-treated CLL patients with new-onset AF. Optical mapping was conducted to reveal the proarrhythmic effect of ibrutinib on HL-1 cells. Fluorescence staining and western blot were used to compare connexins 43 and 40 expression in ibrutinib-treated and control groups. To identify autophagy phenotypes, we used western blot to detect autophagy-related proteins, transmission electron microscopy to picture autophagosomes, and transfected mCherry-GFP-LC3 virus to label autophagosomes and lysosomes. Hydroxychloroquine as an autophagy inhibitor was administered to rescue ibrutinib-induced Cx43 and Cx40 degradation. RESULTS: About 2.67% of patients developed atrial arrhythmias after ibrutinib administration. HL-1 cells treated with ibrutinib exhibited diminished conduction velocity and a higher incidence of reentry-like arrhythmias compared to controls. Cx43 and Cx40 expression reduced along with autophagy markers increased in HL-1 cells treated with ibrutinib. Inhibiting autophagy upregulated Cx43 and Cx40. CONCLUSIONS: The off-target effect of ibrutinib on the PI3K-AKT-mTOR signaling pathway caused connexin degradation and atrial arrhythmia via promoting autophagy. CLINICAL TRIAL REGISTRATION: ChiCTR2100046062, https://clin.larvol.com/trial-detail/ChiCTR2100046062.


Subject(s)
Adenine , Atrial Fibrillation , Autophagy , Connexin 43 , Connexins , Phosphatidylinositol 3-Kinases , Piperidines , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/adverse effects , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Piperidines/pharmacology , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Connexin 43/metabolism , Connexin 43/genetics , Female , Atrial Fibrillation/metabolism , Atrial Fibrillation/chemically induced , Connexins/metabolism , Connexins/genetics , Male , Aged , Middle Aged , Gap Junction alpha-5 Protein , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced
7.
PLoS One ; 19(5): e0301766, 2024.
Article in English | MEDLINE | ID: mdl-38758819

ABSTRACT

Particulate matter (PM) has various health effects, including cardiovascular diseases. Exposure to PM and a diagnosis of diabetes mellitus (DM) have been associated with an increased risk of cardiac arrhythmias. However, no comprehensive synthesis has been conducted to examine the modifying effect of DM on the association between PM and arrhythmia events. Thus, the objectives of this review were to investigate whether the association of PM is linked to cardiac arrhythmias and whether DM status modifies its effect in the general population. The search was conducted on PubMed/MEDLINE and Embase until January 18, 2023. We included cohort and case-crossover studies reporting the effect of PM exposure on cardiac arrhythmias and examining the role of diabetes as an effect modifier. We used the DerSimonian and Laird random-effects model to calculate the pooled estimates. A total of 217 studies were found and subsequently screened. Nine studies met the inclusion criteria, and five of them were included in the meta-analysis. The participants numbered 4,431,452, with 2,556 having DM. Exposure to PM of any size showed a significant effect on arrhythmias in the overall population (OR 1.10, 95% CI 1.04-1.16). However, the effect modification of DM was not significant (OR 1.18 (95% CI 1.01-1.38) for DM; OR 1.08 (95% CI 1.02-1.14) for non-DM; p-value of subgroup difference = 0.304). Exposure to higher PM concentrations significantly increases cardiac arrhythmias requiring hospital or emergency visits. Although the impact on diabetic individuals is not significant, diabetic patients should still be considered at risk. Further studies with larger sample sizes and low bias are needed.


Subject(s)
Arrhythmias, Cardiac , Diabetes Mellitus , Particulate Matter , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/chemically induced , Diabetes Mellitus/epidemiology , Environmental Exposure/adverse effects , Risk Factors
8.
Clin Pharmacol Ther ; 116(1): 42-51, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698592

ABSTRACT

Cardiac safety regulatory guidance for drug development has undergone several monumental shifts over the past decade as technological advancements, analysis models and study best practices have transformed this landscape. Once, clinical proarrhythmic risk assessment of a new chemical entity (NCE) was nearly exclusively evaluated in a dedicated thorough QT (TQT) study. However, since the introduction of the International Council for Harmonisation (ICH) E14/S7B Q&A 5.1 and 6.1 TQT substitutions, drug developers are offered an alternative pathway to evaluate proarrhythmic risk during an ascending dose study in healthy volunteers or during a powered patient study, respectively. In addition, the findings as well as the manner in which nonclinical studies are conducted (i.e., utilizing best practices) can dictate the need for a positive control in the clinical study and/or affect the labeling outcome. Drug sponsors are now faced with the option of pursuing a dedicated TQT study or requesting a TQT substitution. Potential factors influencing the choice of pathway include the NCE mechanism of action, pharmacokinetic properties, and safety profile, as well as business considerations. This tutorial will highlight the regulatory framework for integrated arrhythmia risk prediction models to outline drug safety, delineate potential reasons why a TQT substitution request may be rejected and discuss when a standalone TQT is recommended.


Subject(s)
Arrhythmias, Cardiac , Long QT Syndrome , Humans , Risk Assessment/methods , Long QT Syndrome/chemically induced , Arrhythmias, Cardiac/chemically induced , Drug Development/legislation & jurisprudence , Drug Development/methods , Electrocardiography/drug effects , Clinical Trials as Topic/legislation & jurisprudence , Clinical Trials as Topic/methods , Drug-Related Side Effects and Adverse Reactions
9.
Turk J Haematol ; 41(2): 91-96, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38721568

ABSTRACT

Objective: Bruton tyrosine kinase inhibition in cardiac tissue causes inhibition of the PI3K-AKT signaling pathway, which is responsible for protecting cardiac tissue during stress. Therefore, there is an increase in the risk of arrhythmia. This study explores the prediction of that risk with the Age-Creatinine-Ejection Fraction (ACEF) score as a simple scoring system based on the components of age, creatinine, and ejection fraction. Materials and Methods: Patients diagnosed with chronic lymphocytic leukemia (CLL) and receiving ibrutinib treatment for at least 1 year were evaluated with echocardiography and Holter electrocardiography and the results were compared with a control group of CLL patients who had not received treatment. ACEF score was calculated with the formula age/left ventricular ejection fraction+1 (if creatinine >2.0 mg/dL). Results: When the arrhythmia development of the patients was evaluated, no statistically significant difference was found between the control and ibrutinib groups in terms of types of arrhythmias other than paroxysmal atrial fibrillation (PAF). PAF was found to occur at rates of 8% versus 22% (p=0.042) among ibrutinib non-users versus users. For patients using ibrutinib, an ACEF score of >1.21 predicted the development of PAF with 77% sensitivity and 75% specificity (area under the curve: 0.830, 95% confidence interval: 0.698-0.962, p<0.001). Conclusion: The ACEF score can be used as a risk score that predicts the development of PAF in patients diagnosed with CLL who are scheduled to start ibrutinib.


Subject(s)
Adenine , Arrhythmias, Cardiac , Leukemia, Lymphocytic, Chronic, B-Cell , Piperidines , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Adenine/analogs & derivatives , Adenine/adverse effects , Piperidines/therapeutic use , Piperidines/adverse effects , Male , Female , Aged , Middle Aged , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/diagnosis , Creatinine/blood , Pyrimidines/adverse effects , Pyrimidines/therapeutic use , Aged, 80 and over , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use
10.
PLoS One ; 19(5): e0303208, 2024.
Article in English | MEDLINE | ID: mdl-38781221

ABSTRACT

INTRODUCTION: As of 2020, breast cancer has emerged as the predominant cause of cancer incidence globally. Anthracycline-based chemotherapy serves as a crucial element in the treatment regimen for breast cancer. However, these anthracycline-based drugs are associated with cardiac toxicity. This study represents the first clinical quantitative analysis aimed at accurately determining the incidences of arrhythmia and abnormal electrocardiogram (ECG) changes, thereby providing valuable data to bolster clinical drug usage and monitoring. METHODS: A systematic search was conducted across multiple databases including CNKI, VIP, Wanfang, PubMed, Embase, Web of Science, and the Cochrane Library. The incidence of combined arrhythmias in breast cancer patients and the associated heterogeneity were calculated using either a random effect model or a fixed effect model. Statistical analysis was performed using STATA16. RESULTS: The study encompassed a total of 37 articles, which included 5705 breast cancer patients undergoing anthracycline treatment. Among these patients, 2257 developed arrhythmias. The meta-analysis revealed that the incidence of anthracycline-associated arrhythmias and abnormal ECG changes in breast cancer patients was 0.41 (0.37, 0.44). Subgroup analysis indicated that the incidence of ST-T segment change was 0.19 (0.15, 0.23), the incidence of conduction block was 0.04 (0.02, 0.05), the incidence of premature beats was 0.09 (0.07, 0.11), and the incidence of atrial fibrillation was 0.04 (0.00, 0.12). Additional results are presented in Table 3. CONCLUSION: This pioneering study accurately assesses the incidence of arrhythmias in breast cancer patients treated with anthracyclines. The findings provide clinicians with valuable insights into understanding and managing the cardiac toxicity associated with such treatment. Moreover, this study lays the foundation for future research exploring the mechanisms underlying these arrhythmias and potential preventative strategies.


Subject(s)
Anthracyclines , Arrhythmias, Cardiac , Breast Neoplasms , Humans , Breast Neoplasms/drug therapy , Anthracyclines/adverse effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/epidemiology , Female , Electrocardiography , Incidence
11.
J Electrocardiol ; 84: 95-99, 2024.
Article in English | MEDLINE | ID: mdl-38579637

ABSTRACT

BACKGROUND: The control of the cardiovascular system depends on the autonomic nerve system. Chronic anabolic andorogenic steroids (AAS) use causes sympathovagal imbalance and increases sympathetic nerve activity. OBJECTIVE: The reduction in heart rate from the peak exercise rate following the end of the exercise stress test is known as the heart rate recovery index (HRRI). Several methods have been utilized to assess myocardial repolarization, such as QT interval (QT), corrected QT interval (QTc), and T-wave peak-to-end interval (Tp-e interval). Based on a growing number of data a higher Tp-e/QT ratio is linked to malignant ventricular arrhythmias, and an increased Tp-e interval may correlate with the transmural dispersion of repolarization. Our hypothesis is that the use of chronic AAS was decrease HRRI during maximal exercise and increased risk of cardiac arrhythmias and sudden cardiac death. METHODS: This study included 44 male bodybuilders, with an average age of 29.7 ± 8.14 years, divided into AAS abuse [AAS users (n = 21) and AAS nonuser (n = 23)]. RESULTS: The first (p = 0.001) and second minute (p = 0.001) HRRI of the subjects with AAS users were significantly lower than those of the control group. Additionally, HRRI after the third (p = 0.004) and fifth minutes (p = 0.007) of the recovery period were significantly lower in AAS group compared with the control group. Who used AAS had significantly higher QT, QTc, Tp-e, Tp-e/QT, and Tp-e/QTc values than non-users (all p = 0.001). CONCLUSIONS: Chronic AAS use has been shown to cause sympathetic dominance, which may be a pro arrhythmic state.


Subject(s)
Electrocardiography , Heart Rate , Humans , Male , Heart Rate/drug effects , Adult , Weight Lifting , Anabolic Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Exercise Test , Androgens/adverse effects , Androgens/pharmacology , Anabolic Androgenic Steroids
12.
Arch Cardiovasc Dis ; 117(6-7): 450-456, 2024.
Article in English | MEDLINE | ID: mdl-38677940

ABSTRACT

In France, mexiletine - a class I antiarrhythmic drug - can be prescribed for the symptomatic treatment of myotonia of the skeletal muscles in adult patients with myotonic dystrophy under a compassionate use programme. Mexiletine is used according to its summary of product characteristics, which describes its use for myotonia treatment in adult patients with non-dystrophic myotonia, a different neuromuscular condition without cardiac involvement. A cardiac assessment is required prior to initiation and throughout treatment due to potential proarrhythmic effects. The presence of conduction system disease, the most common cardiac manifestation of myotonic dystrophy, mandates repeated cardiac evaluations in patients with this condition, and becomes even more important when they are given mexiletine. A group of experts, including three neurologists and five cardiologists from French neuromuscular reference centres, were involved in a task force to develop a treatment algorithm to guide mexiletine use in myotonic dystrophy. The recommendations are based on data from a literature review of the safety of mexiletine-treated patients with myotonic dystrophy, the compassionate use protocol for mexiletine and the personal clinical experience of the experts. The main conclusion of the expert group is that, although existing safety data in mexiletine-treated patients with myotonic dystrophy are reassuring, cardiac assessments should be reinforced in such patients compared with mexiletine-treated patients with non-dystrophic myotonia. This expert opinion to guide mexiletine treatment in patients with myotonic dystrophy should help to reduce the risk of severe adverse events and facilitate interactions between specialists involved in the routine care of patients with myotonic dystrophy.


Subject(s)
Mexiletine , Myotonic Dystrophy , Adult , Humans , Algorithms , Anti-Arrhythmia Agents/therapeutic use , Anti-Arrhythmia Agents/adverse effects , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/chemically induced , Clinical Decision-Making , Compassionate Use Trials , Consensus , France , Mexiletine/therapeutic use , Mexiletine/adverse effects , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/physiopathology , Risk Assessment , Risk Factors , Treatment Outcome , Voltage-Gated Sodium Channel Blockers/therapeutic use , Voltage-Gated Sodium Channel Blockers/adverse effects
13.
Pharmacol Rep ; 76(3): 585-599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38619735

ABSTRACT

BACKGROUND: Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD: Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS: A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION: The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.


Subject(s)
Action Potentials , Amiodarone , Anti-Arrhythmia Agents , Arrhythmias, Cardiac , Heart Atria , Myocytes, Cardiac , Rats, Wistar , Animals , Amiodarone/pharmacology , Anti-Arrhythmia Agents/pharmacology , Male , Humans , Rats , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Action Potentials/drug effects , Heart Atria/drug effects , Heart Atria/metabolism , Hydrogen-Ion Concentration , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced , NAV1.5 Voltage-Gated Sodium Channel/metabolism , HEK293 Cells , Sodium/metabolism , Patch-Clamp Techniques , Cnidarian Venoms/pharmacology
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 153-158, 2024 Jan 28.
Article in English, Chinese | MEDLINE | ID: mdl-38615177

ABSTRACT

Bipolar affective disorder refers to a category of mood disorders characterized clinically by the presence of both manic or hypomanic episodes and depressive episodes. Lithium stands out as the primary pharmacological intervention for managing bipolar affective disorder. However, its therapeutic dosage closely approaches toxic levels. Toxic symptoms appear when the blood lithium concentration surpasses 1.4 mmol/L, typically giving rise to gastrointestinal and central nervous system reactions. Cardiac toxicity is rare but serious in cases of lithium poisoning. The study reports a case of a patient with bipolar affective disorder who reached a blood lithium concentration of 6.08 mmol/L after the patient took lithium carbonate sustained-release tablets beyond the prescribed dosage daily and concurrently using other mood stabilizers. This resulted in symptoms such as arrhythmia, shock, impaired consciousness, and coarse tremors. Following symptomatic supportive treatment, including blood dialysis, the patient's physical symptoms gradually improved. It is necessary for clinicians to strengthen the prevention and recognition of lithium poisoning.


Subject(s)
Hemodynamics , Lithium , Humans , Anticonvulsants , Arrhythmias, Cardiac/chemically induced , Central Nervous System
16.
Neurology ; 102(9): e209177, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38560823

ABSTRACT

BACKGROUND AND OBJECTIVES: Levetiracetam is a widely used antiseizure medication. Recent concerns have been raised regarding the potential prolongation of the QT interval by levetiracetam and increased risk of sudden cardiac death. This could have profound implications for patient safety and for prescribing practice. This study assessed the potential association of levetiracetam with cardiac outcomes related to QT interval prolongation. We compared outcomes of patients taking levetiracetam with those taking oxcarbazepine as a comparator medication that has not been associated with prolongation of the QT interval. METHODS: The sample included patients who were newly prescribed levetiracetam or oxcarbazepine from January 31, 2010, to December 31, 2019, using administrative claims data from the OptumLabs Data Warehouse (OLDW). The analysis focused on a combined endpoint of sudden cardiac death or ventricular arrythmia, which are both linked to QT interval prolongation. We used a new user design and selected oxcarbazepine as an active comparator with levetiracetam to minimize bias. We used propensity score weighting to balance the levetiracetam and oxcarbazepine cohorts and then performed weighted Cox regressions to evaluate the association of levetiracetam with the combined endpoint. RESULTS: We identified 104,655 enrollees taking levetiracetam and 39,596 enrollees taking oxcarbazepine. At baseline, enrollees taking levetiracetam were older, more likely to have diagnosed epilepsy, and more likely to have diagnosed comorbidities including hypertension, cerebrovascular disease, and coronary artery disease. In the main analysis, we found no significant difference between levetiracetam and oxcarbazepine in the rate of the combined endpoint for the Cox proportional hazards model (hazard ratio [HR] 0.79, 95% CI 0.42-1.47) or Cox regression with time-varying characteristics (HR 0.78, 95% CI 0.41-1.50). DISCUSSION: When compared with oxcarbazepine, levetiracetam does not correlate with increased risk of ventricular arrythmia and sudden cardiac death. Our finding does not support the concern for cardiac risk to indicate restriction of levetiracetam use nor the requirement of cardiac monitoring when using it. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that sudden cardiac death and ventricular arrythmia are not more frequent in patients older than 17 years newly prescribed levetiracetam, compared with those prescribed oxcarbazepine.


Subject(s)
Anticonvulsants , Death, Sudden, Cardiac , Humans , Levetiracetam/adverse effects , Oxcarbazepine/adverse effects , Anticonvulsants/adverse effects , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Arrhythmias, Cardiac/chemically induced
17.
Int J Toxicol ; 43(4): 357-367, 2024.
Article in English | MEDLINE | ID: mdl-38477622

ABSTRACT

In silico modeling offers an opportunity to supplement and accelerate cardiac safety testing. With in silico modeling, computational simulation methods are used to predict electrophysiological interactions and pharmacological effects of novel drugs on critical physiological processes. The O'Hara-Rudy's model was developed to predict the response to different ion channel inhibition levels on cardiac action potential duration (APD) which is known to directly correlate with the QT interval. APD data at 30% 60% and 90% inhibition were derived from the model to delineate possible ventricular arrhythmia scenarios and the marginal contribution of each ion channel to the model. Action potential values were calculated for epicardial, myocardial, and endocardial cells, with action potential curve modeling. This study assessed cardiac ion channel inhibition data combinations to consider when undertaking in silico modeling of proarrhythmic effects as stipulated in the Comprehensive in Vitro Proarrhythmia Assay (CiPA). As expected, our data highlight the importance of the delayed rectifier potassium channel (IKr) as the most impactful channel for APD prolongation. The impact of the transient outward potassium channel (Ito) inhibition on APD was minimal while the inward rectifier (IK1) and slow component of the delayed rectifier potassium channel (IKs) also had limited APD effects. In contrast, the contribution of fast sodium channel (INa) and/or L-type calcium channel (ICa) inhibition resulted in substantial APD alterations supporting the pharmacological relevance of in silico modeling using input from a limited number of cardiac ion channels including IKr, INa, and ICa, at least at an early stage of drug development.


Subject(s)
Action Potentials , Computer Simulation , Ion Channels , Myocytes, Cardiac , Action Potentials/drug effects , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Ion Channels/drug effects , Ion Channels/metabolism , Ion Channels/physiology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology
18.
Expert Opin Drug Saf ; 23(4): 469-476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462751

ABSTRACT

BACKGROUND: Shorter regimens for drug-resistant tuberculosis (DR-TB) have non-inferior efficacy compared with longer regimens, but QT prolongation is a concern. T-wave morphology abnormalities may be a predictor of QT prolongation. RESEARCH DESIGN AND METHODS: STREAM Stage 1 was a randomized controlled trial in rifampicin-resistant TB, comparing short and long regimens. All participants had regular ECGs. QT/QTcF prolongation (≥500 ms or increase in ≥60 ms from baseline) was more common on the short regimen which contained high-dose moxifloxacin and clofazimine. Blinded ECGs were selected from the baseline, early (weeks 1-4), and late (weeks 12-36) time points. T-wave morphology was categorized as normal or abnormal (notched, asymmetric, flat-wave, flat peak, or broad). Differences between groups were assessed using Chi-Square tests (paired/unpaired, as appropriate). RESULTS: Two-hundred participants with available ECGs at relevant times were analyzed (QT prolongation group n = 82; non-prolongation group n = 118). At baseline, 23% (45/200) of participants displayed abnormal T-waves, increasing to 45% (90/200, p < 0.001) at the late time point. Abnormalities were more common in participants allocated the Short regimen (75/117, 64%) than the Long (14/38, 36.8%, p = 0.003); these occurred prior to QT/QTcF ≥500 ms in 53% of the participants (Long 2/5; Short 14/25). CONCLUSIONS: T-wave abnormalities may help identify patients at risk of QT prolongation on DR-TB treatment. TRIAL REGISTRATION: The trial is registered at ClinicalTrials.gov (CT.gov identifier: NCT02409290). Current Controlled Trial number, ISRCTN78372190.


Subject(s)
Long QT Syndrome , Tuberculosis, Multidrug-Resistant , Humans , Arrhythmias, Cardiac/chemically induced , Electrocardiography , Long QT Syndrome/chemically induced , Moxifloxacin/adverse effects , Tuberculosis, Multidrug-Resistant/drug therapy
19.
Toxicon ; 242: 107693, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38519012

ABSTRACT

Aconitine is the main active component of Aconitum plants. Although aconitine has effects that include strengthening the heart, analgesia, anti-tumor, and immune-regulating effects, aconitine has both efficacy and toxicity, especially cardiotoxicity. Severe effects can include arrhythmia and cardiac arrest, which limits the clinical application of aconitine-containing traditional Chinese medicine. Ginsenoside Rb1(Rb1) is mainly found in plants, such as ginseng and Panax notoginseng, and has cardiovascular-protective and anti-arrhythmia effects. This study aimed to investigate the detoxifying effects of Rb1 on aconitine cardiotoxicity and the electrophysiological effect of Rb1 on aconitine-induced arrhythmia in rats. Pathological analysis, myocardial enzymatic indexes, and Western blotting were used to investigate the ameliorating effect of Rb1 on aconitine cardiotoxicity. Optical mapping was used to evaluate the effect of Rb1 on action potential and calcium signaling after aconitine-induced arrhythmia. Rb1 inhibited pathological damage caused by aconitine, decreased myocardial enzyme levels, and restored the balance of apoptotic protein expression by reducing the expression of Bax and cleaved caspase 3 and increasing the expression of Bcl-2, thereby reducing myocardial damage caused by aconitine. Rb1 also reduced the increase in heart rate caused by aconitine, accelerated action potential conduction and calcium signaling, and reduced the dispersion of action potential and calcium signal conduction. Rb1 reduced the cardiotoxicity of aconitine by attenuating aconitine-induced myocardial injury and inhibiting the aconitine-induced retardation of ventricular action potential and calcium signaling in rats.


Subject(s)
Aconitine , Calcium Signaling , Cardiotoxicity , Ginsenosides , Animals , Ginsenosides/pharmacology , Aconitine/analogs & derivatives , Cardiotoxicity/prevention & control , Rats , Calcium Signaling/drug effects , Male , Action Potentials/drug effects , Rats, Sprague-Dawley , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/prevention & control , Myocardium/metabolism , Myocardium/pathology
20.
Food Chem Toxicol ; 187: 114596, 2024 May.
Article in English | MEDLINE | ID: mdl-38556154

ABSTRACT

Tebuconazole (TEB), a widely used pesticide in agriculture to combat fungal infections, is commonly detected in global food, potable water, groundwater, and human urine samples. Despite its known in vivo toxicity, its impact on heart function remains unclear. In a 28-day study on male Wistar rats (approximately 100 g), administering 10 mg/kg/day TEB or a vehicle (control) revealed no effect on body weight gain or heart weight, but an increase in the infarct area in TEB-treated animals. Notably, TEB induced time-dependent changes in in vivo electrocardiograms, particularly prolonging the QT interval after 28 days of administration. Isolated left ventricular cardiomyocytes exposed to TEB exhibited lengthened action potentials and reduced transient outward potassium current. TEB also increased reactive oxygen species (ROS) production in these cardiomyocytes, a phenomenon reversed by N-acetylcysteine (NAC). Furthermore, TEB-treated animals, when subjected to an in vivo dobutamine (Dob) and caffeine (Caf) challenge, displayed heightened susceptibility to severe arrhythmias, a phenotype prevented by NAC. In conclusion, TEB at the no observed adverse effect level (NOAEL) dose adversely affects heart electrical function, increases arrhythmic susceptibility, partially through ROS overproduction, and this phenotype is reversible by scavenging ROS with NAC.


Subject(s)
Arrhythmias, Cardiac , Dobutamine , Triazoles , Humans , Rats , Animals , Male , Reactive Oxygen Species , Rats, Wistar , Arrhythmias, Cardiac/chemically induced , Acetylcysteine , Myocytes, Cardiac
SELECTION OF CITATIONS
SEARCH DETAIL
...