Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(8): 3476-3483, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38270175

ABSTRACT

The reaction of Pt-based anticancer agents with arsenic trioxide affords robust complexes known as arsenoplatins. The prototype of this family of anticancer compounds is arsenoplatin-1 (AP-1) that contains an As(OH)2 fragment linked to a Pt(II) moiety derived from cisplatin. Crystallographic and spectrometric studies of AP-1 binding to a B-DNA double helix dodecamer are presented here, in comparison with cisplatin and transplatin. Results reveal that AP-1, cisplatin and transplatin react differently with the DNA model system. Notably, in the AP-1/DNA systems, the Pt-As bond can break down with time and As-containing fragments can be released. These results have implications for the understanding of the mechanism of action of arsenoplatins.


Subject(s)
Antineoplastic Agents , Arsenic Trioxide/analogs & derivatives , DNA, B-Form , Cisplatin/chemistry , Transcription Factor AP-1/metabolism , Antineoplastic Agents/chemistry , DNA/chemistry
2.
Inorg Chem ; 61(7): 3240-3248, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35137586

ABSTRACT

Arsenoplatin-1 (AP-1) is a dual-action anticancer metallodrug with a promising pharmacological profile that features the simultaneous presence of a cisplatin-like center and an arsenite center. We investigated its interactions with proteins through a joint experimental and theoretical approach. The reactivity of AP-1 with a variety of proteins, including carbonic anhydrase (CA), superoxide dismutase (SOD), myoglobin (Mb), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and human serum albumin (HSA), was analyzed by means of electrospray ionization mass spectrometry (ESI MS) measurements. In accordance with previous observations, ESI MS experiments revealed that the obtained metallodrug-protein adducts originated from the binding of the [(AP-1)-Cl]+ fragment to accessible protein residues. Remarkably, in two cases, i.e., Mb and GAPDH, the formation of a bound metallic fragment that lacked the arsenic center was highlighted. The reactions of AP-1 with various nucleophiles side chains of neutral histidine, methionine, cysteine, and selenocysteine, in neutral form as well as cysteine and selenocysteine in anionic form, were subsequently analyzed through a computational approach. We found that the aquation of AP-1 is energetically disfavored, with a reaction free energy of +19.2 kcal/mol demonstrating that AP-1 presumably attacks its biological targets through the exchange of the chloride ligand. The theoretical analysis of thermodynamics and kinetics for the ligand-exchange processes of AP-1 with His, Met, Cys, Sec, Cys-, and Sec- side chain models unveils that only neutral histidine and deprotonated cysteine and selenocysteine are able to effectively replace the chloride ligand in AP-1.


Subject(s)
Arsenic Trioxide/analogs & derivatives , Cisplatin/analogs & derivatives
3.
Int J Mol Sci ; 22(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668605

ABSTRACT

Arsenoplatin-1 (AP-1), the prototype of a novel class of metallodrugs containing a PtAs(OH)2 core, was encapsulated within the apoferritin (AFt) nanocage. UV-Vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy measurements confirmed metallodrug encapsulation and allowed us to determine the average amount of AP-1 trapped inside the cage. The X-ray structure of AP-1-encapsulated AFt was solved at 1.50 Å. Diffraction data revealed that an AP-1 fragment coordinates the side chain of a His residue. The biological activity of AP-1-loaded AFt was comparatively tested on a few representative cancer and non-cancer cell lines. Even though the presence of the cage reduces the overall cytotoxicity of AP-1, it improves its selectivity towards cancer cells.


Subject(s)
Antineoplastic Agents , Arsenic Trioxide/analogs & derivatives , Cisplatin/analogs & derivatives , Cytotoxins , Ferritins , Neoplasms/drug therapy , Platinum Compounds , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Arsenic Trioxide/chemistry , Arsenic Trioxide/pharmacology , BALB 3T3 Cells , Cisplatin/chemistry , Cisplatin/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , Ferritins/chemistry , Ferritins/pharmacology , Humans , Mice , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Platinum Compounds/chemistry , Platinum Compounds/pharmacology , Structure-Activity Relationship
4.
Dalton Trans ; 50(1): 68-71, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33320144

ABSTRACT

Arsenoplatin-1 (AP-1) is an innovative dual-action anticancer agent that contains a platinum(ii) center coordinated to an arsenous acid moiety. We found that AP-1 spontaneously aggregates in aqueous solutions generating oligomeric species of increasing length. Afterward, we succeeded in solving the crystal structure of the adduct formed between the model protein lysozyme and an early AP-1 oligomer that turned out to be a trimer. Remarkably, this crystal structure traps an early stage of AP-1 aggregation offering detailed insight into the molecular process of the oligomer's growth.


Subject(s)
Antineoplastic Agents/chemistry , Arsenic Trioxide/analogs & derivatives , Arsenites/chemistry , Cisplatin/analogs & derivatives , Coordination Complexes/chemistry , Muramidase/chemistry , Platinum/chemistry , Arsenic Trioxide/chemistry , Cisplatin/chemistry , Molecular Structure , Protein Binding , Solutions
5.
J Am Chem Soc ; 141(16): 6453-6457, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30943017

ABSTRACT

Arsenoplatins are adducts of two chemically important anticancer drugs, cisplatin and arsenic trioxide, that have a Pt(II) bond to an As(III) hydroxide center. Screens of the NCI-60 human tumor cell lines reveal that arsenoplatin-1 (AP-1), [Pt(µ-NHC(CH3)O)2ClAs(OH)2], the first representative of this novel class of anticancer agents, displays a superior activity profile relative to the parent drugs As2O3 or cisplatin in a majority of cancer cell lines tested. These activity profiles are important because the success of arsenic trioxide in blood cancers (such as APL) has not been seen in solid tumors due to the rapid clearance of arsenous acid from the body. To understand the biological chemistry of these compounds, we evaluated interactions of AP-1 with the two important classes of biomolecules-proteins and DNA. The first structural studies of AP-1 bound to model proteins reveal that platinum(II) binds the Nε of His in a manner that preserves the Pt-As bond. We find that AP-1 readily enters cells and binds to DNA with an intact Pt-As bond (Pt:As ratio of 1). At longer incubation times, however, the Pt:As ratio in DNA samples increases, suggesting that the Pt-As bond breaks and releases the As(OH)2 moiety. We conclude that arsenoplatin-1 has the potential to deliver both Pt and As species to a variety of hematological and solid cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Arsenic Trioxide/analogs & derivatives , Cisplatin/analogs & derivatives , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Arsenic Trioxide/chemistry , Arsenic Trioxide/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/chemistry , Cisplatin/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Organoplatinum Compounds/chemistry , Structure-Activity Relationship
6.
Biomater Sci ; 7(1): 262-271, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30465673

ABSTRACT

Cisplatin (CDDP) and arsenic trioxide (ATO), two representative inorganic anticancer drugs, have been successful in the treatment against several kinds of malignancies. However, combination therapy with these two drugs in clinical application suffers from poor pharmacokinetics, serious side effects, and drug resistance of the tumor. Herein, we report a carrier-free aquo-cisplatin arsenite multidrug nanocomposite loaded with cisplatin and arsenic trioxide prodrugs simultaneously. This nanocomposite achieves a high loading capacity and pH-dependent controlled release of the drugs. Because of these features, this nanocomposite shows better in vitro toxicity against various carcinoma cell lines than either the single drug or free drug combination, promotes the synergistic effect of cisplatin and arsenic trioxide, and significantly inhibits the growth of tumors in vivo. Furthermore, cisplatin and arsenic trioxide in this nanocomposite can realize a coordination of both enhanced DNA damage and DNA repair interference within cisplatin-resistant cells, which results in overcoming the drug resistance effectively. Gene expression profiles demonstrate the reduced expression of proto-oncogenes and DNA damage repair related genes MYC, MET, and MSH2, along with the increase of tumor suppressor genes PTEN, VHL, and FAS after the nanocomposite treatment. This type of multidrug nanocomposite offers an alternative and promising strategy for combination therapy and overcoming drug resistance.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Arsenic Trioxide/analogs & derivatives , Arsenic Trioxide/pharmacology , Cisplatin/analogs & derivatives , Cisplatin/pharmacology , Nanocomposites/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Arsenic Trioxide/chemical synthesis , Arsenic Trioxide/therapeutic use , Arsenites/chemical synthesis , Arsenites/chemistry , Arsenites/pharmacology , Cell Line, Tumor , Cisplatin/chemical synthesis , Cisplatin/therapeutic use , DNA Damage/drug effects , Drug Resistance, Neoplasm , Humans , Male , Mice, Inbred BALB C , Nanocomposites/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...