Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Pharmacol ; 897: 173948, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33609564

ABSTRACT

The soluble guanylate cyclase (sGC)/GMPc pathway plays an important role in controlling pulmonary arterial hypertension (PAH). We investigated whether the novel sGC stimulator trans-4-methoxy-ß-nitrostyrene (T4MN), ameliorates monocrotaline (MCT)-induced PAH. At Day 0, rats were injected with MCT (60 mg/kg, s. c.). Control (CNT) rats received an equal volume of monocrotaline vehicle only (s.c.). Four weeks later, MCT-treated rats were orally treated for 14 days with T4MN (75 mg/kg/day) (MCT-T4MN group) or its vehicle (MCT-V group), and with sildenafil (SIL; 50 mg/kg) (MCT-SIL group). Compared to the CNT group, MCT treatment induced a significant increase in both the Fulton index and RV systolic pressure but significantly reduced the maximum relaxation induced by acetylcholine. Indeed, MCT treatment increased the wall thickness of small and larger pulmonary arterioles. Oral treatment with T4MN and SIL reduced the Fulton index and RV systolic pressure compared to the MCT-V group. Maximum relaxation induced by acetylcholine was significantly enhanced in MCT-SIL group. Both T4MN and SIL significantly reduced the enhanced wall thickness of small and larger pulmonary arterioles. Treatment with T4MN has a beneficial effect on PAH by reducing RV systolic pressure and consequently right ventricular hypertrophy, and by reducing pulmonary artery remodeling. T4MN may represent a new therapeutic or complementary approach for the treatment of PAH.


Subject(s)
Arterioles/drug effects , Enzyme Activators/pharmacology , Hypertension, Pulmonary/drug therapy , Lung/blood supply , Soluble Guanylyl Cyclase/metabolism , Styrenes/pharmacology , Vascular Remodeling/drug effects , Animals , Arterioles/enzymology , Arterioles/physiopathology , Disease Models, Animal , Enzyme Activation , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/enzymology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/prevention & control , Monocrotaline , Signal Transduction , Vasodilation/drug effects , Ventricular Dysfunction, Right/enzymology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/prevention & control , Ventricular Function, Right/drug effects , Ventricular Remodeling/drug effects
2.
J Neurosci Methods ; 198(1): 16-22, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21420432

ABSTRACT

Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900 W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900 W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens.


Subject(s)
Cerebellar Cortex/enzymology , Nitric Oxide Synthase/metabolism , Protein Isoforms/metabolism , Adult , Aged , Aged, 80 and over , Animals , Arterioles/enzymology , Cell Line , Child, Preschool , Female , Fetus , Granuloma/enzymology , Granuloma/pathology , Humans , Infant , Infant, Newborn , Lung/cytology , Male , Middle Aged , Postmortem Changes , Rats , Time Factors
3.
Nutr Metab Cardiovasc Dis ; 21(10): 808-16, 2011 Oct.
Article in English | MEDLINE | ID: mdl-20554176

ABSTRACT

BACKGROUND AND AIM: given that obesity is an independent risk factor for the development of cardiovascular diseases we decided to investigate the mechanisms involved in microvascular dysfunction using a monosodium glutamate (MSG)-induced model of obesity, which allows us to work on both normotensive and normoglycemic conditions. METHODS AND RESULTS: Male offspring of Wistar rats received MSG from the second to the sixth day after birth. Sixteen-week-old MSG rats displayed higher Lee index, fat accumulation, dyslipidemia and insulin resistance, with no alteration in glycemia and blood pressure. The effect of norepinephrine (NE), which was increased in MSG rats, was potentiated by L-nitro arginine methyl ester (L-NAME) or tetraethylammonium (TEA) and was reversed by indomethacin and NS-398. Sensitivity to acetylcholine (ACh), which was reduced in MSG rats, was further impaired by L-NAME or TEA, and was corrected by indomethacin, NS-398 and tetrahydrobiopterin (BH4). MSG rats displayed increased endothelium-independent relaxation to sodium nitroprusside. A reduced prostacyclin/tromboxane ratio was found in the mesenteric beds of MSG rats. Mesenteric arterioles of MSG rats also displayed reduced nitric oxide (NO) production along with increased reactive oxygen species (ROS) generation; these were corrected by BH4 and either L-NAME or superoxide dismutase, respectively. The protein expression of eNOS and cyclooxygenase (COX)-2 was increased in mesenteric arterioles from MSG rats. CONCLUSION: Obesity/insulin resistance has a detrimental impact on vascular function. Reduced NO bioavailability and increased ROS generation from uncoupled eNOS and imbalanced release of COX products from COX-2 play a critical role in the development of these vascular alterations.


Subject(s)
Animals, Newborn , Microvessels/physiopathology , Nitric Oxide/physiology , Obesity/chemically induced , Prostaglandins/physiology , Sodium Glutamate/administration & dosage , Animals , Arterioles/enzymology , Arterioles/metabolism , Cyclooxygenase 2/analysis , Male , Mesentery/blood supply , Nitric Oxide Synthase Type III/analysis , Obesity/physiopathology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
4.
Am J Physiol Heart Circ Physiol ; 299(1): H25-35, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20382857

ABSTRACT

We recently observed the enhanced serine and matrix metalloproteinase (MMP) activity in the spontaneously hypertensive rat (SHR) compared with its normotensive Wistar-Kyoto (WKY) rat and the cleavage of membrane receptors in the SHR by MMPs. We demonstrate in vivo that MMP-7 and MMP-9 injection leads to a vasoconstrictor response in microvessels of rats that is blocked by a specific MMP inhibitor (GM-6001, 1 microM). Multiple pathways may be responsible. Since the beta(2)-adrenergic receptor (beta(2)-AR) is susceptible to the action of endogenous MMPs, we hypothesize that MMPs in the plasma of SHRs are able to cleave the extracellular domain of the beta(2)-AR. SHR arterioles respond in an attenuated fashion to beta(2)-AR agonists and antagonists. Aorta and heart muscle of control Wistar rats were exposed for 24 h (37 degrees C) to fresh plasma of male Wistar and WKY rats and SHRs with and without doxycycline (30 microM) and EDTA (10 mM) to reduce MMP activity. The density of extracellular and intracellular domains of beta(2)-AR was determined by immunohistochemistry. The density of the extracellular domain of beta(2)-AR is reduced in aortic endothelial cells and cardiac microvessels of SHRs compared with that of WKY or Wistar rats. Treatment of the aorta and the heart of control Wistar rats with plasma from SHRs, but not from WKY rats, reduced the number of extracellular domains, but not intracellular domains, of beta(2)-AR in aortic endothelial cells and cardiac microvessels. MMP inhibitors (EDTA and doxycycline) prevented the cleavage of the extracellular domain. Thus MMPs may contribute to the reduced density of the extracellular domain of beta(2)-AR in blood vessels and to the increased arteriolar tone of SHRs compared with normotensive rats.


Subject(s)
Hypertension/enzymology , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinase 9/metabolism , Protein Processing, Post-Translational , Receptors, Adrenergic, beta-2/metabolism , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Animals , Aorta/enzymology , Arterioles/enzymology , Arterioles/physiopathology , Blood Pressure , Blotting, Western , Coronary Vessels/enzymology , Disease Models, Animal , Hypertension/physiopathology , Immunohistochemistry , Infusions, Intra-Arterial , Male , Matrix Metalloproteinase 7/administration & dosage , Matrix Metalloproteinase 9/administration & dosage , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/pharmacology , Protein Structure, Tertiary , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Wistar , Receptors, Adrenergic, beta-2/drug effects , Time Factors , Vasoconstriction
5.
Life Sci ; 78(19): 2280-5, 2006 Apr 04.
Article in English | MEDLINE | ID: mdl-16337658

ABSTRACT

We demonstrated that the decreased response to acetylcholine observed in aorta of male and female spontaneously hypertensive rats is corrected after sustained (15 days) reduction of blood pressure levels by losartan. In order to verify if the same occurs in resistance vessels, vascular diameter changes induced by topical application of acetylcholine and bradykinin (endothelium-dependent vasodilators) and sodium nitroprusside (endothelium-independent vasodilator) to mesenteric arterioles studied in vivo, in situ were determined in rats treated with losartan for 24 h (acute) or 15 days (chronic). Rats that presented similar reduction (in %) of the blood pressure levels after losartan treatment were chosen. Sodium nitroprusside induced similar responses in losartan-treated and untreated male or female SHR. Whereas in female SHR, losartan corrected the diminished arteriolar response to endothelium-dependent vasodilators after acute and chronic treatment, in male SHR this correction only occurred after chronic treatment. Thus, losartan corrected the endothelial dysfunction more easily in female than in male SHR and independently of the normalization or the magnitude of the reduction of the blood pressure levels. In an attempt to explain the difference, we evaluated the losartan effect on nitric-oxide synthase (NOS) activity and angiotensin II AT1 and AT2 receptor gene expression in these animals. In male and female SHR, NOS activity and AT1 receptor expression were not altered by acute or chronic treatment. On the other hand, AT2 receptor expression was augmented only in female SHR by these treatments. Therefore, augmented AT2 receptor expression, but not alteration of NOS activity or AT1 receptor expression, might explain the difference observed.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension/physiopathology , Losartan/pharmacology , Mesentery/blood supply , Animals , Antihypertensive Agents/therapeutic use , Arterioles/drug effects , Arterioles/enzymology , Arterioles/metabolism , Estrous Cycle , Female , Gene Expression/drug effects , Hormones/blood , Hypertension/drug therapy , Losartan/therapeutic use , Male , Mesentery/drug effects , Nitric Oxide Synthase Type III/metabolism , Rats , Rats, Inbred SHR , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 2/genetics , Sex Characteristics , Vasoconstriction/drug effects
6.
Avian Dis ; 47(4): 1291-7, 2003.
Article in English | MEDLINE | ID: mdl-14708974

ABSTRACT

To determine whether or not exposure to chronic hypoxia and subsequent development of pulmonary hypertension syndrome (PHS) induce alterations in endothelial nitric oxide (NO) production in broiler's pulmonary vascular bed of broilers, we studied the expression of nitric oxide synthase enzyme in pulmonary endothelial cells by a nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemical staining reaction. For this purpose, 60 broilers of three different ages (17, 30, and 42 days) were used. The animals were distributed in two groups: a) 30 healthy (nonhypertensive) broilers and b) 30 chicks with PHS. All broilers in group b had fewer NADPH-diaphorase-positive endothelial cells in arterioles than did the nonhypertensive broilers. These differences were highly significant (P < 0.01). These results demonstrate for, the first time in broilers, that hypoxia-induced pulmonary hypertension is associated with a decrease of endothelial-derived NO expression in pulmonary vessels.


Subject(s)
Endothelium, Vascular/enzymology , Hypertension, Pulmonary/veterinary , Hypoxia/veterinary , Nitric Oxide Synthase/metabolism , Poultry Diseases/physiopathology , Pulmonary Circulation/physiology , Animals , Arterioles/enzymology , Chickens , Dihydrolipoamide Dehydrogenase/metabolism , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/etiology , Hypoxia/physiopathology , Male , Poultry Diseases/enzymology , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL