Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34578423

ABSTRACT

Recent years have witnessed the discovery of several new viruses belonging to the family Arteriviridae, expanding the known diversity and host range of this group of complex RNA viruses. Although the pathological relevance of these new viruses is not always clear, several well-studied members of the family Arteriviridae are known to be important animal pathogens. Here, we report the complete genome sequences of four new arterivirus variants, belonging to two putative novel species. These new arteriviruses were discovered in African rodents and were given the names Lopma virus and Praja virus. Their genomes follow the characteristic genome organization of all known arteriviruses, even though they are only distantly related to currently known rodent-borne arteriviruses. Phylogenetic analysis shows that Lopma virus clusters in the subfamily Variarterivirinae, while Praja virus clusters near members of the subfamily Heroarterivirinae: the yet undescribed forest pouched giant rat arterivirus and hedgehog arterivirus 1. A co-divergence analysis of rodent-borne arteriviruses confirms that they share similar phylogenetic patterns with their hosts, with only very few cases of host shifting events throughout their evolutionary history. Overall, the genomes described here and their unique clustering with other arteriviruses further illustrate the existence of multiple rodent-borne arterivirus lineages, expanding our knowledge of the evolutionary origin of these viruses.


Subject(s)
Arteriviridae/genetics , Genome, Viral , RNA Virus Infections/veterinary , Rodent Diseases/virology , Rodentia/virology , Africa South of the Sahara , Animals , Arteriviridae/classification , Arteriviridae/isolation & purification , Biological Evolution , High-Throughput Nucleotide Sequencing , Phylogeny , RNA Virus Infections/virology , Whole Genome Sequencing
2.
J Gen Virol ; 102(8)2021 08.
Article in English | MEDLINE | ID: mdl-34356005

ABSTRACT

The family Arteriviridae comprises enveloped RNA viruses with a linear, positive-sense genome of approximately 12.7 to 15.7 kb. The spherical, pleomorphic virions have a median diameter of 50-74 nm and include eight to eleven viral proteins. Arteriviruses infect non-human mammals in a vector-independent manner. Infections are often persistent and can either be asymptomatic or produce overt disease. Some arteriviruses are important veterinary pathogens while others infect particular species of wild rodents or African non-human primates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arteriviridae, which is available at ictv.global/report/arteriviridae.


Subject(s)
Arteriviridae/classification , Arteriviridae/genetics , Phylogeny , Animals , Arteriviridae/ultrastructure , Arterivirus/classification , Arterivirus/genetics , Endocytosis , Genome, Viral , Primates , RNA Virus Infections , Viral Proteins/genetics , Virion/classification , Virion/genetics , Virion/ultrastructure , Virus Attachment , Virus Replication
3.
Arch Virol ; 161(3): 755-68, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26608064

ABSTRACT

The family Arteriviridae presently includes a single genus Arterivirus. This genus includes four species as the taxonomic homes for equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), porcine respiratory and reproductive syndrome virus (PRRSV), and simian hemorrhagic fever virus (SHFV), respectively. A revision of this classification is urgently needed to accommodate the recent description of eleven highly divergent simian arteriviruses in diverse African nonhuman primates, one novel arterivirus in an African forest giant pouched rat, and a novel arterivirus in common brushtails in New Zealand. In addition, the current arterivirus nomenclature is not in accordance with the most recent version of the International Code of Virus Classification and Nomenclature. Here we outline an updated, amended, and improved arterivirus taxonomy based on current data. Taxon-specific sequence cut-offs are established relying on a newly established open reading frame 1b phylogeny and pairwise sequence comparison (PASC) of coding-complete arterivirus genomes. As a result, the current genus Arterivirus is replaced by five genera: Equartevirus (for EAV), Rodartevirus (LDV + PRRSV), Simartevirus (SHFV + simian arteriviruses), Nesartevirus (for the arterivirus from forest giant pouched rats), and Dipartevirus (common brushtail arterivirus). The current species Porcine reproductive and respiratory syndrome virus is divided into two species to accommodate the clear divergence of the European and American "types" of PRRSV, both of which now receive virus status. The current species Simian hemorrhagic fever virus is divided into nine species to accommodate the twelve known simian arteriviruses. Non-Latinized binomial species names are introduced to replace all current species names to clearly differentiate them from virus names, which remain largely unchanged.


Subject(s)
Arteriviridae/classification , Arteriviridae/isolation & purification , RNA Virus Infections/veterinary , Arteriviridae/genetics , Cluster Analysis , Genome, Viral , Open Reading Frames , Phylogeny , RNA, Viral/genetics , Sequence Homology , Terminology as Topic
4.
J Virol ; 88(22): 13231-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25187550

ABSTRACT

UNLABELLED: Since the 1960s, simian hemorrhagic fever virus (SHFV; Nidovirales, Arteriviridae) has caused highly fatal outbreaks of viral hemorrhagic fever in captive Asian macaque colonies. However, the source(s) of these outbreaks and the natural reservoir(s) of this virus remain obscure. Here we report the identification of two novel, highly divergent simian arteriviruses related to SHFV, Mikumi yellow baboon virus 1 (MYBV-1) and Southwest baboon virus 1 (SWBV-1), in wild and captive baboons, respectively, and demonstrate the recent transmission of SWBV-1 among captive baboons. These findings extend our knowledge of the genetic and geographic diversity of the simian arteriviruses, identify baboons as a natural host of these viruses, and provide further evidence that baboons may have played a role in previous outbreaks of simian hemorrhagic fever in macaques, as has long been suspected. This knowledge should aid in the prevention of disease outbreaks in captive macaques and supports the growing body of evidence that suggests that simian arterivirus infections are common in Old World monkeys of many different species throughout Africa. IMPORTANCE: Historically, the emergence of primate viruses both in humans and in other primate species has caused devastating outbreaks of disease. One strategy for preventing the emergence of novel primate pathogens is to identify microbes with the potential for cross-species transmission in their natural state within reservoir species from which they might emerge. Here, we detail the discovery and characterization of two related simian members of the Arteriviridae family that have a history of disease emergence and host switching. Our results expand the phylogenetic and geographic range of the simian arteriviruses and define baboons as a natural host for these viruses. Our findings also identify a potential threat to captive macaque colonies by showing that simian arteriviruses are actively circulating in captive baboons.


Subject(s)
Arteriviridae/classification , Arteriviridae/isolation & purification , Monkey Diseases/virology , RNA Virus Infections/veterinary , Animals , Animals, Wild , Animals, Zoo , Arteriviridae/genetics , Female , Genetic Variation , Male , Molecular Sequence Data , Papio , Phylogeography , RNA Virus Infections/virology , RNA, Viral/genetics , Sequence Analysis, DNA , Topography, Medical
SELECTION OF CITATIONS
SEARCH DETAIL
...