Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Emerg Infect Dis ; 30(4): 721-731, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526136

ABSTRACT

Genetically diverse simian arteriviruses (simarteriviruses) naturally infect geographically and phylogenetically diverse monkeys, and cross-species transmission and emergence are of considerable concern. Characterization of most simarteriviruses beyond sequence analysis has not been possible because the viruses fail to propagate in the laboratory. We attempted to isolate 4 simarteriviruses, Kibale red colobus virus 1, Pebjah virus, simian hemorrhagic fever virus, and Southwest baboon virus 1, by inoculating an immortalized grivet cell line (known to replicate simian hemorrhagic fever virus), primary macaque cells, macrophages derived from macaque induced pluripotent stem cells, and mice engrafted with macaque CD34+-enriched hematopoietic stem cells. The combined effort resulted in successful virus isolation; however, no single approach was successful for all 4 simarteriviruses. We describe several approaches that might be used to isolate additional simarteriviruses for phenotypic characterization. Our results will expedite laboratory studies of simarteriviruses to elucidate virus-host interactions, assess zoonotic risk, and develop medical countermeasures.


Subject(s)
Arterivirus , Animals , Mice , Arterivirus/genetics , Macaca , Macrophages , Cell Line
2.
Virus Res ; 340: 199302, 2024 02.
Article in English | MEDLINE | ID: mdl-38104946

ABSTRACT

Tripartite motif (TRIM)-containing proteins are a family of regulatory proteins that can participate in the induction of antiviral cytokines and antagonize viral replication. Promyelocytic leukemia (PML) protein is known as TRIM19 and is a major scaffold protein organizing the PML nuclear bodies (NBs). PML NBs are membrane-less organelles in the nucleus and play a diverse role in maintaining cellular homeostasis including antiviral response. Porcine reproductive and respiratory syndrome virus (PRRSV), a member virus of the family Arteriviridae, inhibits type I interferon (IFN) response during infection, and nonstructural protein 1 (nsp1) of the virus has been identified as a potent IFN antagonist. We report that the numbers of PML NBs per nucleus were significantly downregulated during infection of PRRSV. The overexpression of all six isoforms of PML suppressed the PRRSV replication, and conversely, the silencing of PML gene expression enhanced the PRRSV replication. The suppression of PML NBs by the nsp1 protein was common in other member viruses of the family, represented by equine arteritis virus, lactate dehydrogenase elevating virus of mice, and simian hemorrhagic fever virus. Our study unveils a conserved viral strategy in arteriviruses for innate immune evasion.


Subject(s)
Arterivirus , Porcine respiratory and reproductive syndrome virus , Swine , Horses , Animals , Mice , Arterivirus/genetics , Cell Line , Transcription Factors , Porcine respiratory and reproductive syndrome virus/genetics , Tripartite Motif Proteins , Virus Replication , Antiviral Agents
3.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: mdl-37243236

ABSTRACT

As part of a continuous effort to investigate the viral communities associated with wild mammals at the human-animal interface in an Amazonian metropolitan region, this study describes the detection of a novel rodent-borne arterivirus. A sample containing pooled organs of Oecomys paricola was submitted to RNA sequencing, and four sequences taxonomically assigned as related to the Arteriviridae family were recovered, corresponding to an almost complete genome of nearly 13 kb summed. In the phylogenetic analysis with the standard domains used for taxa demarcation in the family, the tentatively named Oecomys arterivirus 1 (OAV-1) was placed within the clade of rodent- and porcine-associated viruses, corresponding to the Variarterivirinae subfamily. The divergence analysis, based on the same amino acid alignment, corroborated the hypothesis that the virus may represent a new genus within the subfamily. These findings contribute to the expansion of the current knowledge about the diversity, host and geographical range of the viral family. Arterivirids are non-human pathogens and are usually species-specific, but the susceptibility of cell lines derived from different organisms should be conducted to confirm these statements for this proposed new genus in an initial attempt to assess its spillover potential.


Subject(s)
Arteriviridae , Arterivirus , Animals , Swine , Phylogeny , Brazil , Arterivirus/genetics , Mammals , Rodentia
4.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36182704

ABSTRACT

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Subject(s)
Arterivirus , Hemorrhagic Fevers, Viral , Animals , Arterivirus/physiology , Hemorrhagic Fevers, Viral/veterinary , Hemorrhagic Fevers, Viral/virology , Humans , Macaca , Primates , Viral Zoonoses , Virus Internalization , Virus Replication
5.
Front Immunol ; 13: 963923, 2022.
Article in English | MEDLINE | ID: mdl-36091073

ABSTRACT

IFN is the most potent antiviral cytokine required for the innate and adaptive immune responses, and its expression can help the host defend against viral infection. Arteriviruses have evolved strategies to antagonize the host cell's innate immune responses, interfering with IFN expression by interfering with RIG, blocking PRR, obstructing IRF-3/7, NF-κB, and degrading STAT1 signaling pathways, thereby assisting viral immune evasion. Arteriviruses infect immune cells and may result in persistence in infected hosts. In this article, we reviewed the strategies used by Arteriviruses to antagonize IFN production and thwart IFN-activated antiviral signaling, mainly including structural and nonstructural proteins of Arteriviruses encoding IFN antagonists directly or indirectly to disrupt innate immunity. This review will certainly provide a better insight into the pathogenesis of the arthritis virus and provide a theoretical basis for developing more efficient vaccines.


Subject(s)
Arterivirus , Interferons , Antiviral Agents , Immune Evasion , Immunity, Innate
6.
Viruses ; 14(4)2022 04 01.
Article in English | MEDLINE | ID: mdl-35458479

ABSTRACT

Equine arteritis virus (EAV), an enveloped positive-strand RNA virus, is an important pathogen of horses and the prototype member of the Arteiviridae family. Unlike many other enveloped viruses, which possess homotrimeric spikes, the spike responsible for cellular tropism in Arteriviruses is a heterotrimer composed of 3 glycoproteins: GP2, GP3, and GP4. Together with the hydrophobic protein E they are the minor components of virus particles. We describe the expression of all 3 minor glycoproteins, each equipped with a different tag, from a multi-cassette system in mammalian BHK-21 cells. Coprecipitation studies suggest that a rather small faction of GP2, GP3, and GP4 form dimeric or trimeric complexes. GP2, GP3, and GP4 co-localize with each other and also, albeit weaker, with the E-protein. The co-localization of GP3-HA and GP2-myc was tested with markers for ER, ERGIC, and cis-Golgi. The co-localization of GP3-HA was the same regardless of whether it was expressed alone or as a complex, whereas the transport of GP2-myc to cis-Golgi was higher when this protein was expressed as a complex. The glycosylation pattern was also independent of whether the proteins were expressed alone or together. The recombinant spike might be a tool for basic research but might also be used as a subunit vaccine for horses.


Subject(s)
Arterivirus , Equartevirus , Animals , Equartevirus/genetics , Equartevirus/metabolism , Glycoproteins/genetics , Guanidines , Horses , Mammals , Piperazines , Viral Envelope Proteins/metabolism
7.
J Gen Virol ; 102(8)2021 08.
Article in English | MEDLINE | ID: mdl-34356005

ABSTRACT

The family Arteriviridae comprises enveloped RNA viruses with a linear, positive-sense genome of approximately 12.7 to 15.7 kb. The spherical, pleomorphic virions have a median diameter of 50-74 nm and include eight to eleven viral proteins. Arteriviruses infect non-human mammals in a vector-independent manner. Infections are often persistent and can either be asymptomatic or produce overt disease. Some arteriviruses are important veterinary pathogens while others infect particular species of wild rodents or African non-human primates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Arteriviridae, which is available at ictv.global/report/arteriviridae.


Subject(s)
Arteriviridae/classification , Arteriviridae/genetics , Phylogeny , Animals , Arteriviridae/ultrastructure , Arterivirus/classification , Arterivirus/genetics , Endocytosis , Genome, Viral , Primates , RNA Virus Infections , Viral Proteins/genetics , Virion/classification , Virion/genetics , Virion/ultrastructure , Virus Attachment , Virus Replication
8.
Viruses ; 13(4)2021 04 07.
Article in English | MEDLINE | ID: mdl-33917085

ABSTRACT

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b', is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Subject(s)
Arterivirus/genetics , DNA, Complementary/genetics , Green Fluorescent Proteins/genetics , Open Reading Frames , RNA, Viral/genetics , Recombination, Genetic , Virus Replication/genetics , Animals , Arterivirus/physiology , Cell Line , Chiroptera , Hominidae , Humans , Plasmids/genetics , Proof of Concept Study , Rodentia
9.
J Zhejiang Univ Sci B ; 22(4): 295-304, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33835763

ABSTRACT

Trionyx sinensis Hemorrhagic Syndrome Virus (TSHSV) is an arterivirus newly discovered in Chinese softshell turtles. Little is known about the effect of antibodies against the virus or the distribution of the virus in different organs of infected turtles. In this study, a partial protein of TSHSV-HP4 was produced using a prokaryotic expression system, and its polyclonal antibody was generated. The polyclonal antibody was confirmed by western blot and dot enzyme-linked immunosorbent assay (dot-ELISA). The distribution of TSHSV in different organs of T. sinensis was examined by immunohistochemistry (IHC) and the expression of immune-related genes was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). The results indicated that the recombinant TSHSV-HP4 protein was successfully expressed, and the generated polyclonal antibody showed specific binding to viral particles in the lung tissues of infected turtles. The IHC assay indicated that the virus was highly localized in various cells, including intestinal lymphocytes, enterocytes, kidney epithelial cells, spleen cells, lung macrophages, and cardiomyocytes. The qRT-PCR analysis revealed that TSHSV was detected in all organs tested, including the lungs, liver, kidneys, spleen, and heart. The numbers of viral mRNA copies in lung and heart tissues were significantly higher in the virus-antibody group than in the virus group. The interferon-stimulated genes (ISGs), myxovirus resistance protein 2 (MX2) and radical S-adenosyl methionine domain containing 2 (RSAD2) were highly upregulated in all groups of infected turtles. Antibody-dependent enhancement (ADE) seemed to occur after stimulation by the polyclonal antibody, because significantly greater expression of the two genes was detected in the virus-antibody group than in the virus group. Overall, these results are important in understanding the cell localization of TSHSV and the immune response of infected turtles.


Subject(s)
Arterivirus/isolation & purification , Turtles/virology , Viral Replicase Complex Proteins/genetics , Animals , Arterivirus/enzymology , Enzyme-Linked Immunosorbent Assay , Lung/pathology , RNA, Messenger/analysis , RNA, Viral/analysis , Recombinant Proteins/analysis
10.
Emerg Infect Dis ; 27(2): 578-581, 2021 02.
Article in English | MEDLINE | ID: mdl-33496231

ABSTRACT

In the fall of 2019, a fatal encephalitis outbreak led to the deaths of >200 European hedgehogs (Erinaceus europaeus) in England. We used next-generation sequencing to identify a novel arterivirus with a genome coding sequence of only 43% similarity to existing GenBank arterivirus sequences.


Subject(s)
Arterivirus , Encephalitis , Animals , Disease Outbreaks , England/epidemiology , Hedgehogs
11.
PLoS One ; 15(8): e0237091, 2020.
Article in English | MEDLINE | ID: mdl-32750064

ABSTRACT

Wobbly possum disease virus (WPDV) is an arterivirus that was originally identified in common brushtail possums (Trichosurus vulpecula) in New Zealand, where it causes severe neurological disease. In this study, serum samples (n = 188) from Australian common brushtail, mountain brushtail (Trichosurus cunninghami) and common ringtail (Pseudocheirus peregrinus) possums were tested for antibodies to WPDV using ELISA. Antibodies to WPDV were detected in possums from all three species that were sampled in the states of Victoria and South Australia. Overall, 16% (30/188; 95% CI 11.0-22.0) of possums were seropositive for WPDV and 11.7% (22/188; 95% CI 7.5-17.2) were equivocal. The frequency of WPDV antibody detection was the highest in possums from the two brushtail species. This is the first reported serological evidence of infection with WPDV, or an antigenically similar virus, in Australian possums, and the first study to find antibodies in species other than common brushtail possums. Attempts to detect viral RNA in spleens by PCR were unsuccessful. Further research is needed to characterise the virus in Australian possums and to determine its impact on the ecology of Australian marsupials.


Subject(s)
Arterivirus Infections/epidemiology , Arterivirus/pathogenicity , Trichosurus/virology , Animals , Antibodies, Viral/blood , Arterivirus/immunology , Arterivirus Infections/blood , Arterivirus Infections/virology , Australia , Serologic Tests , Trichosurus/immunology
12.
Arch Virol ; 164(10): 2593-2597, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31270606

ABSTRACT

Trionyx sinensis hemorrhagic syndrome virus (TSHSV) is a newly discovered lethal arterivirus that causes serious disease in Trionyx sinensis in China. In this study, the complete genome sequence of TSHSV was determined by RACE cloning, and the functions of the predicted proteins were predicted. The complete genome of TSHSV was found to be 17,875 bp in length, and a 3'-end poly(A) tail was detected. Eight TSHSV hypothetical proteins (TSHSV-HPs) were predicted by gene model identification. TSHSV-HP2, 3 and 4 were associated with replicase activity, since papain-like protease (PLPs), serine-type endopeptidase, P-loop-containing nucleoside triphosphate hydrolase, and EndoU-like endoribonuclease motifs were detected. Phylogenetic analysis showed that TSHSV clusters with an arterivirus from a Chinese broad-headed pond turtle.


Subject(s)
Arterivirus Infections/veterinary , Arterivirus/classification , Arterivirus/isolation & purification , Phylogeny , Turtles/virology , Animals , Arterivirus/genetics , Arterivirus Infections/virology , China , Genome, Viral , RNA, Messenger , Sequence Analysis, DNA , Viral Proteins/genetics
13.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31167906

ABSTRACT

The -2/-1 programmed ribosomal frameshifting (-2/-1 PRF) mechanism in porcine reproductive and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nonstructural protein 2TF (nsp2TF) and nsp2N. This -2/-1 PRF mechanism is transactivated by a viral protein, nsp1ß, and cellular poly(rC) binding proteins (PCBPs). Critical elements for -2/-1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in 11 simarteriviruses. However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven simarteriviruses can only facilitate -2 PRF to generate nsp2TF. The nsp1ß of simian hemorrhagic fever virus (SHFV) was identified as a key factor that transactivates both -2 and -1 PRF, and the universally conserved Tyr111 and Arg114 in nsp1ß are essential for this activity. In vitro translation experiments demonstrated the involvement of PCBPs in simarterivirus -2/-1 PRF. Using SHFV reverse genetics, we confirmed critical roles of nsp1ß, slippery sequence, and C-rich motif in -2/-1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence analysis showed that key elements of -2/-1 PRF are highly conserved in all known arteriviruses except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, -2/-1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1ßs of all non-EAV arteriviruses tested. Taken together, these data suggest that -2/-1 PRF is an evolutionarily conserved mechanism employed in non-EAV/-WPDV arteriviruses for the expression of additional viral proteins that are important for viral replication.IMPORTANCE Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species, and some of them cause lethal hemorrhagic fever disease, this group of viruses has been undercharacterized. Since wild nonhuman primates are historically important sources or reservoirs of human pathogens, there is concern that simarteriviruses may be preemergent zoonotic pathogens. Thus, molecular characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by simarteriviruses and other distantly related arteriviruses for the expression of additional viral proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of ribosome function in all living systems, the potential impact of the in-depth characterization of this novel mechanism reaches beyond the field of virology.


Subject(s)
Biological Evolution , Frameshifting, Ribosomal , Porcine respiratory and reproductive syndrome virus/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Arterivirus/genetics , Cell Line , Gene Expression , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
14.
J Virol ; 93(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31243130

ABSTRACT

Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse RNA viruses, including arteriviruses and coronaviruses, which both belong to the order Nidovirales In this study, we aimed to identify arterivirus proteins involved in the mode of action of cyclophilin inhibitors and to investigate how these compounds inhibit arterivirus RNA synthesis in the infected cell. Repeated passaging of the arterivirus prototype equine arteritis virus (EAV) in the presence of CsA revealed that reduced drug sensitivity is associated with the emergence of adaptive mutations in nonstructural protein 5 (nsp5), one of the transmembrane subunits of the arterivirus replicase polyprotein. Introduction of singular nsp5 mutations (nsp5 Q21R, Y113H, or A134V) led to an ∼2-fold decrease in sensitivity to CsA treatment, whereas combinations of mutations further increased EAV's CsA resistance. The detailed experimental characterization of engineered EAV mutants harboring CsA resistance mutations implicated nsp5 in arterivirus RNA synthesis. Particularly, in an in vitro assay, EAV RNA synthesis was far less sensitive to CsA treatment when nsp5 contained the adaptive mutations mentioned above. Interestingly, for increased sensitivity to the closely related drug ALV, CsA-resistant nsp5 mutants required the incorporation of an additional adaptive mutation, which resided in nsp2 (H114R), another transmembrane subunit of the arterivirus replicase. Our study provides the first evidence for the involvement of nsp2 and nsp5 in the mechanism underlying the inhibition of arterivirus replication by cyclophilin inhibitors.IMPORTANCE Currently, no approved treatments are available to combat infections with nidoviruses, a group of positive-stranded RNA viruses, including important zoonotic and veterinary pathogens. Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse nidoviruses (both arteriviruses and coronaviruses), and they may thus represent a class of pan-nidovirus inhibitors. In this study, using the arterivirus prototype equine arteritis virus, we have established that resistance to CsA and ALV treatment is associated with adaptive mutations in two transmembrane subunits of the viral replication machinery, nonstructural proteins 2 and 5. This is the first evidence for the involvement of specific replicase subunits of arteriviruses in the mechanism underlying the inhibition of their replication by cyclophilin inhibitors. Understanding this mechanism of action is of major importance to guide future drug design, both for nidoviruses and for other RNA viruses inhibited by these compounds.


Subject(s)
Equartevirus/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/metabolism , Arterivirus/genetics , Cell Line , Cyclophilins/metabolism , Cyclosporine/antagonists & inhibitors , Equartevirus/metabolism , HEK293 Cells , Humans , Mutation , Nidovirales/genetics , Nidovirales/metabolism , Nucleic Acid Synthesis Inhibitors/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
15.
J Virol ; 93(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30944180

ABSTRACT

Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-ß) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-ß production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-ß production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-ß transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-ß-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.


Subject(s)
Equartevirus/metabolism , Interferon-beta/biosynthesis , Viral Nonstructural Proteins/metabolism , Animals , Arteriviridae/metabolism , Arterivirus/metabolism , Cell Line , Equartevirus/physiology , HEK293 Cells , Horses , Humans , I-kappa B Kinase/metabolism , I-kappa B Kinase/physiology , Immune Evasion , Immunity, Innate , Interferon-beta/metabolism , Porcine respiratory and reproductive syndrome virus/metabolism , Proteolysis , Signal Transduction , Swine , Virus Replication
16.
Viruses ; 11(1)2019 01 15.
Article in English | MEDLINE | ID: mdl-30650570

ABSTRACT

Simian hemorrhagic fever virus (SHFV) causes a fulminant and typically lethal viral hemorrhagic fever (VHF) in macaques (Cercopithecinae: Macaca spp.) but causes subclinical infections in patas monkeys (Cercopithecinae: Erythrocebus patas). This difference in disease course offers a unique opportunity to compare host responses to infection by a VHF-causing virus in biologically similar susceptible and refractory animals. Patas and rhesus monkeys were inoculated side-by-side with SHFV. Unlike the severe disease observed in rhesus monkeys, patas monkeys developed a limited clinical disease characterized by changes in complete blood counts, serum chemistries, and development of lymphadenopathy. Viral RNA was measurable in circulating blood 2 days after exposure, and its duration varied by species. Infectious virus was detected in terminal tissues of both patas and rhesus monkeys. Varying degrees of overlap in changes in serum concentrations of interferon (IFN)-γ, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 were observed between patas and rhesus monkeys, suggesting the presence of common and species-specific cytokine responses to infection. Similarly, quantitative immunohistochemistry of livers from terminal monkeys and whole blood flow cytometry revealed varying degrees of overlap in changes in macrophages, natural killer cells, and T-cells. The unexpected degree of overlap in host response suggests that relatively small subsets of a host's response to infection may be responsible for driving hemorrhagic fever pathogenesis. Furthermore, comparative SHFV infection in patas and rhesus monkeys offers an experimental model to characterize host⁻response mechanisms associated with viral hemorrhagic fever and evaluate pan-viral hemorrhagic fever countermeasures.


Subject(s)
Arterivirus Infections/veterinary , Arterivirus/pathogenicity , Hemorrhagic Fevers, Viral/veterinary , Host-Pathogen Interactions , Monkey Diseases/immunology , Animals , Antibodies, Viral/blood , Arterivirus/immunology , Arterivirus Infections/immunology , Cytokines/blood , Erythrocebus , Female , Hemorrhagic Fevers, Viral/immunology , Macaca , Macrophages/virology , Male , Monkey Diseases/virology , RNA, Viral , Virus Replication
17.
Virology ; 525: 150-160, 2018 12.
Article in English | MEDLINE | ID: mdl-30286427

ABSTRACT

Recombinant SHFV infectious cDNA clones expressing a foreign gene from an additional sg mRNA were constructed. Two 3' genomic region sites, between ORF4' and ORF2b and between ORF4 and ORF5, were utilized for insertion of the myxoma M013 gene with a C-terminal V5 tag followed by one of the three inserted transcription regulatory sequences (TRS), TRS2', TRS4' or TRS7. M013 insertion at the ORF4'/ORF2b site but not the ORF4/ORF5 site generated progeny virus but only the recombinant virus with an inserted TRS2' retained the entire M013 gene through passage four. Insertion of an auto-fluorescent protein gene, iLOV, with an inserted TRS2' at the ORF4'/ORF2b site, generated viable progeny virus. iLOV expression was maintained through passage eight. Although regulation of SHFV subgenomic RNA synthesis is complex, the ORF4'/ORF2b site, which is located between the two sets of minor structural proteins, is able to tolerate foreign gene insertion.


Subject(s)
Arterivirus/genetics , Gene Expression Regulation, Viral/physiology , Regulatory Sequences, Ribonucleic Acid/genetics , Base Sequence , RNA, Messenger , RNA, Viral/genetics , Reassortant Viruses , Viral Proteins/genetics , Viral Proteins/metabolism
18.
Virology ; 522: 73-80, 2018 09.
Article in English | MEDLINE | ID: mdl-30014860

ABSTRACT

Tissues from Australian brushtail possums (Trichosurus vulpecula) that had been experimentally infected with wobbly possum disease (WPD) virus (WPDV) were examined to elucidate pathogenesis of WPDV infection. Mononuclear inflammatory cell infiltrates were present in livers, kidneys, salivary glands and brains of WPD-affected possums. Specific staining was detected by immunohistochemistry within macrophages in the livers and kidneys, and undefined cell types in the brains. The highest viral RNA load was found in macrophage-rich tissues. The detection of viral RNA in the salivary gland, serum, kidney, bladder and urine is compatible with transmission via close physical contact during encounters such as fighting or grooming, or by contact with an environment that has been contaminated with saliva or urine. Levels of viral RNA remained high in all tissues tested throughout the study, suggesting that on-going virus replication and evasion of the immune responses may be important in the pathogenesis of disease.


Subject(s)
Arterivirus/pathogenicity , RNA Virus Infections/pathology , RNA, Viral/analysis , Trichosurus , Viral Load , Animal Structures/pathology , Animal Structures/virology , Animals , Arterivirus/isolation & purification , Blood/virology , Disease Models, Animal , Histocytochemistry , Immunohistochemistry , Macrophages/virology , Microscopy , RNA Virus Infections/virology , Urine/virology
19.
Sci Rep ; 8(1): 11171, 2018 07 24.
Article in English | MEDLINE | ID: mdl-30042503

ABSTRACT

The family Arteriviridae harbors a rapidly expanding group of viruses known to infect a divergent group of mammals, including horses, pigs, possums, primates, and rodents. Hosts infected with arteriviruses present with a wide variety of (sub) clinical symptoms, depending on the virus causing the infection and the host being infected. In this study, we determined the complete genome sequences of three variants of a previously unknown virus found in Olivier's shrews (Crocidura olivieri guineensis) sampled in Guinea. On the nucleotide level, the three genomes of this new virus, named Olivier's shrew virus 1 (OSV-1), are 88-89% similar. The genome organization of OSV-1 is characteristic of all known arteriviruses, yet phylogenetic analysis groups OSV-1 separately from all currently established arterivirus lineages. Therefore, we postulate that OSV-1 represents a member of a novel arterivirus genus. The virus described here represents the first discovery of an arterivirus in members of the order Eulipotyphla, thereby greatly expanding the known host spectrum of arteriviruses.


Subject(s)
Arterivirus/genetics , Genome, Viral/genetics , Shrews/blood , Shrews/virology , Animals , Arteriviridae , Arterivirus/isolation & purification , Bayes Theorem , Frameshifting, Ribosomal/genetics , Guinea , Host Microbial Interactions , Open Reading Frames/genetics , Phylogeny , Sequence Analysis, RNA , Whole Genome Sequencing
20.
J Biol Chem ; 293(31): 12054-12067, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29887523

ABSTRACT

Nidovirus endoribonucleases (NendoUs) include nonstructural protein 15 (nsp15) from coronaviruses and nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E, and MHV nsp15 indicate that it mainly forms a functional hexamer, whereas nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine Deltacoronavirus (PDCoV) nsp15 primarily exists as dimers and monomers in vitro Biological experiments reveal that a PDCoV nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV nsp15. This result may explain why PDCoV nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells, that NendoU from arterivirus gained the ability to form dimers, and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses.


Subject(s)
Coronavirus/chemistry , Endoribonucleases/chemistry , Nidovirales/chemistry , Protein Subunits/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Arterivirus/chemistry , Arterivirus/classification , Arterivirus/genetics , Arterivirus/metabolism , Binding Sites , Cloning, Molecular , Coronavirus/classification , Coronavirus/genetics , Coronavirus/metabolism , Crystallography, X-Ray , Endoribonucleases/genetics , Endoribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Evolution, Molecular , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Models, Molecular , Nidovirales/classification , Nidovirales/genetics , Nidovirales/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...