Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.205
Filter
1.
BMC Microbiol ; 24(1): 261, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004720

ABSTRACT

BACKGROUND: The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS: The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS: This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.


Subject(s)
Astragalus Plant , Microbiota , Plant Roots , Rhizosphere , Soil Microbiology , Plant Roots/microbiology , Plant Roots/metabolism , Astragalus Plant/microbiology , Astragalus Plant/metabolism , Nitrogen-Fixing Bacteria/metabolism , Nitrogen-Fixing Bacteria/genetics , Saponins/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Metabolomics , Arthrobacter/metabolism , Arthrobacter/genetics , Endophytes/metabolism , Endophytes/genetics , Rhizobium/metabolism
2.
Article in English | MEDLINE | ID: mdl-39008344

ABSTRACT

Gram-stain-positive, aerobic, rod-shaped strains, YJM1T and YJM12S, were isolated from Maebong Mountain, Dogok-dong, Gangnam-gu, Seoul, Republic of Korea. Strains YJM1T and YJM12S exhibited growth at 5-35 °C (optimum, 20-30 °C) and pH 6-9 (optimum, pH 7) and in 0-4 % (w/v) NaCl. Strains YJM1T and YJM12S showed highest 16S rRNA gene sequence similarity to the following members of the genus Arthrobacter: A. nanjingensis A33T (98.3 %/98.2 % similarity), A. woluwensis NBRC 107840T (98.2 %/98.1 %), A. humicola KV-653T (97.3 %), A. oryzae KV-651T (97.3 %), and A. globiformis NBRC 12137T (97.2 %). The strains grew well on Reasoner's 2A, nutrient, Mueller-Hinton, yeast-dextrose, and glucose-peptone-meat extract agars. The major polar lipids of strain YJM1T were phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylinositol. The primary respiratory quinone of strain YJM1T was MK-9(H2), and the major fatty acids of strains YJM1T and YJM12S were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, and iso-C16 : 0. The DNA G+C content, based on the whole genome sequence of strain YJM1T, was 68.3 mol%. Average nucleotide identity values and digital DNA-DNA hybridization values between strain YJM1T and the reference strains ranged from 75.0 to 92.7 % and from 21.0 to 65.3 %, respectively. Strain YJM1T exhibited antimicrobial activity against Bacillus subtilis and Escherichia coli. Considering the chemotaxonomic, phenotypic, genotypic, and phylogenetic results, we propose the strain YJM1T represents a novel species in the genus Arthrobacter and suggest the name Arthrobacter horti sp. nov. (type strain YJM1T=KACC 23300T=JCM 36483T).


Subject(s)
Arthrobacter , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , Arthrobacter/genetics , Arthrobacter/classification , Arthrobacter/isolation & purification , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , DNA, Bacterial/genetics , Republic of Korea , Vitamin K 2/analogs & derivatives , Phospholipids/chemistry , Seoul
3.
Water Sci Technol ; 89(11): 2921-2935, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877622

ABSTRACT

This paper centers on the preparation and characterization of both a clay support and a faujasite zeolite membrane. Additionally, the study explores the development of bacterial media to assess the performance of these prepared membranes. The faujasite zeolite membrane was created using the hydrothermal method, involving the deposition of a faujasite layer to fine-tune the pore sizes of the clay support. The clay supports were crafted from clay which was sieved to particle size Φ ≤ 63 µm, and compacted with 3.0 wt.% activated carbon, then sintered at 1,000 °C. Distilled water fluxes revealed a decrease from 1,500 L m-2 h-1 to a minimum of 412 L m-2 h-1 after 180 min of filtration. Both membranes were characterized by XRF, XRD, FTIR, adsorption-desorption of nitrogen (N2), and SEM-EDS. PCR technique was used for the identification of the isolated Arthrobacter sp., and the retention of the bacteria on the clay support and the faujasite zeolite membrane were found to be 96 and 99%, respectively. The results showed that the faujasite zeolite membrane passed the clay support due to a narrow pore size of the faujasite zeolite membrane of 2.28 nm compared to 3.55 nm for the clay supports.


Subject(s)
Arthrobacter , Membranes, Artificial , Wastewater , Zeolites , Zeolites/chemistry , Wastewater/microbiology , Wastewater/chemistry , Filtration/methods , Water Purification/methods
4.
ACS Appl Mater Interfaces ; 16(27): 35155-35165, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38920304

ABSTRACT

The catalytic efficiency of enzymes can be harnessed as an environmentally friendly solution for decontaminating various xenobiotics and toxins. However, for some xenobiotics, several enzymatic steps are needed to obtain nontoxic products. Another challenge is the low durability and stability of many native enzymes in their purified form. Herein, we coupled peptide-based encapsulation of bacterial phosphotriesterase with soil-originated bacteria, Arthrobacter sp. 4Hß as an efficient system capable of biodegradation of paraoxon, a neurotoxin pesticide. Specifically, recombinantly expressed and purified methyl parathion hydrolase (MPH), with high hydrolytic activity toward paraoxon, was encapsulated within peptide nanofibrils, resulting in increased shelf life and retaining ∼50% activity after 132 days since purification. Next, the addition of Arthrobacter sp. 4Hß, capable of degrading para-nitrophenol (PNP), the hydrolysis product of paraoxon, which is still toxic, resulted in nondetectable levels of PNP. These results present an efficient one-pot system that can be further developed as an environmentally friendly solution, coupling purified enzymes and native bacteria, for pesticide bioremediation. We further suggest that this system can be tailored for different xenobiotics by encapsulating the rate-limiting key enzymes followed by their combination with environmental bacteria that can use the enzymatic step products for full degradation without the need to engineer synthetic bacteria.


Subject(s)
Biodegradation, Environmental , Paraoxon , Phosphoric Triester Hydrolases , Paraoxon/metabolism , Paraoxon/chemistry , Phosphoric Triester Hydrolases/metabolism , Phosphoric Triester Hydrolases/chemistry , Arthrobacter/enzymology , Peptides/chemistry , Peptides/metabolism , Nitrophenols/metabolism , Nitrophenols/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrolysis , Pesticides/metabolism , Pesticides/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification
5.
J Environ Manage ; 362: 121250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833921

ABSTRACT

To investigate the impact and mechanism of Cd-tolerant bacteria in soil on promoting Cd accumulation in Ageratum conyzoides L., we verified the impact of inoculating two strains, B-1 (Burkholderia contaminans HA09) and B-7 (Arthrobacter humicola), on Cd accumulation in A. conyzoides through a pot experiment. Additionally, we investigated the dissolution of CdCO3 and nutrient elements, as well as the release of indoleacetic acid (IAA) by the two strains. The results showed that both strains can significantly improve the dissolution of CdCO3. Strains B-1 and B-7 had obvious effect of dissolving phosphorus, which was 5.63 and 2.76 times higher than that of the control group, respectively. Strain B-7 had significant effect of dissolution potassium, which was 1.79 times higher than that of the control group. Strains B-1 and B-7 had significant nitrogen fixation effect, which was 29.53 and 44.39 times higher than that of the control group, respectively. In addition, inoculating with strain B-1 and B-7 significantly increased the Cd extraction efficiency of A. conyzoides (by 114% and 45% respectively) through enhancing Cd accumulation and the biomass of A. conyzoides. Furthermore, the inoculation of strain B-1 and B-7 led to a significant increase in the activities of CAT and SOD, as well as the content of chlorophyll a and total chlorophyll in the leaves of A. conyzoides. To sum up, strain B-1 and B-7 can promote the phytoremediation efficiency of A. conyzoides on Cd by promoting the biomass and Cd accumulation of A. conyzoides.


Subject(s)
Ageratum , Arthrobacter , Biodegradation, Environmental , Cadmium , Soil Pollutants , Cadmium/metabolism , Arthrobacter/metabolism , Soil Pollutants/metabolism , Ageratum/metabolism , Burkholderia/metabolism , Indoleacetic Acids/metabolism
6.
Microb Cell Fact ; 23(1): 140, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760827

ABSTRACT

BACKGROUND: Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS: In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS: UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.


Subject(s)
Cadmium Compounds , Quantum Dots , Rhodococcus , Ultraviolet Rays , Quantum Dots/chemistry , Antarctic Regions , Cadmium Compounds/metabolism , Cadmium Compounds/chemistry , Rhodococcus/metabolism , Rhodococcus/genetics , Arthrobacter/metabolism , Arthrobacter/genetics , Sulfides/metabolism , Sulfides/chemistry
7.
Mar Drugs ; 22(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38535445

ABSTRACT

Sulfation is gaining increased interest due to the role of sulfate in the bioactivity of many polysaccharides of marine origin. Hence, sulfatases, enzymes that control the degree of sulfation, are being more extensively researched. In this work, a novel sulfatase (SulA1) encoded by the gene sulA1 was characterized. The sulA1-gene is located upstream of a chondroitin lyase encoding gene in the genome of the marine Arthrobacter strain (MAT3885). The sulfatase was produced in Escherichia coli. Based on the primary sequence, the enzyme is classified under sulfatase family 1 and the two catalytic residues typical of the sulfatase 1 family-Cys57 (post-translationally modified to formyl glycine for function) and His190-were conserved. The enzyme showed increased activity, but not improved stability, in the presence of Ca2+, and conserved residues for Ca2+ binding were identified (Asp17, Asp18, Asp277, and Asn278) in a structural model of the enzyme. The temperature and pH activity profiles (screened using p-nitrocatechol sulfate) were narrow, with an activity optimum at 40-50 °C and a pH optimum at pH 5.5. The Tm was significantly higher (67 °C) than the activity optimum. Desulfation activity was not detected on polymeric substrates, but was found on GalNAc4S, which is a sulfated monomer in the repeated disaccharide unit (GlcA-GalNAc4S) of, e.g., chondroitin sulfate A. The position of the sulA1 gene upstream of a chondroitin lyase gene and combined with the activity on GalNAc4S suggests that there is an involvement of the enzyme in the chondroitin-degrading cascade reaction, which specifically removes sulfate from monomeric GalNAc4S from chondroitin sulfate degradation products.


Subject(s)
Arthrobacter , Sulfates , Acetylgalactosamine , Sulfatases , Escherichia coli , Galactosamine , Chondroitin Lyases , Cloning, Molecular
8.
Biosci Biotechnol Biochem ; 88(6): 630-636, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38553959

ABSTRACT

N-Methylisothiazolinone (MIT) is a thiol group modifier and antimicrobial agent. Arthrobacter sarcosine oxidase (SoxA), a diagnostic enzyme for assaying creatinine, loses its activity upon the addition of MIT, and its inactivation mechanism remains unclear. In this study, SoxA was chemically modified using MIT (mo-SoxA), and its structural and chemical properties were characterized. Spectral analysis data, oxygen consumption rates, and reactions were compared between intact SoxA and mo-SoxA. These demonstrate that the oxidative half-reaction toward oxygen is inhibited by MIT modification. The oxidase activity of mo-SoxA was approximately 2.1% of that of intact SoxA, and its dehydrogenase activity was approximately 4.2 times higher. The C-to-S mutants revealed that cooperative modification of 2 specific cysteine residues caused a drastic change in the enzyme reaction mode. Based on the modeled tertiary structures, the putative entrance for oxygen uptake is predicted to be blocked by the chemical modification of the 2 cysteine residues.


Subject(s)
Arthrobacter , Oxygen , Sarcosine Oxidase , Thiazoles , Arthrobacter/enzymology , Oxygen/metabolism , Oxygen/chemistry , Sarcosine Oxidase/metabolism , Sarcosine Oxidase/chemistry , Sarcosine Oxidase/genetics , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology , Oxidation-Reduction , Cysteine/chemistry , Cysteine/metabolism , Models, Molecular , Kinetics
9.
Food Chem ; 441: 138336, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38183723

ABSTRACT

Inulin fructotransferase converts prebiotic polysaccharide inulin to difructose anhydride III, known for its numerous beneficial physiological effects. While previous studies focused on using inulin extracts under optimal conditions, this study delves into the enzyme's behavior when dealing with more complex food materials, inulin-rich burdock root, which possesses greater nutritional value but may influence the enzymatic reaction. An inulin fructotransferase from Arthrobacter sp. ISL-85 was identified and characterized, which has the highest activity of 783 U mg-1 at pH 6.5 and 65 °C and remains stable even up to 80 °C. When applied to inulin-rich burdock root (pH 4.7) at 80 °C for 2 h, the enzyme yielded 4.1 g of difructose anhydride III, concurrently increasing fructo-oligosaccharides. This study demonstrates the potential of this enzyme as a valuable tool for efficiently processing inulin within whole food materials under high temperatures. Such an approach could pave the way for enhancing nutrition and promoting health benefits.


Subject(s)
Arctium , Arthrobacter , Hexosyltransferases , Inulin , Fructans , Oligosaccharides , Hexosyltransferases/chemistry
10.
Int J Biol Macromol ; 254(Pt 2): 127781, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37923040

ABSTRACT

A novel l-arabinose isomerase (L-AI) from Arthrobacter psychrolactophilus (Ap L-AI) was successfully cloned and characterized. The enzyme catalyzes the isomerization of d-galactose into a rare sugar d-tagatose. The recombinant Ap L-AI had an approximate molecular weight of about 258 kDa, suggesting it was an aggregate of five 58 kDa monomers and became the first record as a homo-pentamer L-AI. The catalytic efficiency (kcat/Km) and Km for d-galactose were 0.32 mM-1 min-1 and 51.43 mM, respectively, while for l-arabinose, were 0.64 mM-1 min-1 and 23.41 mM, respectively. It had the highest activity at pH 7.0-7.5 and 60 °C in the presence of 0.250 mM Mn2+. Ap L-AI was discovered to be an outstanding thermostable enzyme that only lost its half-life value at 60 °C for >1000 min. These findings suggest that l-arabinose isomerase from Arthrobacter psychrolactophilus is a promising candidate for d-tagatose mass-production due to its industrially competitive temperature.


Subject(s)
Aldose-Ketose Isomerases , Arthrobacter , Galactose/chemistry , Recombinant Proteins/genetics , Cloning, Molecular , Hexoses/chemistry , Aldose-Ketose Isomerases/chemistry , Hydrogen-Ion Concentration
11.
Proteins ; 92(2): 302-313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864384

ABSTRACT

Endosulfan is an organochlorine insecticide widely used for agricultural pest control. Many nations worldwide have restricted or completely banned it due to its extreme toxicity to fish and aquatic invertebrates. Arthrobacter sp. strain KW has the ability to degrade α, ß endosulfan and its intermediate metabolite endosulfate; this degradation is associated with Ese protein, a two-component flavin-dependent monooxygenase (TC-FDM). Employing in silico tools, we obtained the 3D model of Ese protein, and our results suggest that it belongs to the Luciferase Like Monooxygenase family (LLM). Docking studies showed that the residues V59, V315, D316, and T335 interact with α-endosulfan. The residues: V59, T60, V315, D316, and T335 are implicated in the interacting site with ß-endosulfan, and the residues: H17, V315, D316, T335, N364, and Q363 participate in the interaction with endosulfate. Topological analysis of the electron density by means of the Quantum Theory of Atoms in Molecules (QTAIM) and the Non-Covalent Interaction (NCI) index reveals that the Ese-ligands complexes are formed mainly by dispersive forces, where Cl atoms have a predominant role. As Ese is a monooxygenase member, we predict the homodimer formation. However, enzymatic studies must be developed to investigate the Ese protein's enzymatic and catalytic activity.


Subject(s)
Arthrobacter , Insecticides , Animals , Endosulfan/chemistry , Endosulfan/metabolism , Arthrobacter/metabolism , Biodegradation, Environmental , Insecticides/chemistry , Insecticides/metabolism , Mixed Function Oxygenases
12.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-38018813

ABSTRACT

Four yellow-coloured strains (zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826) were isolated from the intestinal contents of Marmota himalayana and assigned to the 'Arthrobacter citreus group'. The four strains grew optimally on brain heart infusion agar with 5 % defibrinated sheep blood plate at 30 °C, pH 7.0 and with 0.5 % NaCl (w/v). Comparative analysis of their 16S rRNA genes indicated that the two strain pairs belong to the genus Arthrobacter, showing the highest similarity to Arthrobacter yangruifuii 785T (99.52 %), which was further confirmed by the 16S rRNA gene and genome-based phylogenetic analysis. The comparative genomic analysis [digital DNA-DNA hybridization, (dDDH) and average nucleotide identity (ANI)] proved that the four strains are two different species (zg-Y815T/zg-Y108, 71.7 %/96.8 %; zg-Y859T/zg-Y826, 87.3 %/98.5 %) and differ from other known species within the genus Arthrobacter (zg-Y815T, 19.6-32.3 %/77.2-88.0 %; zg-Y859T, 19.5-29.3 %/77.4-86.3 %). Strain pairs zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826 had the same major cellular fatty acids (iso-C16 : 0 and anteiso-C15 : 0), with MK-8(H2) as their dominant respiratory quinone (70.6 and 61.7 %, respectively). The leading polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol. The detected amino acids and cell-wall sugars of the two new species were identical (amino acids: alanine, glutamic acid, and lysine; sugars: rhamnose, galactose, mannose, glucose, and ribose). According to the phylogenetic, phenotypic, and chemotaxonomic analyses, we concluded that the four new strains represented two different novel species in the genus Arthrobacter, for which the names Arthrobacter zhaoxinii sp. nov. (zg-Y815T= GDMCC 1.3494T = JCM 35821T) and Arthrobacter jinronghuae sp. nov. (zg-Y859T = GDMCC 1.3493T = JCM 35822T) are proposed.


Subject(s)
Arthrobacter , Animals , Sheep , Fatty Acids/chemistry , Phospholipids/chemistry , Marmota , Phylogeny , RNA, Ribosomal, 16S/genetics , Vitamin K 2/chemistry , Base Composition , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Amino Acids , Comparative Genomic Hybridization , Sugars
13.
Int. microbiol ; 26(4): 723-739, Nov. 2023. ilus, graf
Article in English | IBECS | ID: ibc-227464

ABSTRACT

Arthrobacter ureafaciens DnL1-1 is a bacterium used for atrazine degradation, while Trichoderma harzianum LTR-2 is a widely used biocontrol fungus. In this study, a liquid co-cultivation of these two organisms was initially tested. The significant changes in the metabolome of fermentation liquors were investigated based on cultivation techniques (single-cultured and co-cultured DnL1-1 and LTR-2) using an UPLC-QTOF-MS in an untargeted metabolomic approach. Principle components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) supervised modelling revealed modifications of the metabolic profiles in fermentation liquors as a function of interactions between different strains. Compared with pure-cultivation of DnL1-1, 51 compounds were altered during the cocultivation, with unique and significant differences in the abundance of organic nitrogen compounds (e.g. carnitine, acylcarnitine 4:0, acylcarnitine 5:0, 3-dehydroxycarnitine and O-acetyl-L-carnitine) and trans-zeatin riboside. Nevertheless, compared with pure-cultivation of LTR-2, the abundance of 157 compounds, including amino acids, soluble sugars, organic acids, indoles and derivatives, nucleosides, and others, changed significantly in the cocultivation. Among them, the concentration of tryptophan, which is a precursor to indoleacetic acid, indoleacetic acid, aspartic acid, and L-glutamic acid increased while that of most soluble sugars decreased upon cocultivation. The fermentation filtrates of co-cultivation of LTR-2 and DnL1-1 showed significant promoting effects on germination and radicle length of wheat. A subsequent experiment demonstrated synergistic effects of differential metabolites caused by co-cultivation of DnL1-1 and LTR-2 on wheat germination. Comprehensive metabolic profiling may provide valuable information on the effects of DnL1-1 and LTR-2 on wheat growth.(AU)


Subject(s)
Arthrobacter/growth & development , Trichoderma/growth & development , Coculture Techniques , Metabolome , Fermentation , Triticum , Arthrobacter/metabolism , Trichoderma/metabolism , Microbiology
14.
Microbiol Spectr ; 11(6): e0529222, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37800942

ABSTRACT

IMPORTANCE: As the management of wheat fungal diseases becomes increasingly challenging, the use of bacterial agents with biocontrol potential against the two major wheat phytopathogens, Fusarium graminearum and Zymoseptoria tritici, may prove to be an interesting alternative to conventional pest management. Here, we have shown that dimethylpolysulfide volatiles are ubiquitously and predominantly produced by wheat-associated Microbacterium and Arthrobacter actinomycetes, displaying antifungal activity against both pathogens. By limiting pathogen growth and DON virulence factor production, the use of such DMPS-producing strains as soil biocontrol inoculants could limit the supply of pathogen inocula in soil and plant residues, providing an attractive alternative to dimethyldisulfide fumigant, which has many non-targeted toxicities. Notably, this study demonstrates the importance of bacterial volatile organic compound uptake by inhibited F. graminearum, providing new insights for the study of volatiles-mediated toxicity mechanisms within bacteria-fungus signaling crosstalk.


Subject(s)
Actinobacteria , Arthrobacter , Microbacterium , Triticum/microbiology , Actinomyces , Soil , Plant Diseases/prevention & control , Plant Diseases/microbiology
15.
Arch Virol ; 168(11): 276, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864004

ABSTRACT

A new virulent phage, SWEP2, infecting the Arthrobacter sp. 5B strain, was isolated from black soil samples in northeastern China. SWEP2 has a latent period of 80 min and a burst size of 45 PFU (evaluated at an MOI of 0.1). Genomic analysis revealed that the 43,398-bp dsDNA genome of phage SWEP2 contains 64 open reading frames (ORFs) and one tRNA gene. Phylogenetic analysis indicated a close relationship between SWEP2 and Arthrobacter phage Liebe, with 82.98% identity and a query coverage of 48%. Based on its distinct phenotypic and genetic characteristics, SWEP2 is identified as a novel Arthrobacter phage.


Subject(s)
Arthrobacter , Bacteriophages , Arthrobacter/genetics , Phylogeny , Genome, Viral , Genomics , Open Reading Frames
16.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37861393

ABSTRACT

A Gram-stain-positive, catalase-positive, non-motile bacteria, with a rod-coccus cycle (designated as EH-1B-1T) was isolated from a soil sample from Union Glacier in Ellsworth Mountains, Antarctica. Strain EH-1B-1T had an optimal growth temperature of 28 °C and grew at pH 7-10. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and anteiso-C17 : 0. The G+C content based on the whole genome sequence was 63.1 mol%. Strain EH-1B-1T was most closely related to members of the genus Arthrobacter, namely Arthrobacter subterraneus and Arthrobacter tumbae. The strain grew on tryptic soy agar, Reasoner's 2A agar, lysogeny broth agar and nutrient agar. The average nucleotide identity and digital DNA-DNA hybridization values between strain EH-1B-1T and its closest reference type strains ranged from 78 to 88 % and from 20.9 to 36.3 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, it is proposed that strain EH-1B-1T represents a novel species of Arthrobacter, for which the name Arthrobacter vasquezii sp. nov. is proposed, with strain EH-1B-1T (RGM 3386T=LMG 32961T) as the type strain.


Subject(s)
Arthrobacter , Fatty Acids , Fatty Acids/chemistry , Phospholipids/chemistry , Ice Cover , Antarctic Regions , Agar , Base Composition , Phylogeny , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2/chemistry , Peptidoglycan/chemistry , Soil
17.
Chemosphere ; 341: 140093, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37678595

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) has been widely detected in soil, water, and sediment as a priority control pollutant. Immobilized microorganism technology is gradually mature and applied in production. Biochar prepared from agricultural wastes is an excellent immobilized carrier because of its porous structure and abundant functional groups. Environmental acidification was caused by degrading bacteria Arthrobacter sp. JQ-1 (JQ-1) respiration and acidic metabolites during DEHP degradation, which affected the passage life of microorganisms and the removal efficiency of DEHP. The mechanism of DEHP degradation by the combined action of JQ-1 and corn straw biochar (BC) at 600 °C was investigated, and bacterial viability, microenvironmental changes, and kinetic tests were performed in this research. Compared with biodegradation group alone, the degradation rate of DEHP in 1% biochar unloaded and loaded with JQ-1 increased by 18.3% and 30.9%, and its half-life decreased to 23.90 h and 11.95h, a reduction of 31.37 h. The percentage of detected living JQ-1 increased as biochar content increased when loading capacity was less than 1%. In which, (JQ-1-BC2) group was 4.1% higher than (JQ-1-BC1) group. Biochar has the ability to neutralize acidifying environmental pH due to its alkaline functional groups, including lactone group, -OH, -COO-. 1% biochar loaded with JQ-1 increased the pH of the microenvironment by 0.57 and alkaline phosphatase (AKP) activity by 0.0063 U·mL-1, which promoted the reduction of PA. Study suggested that biochar loaded with JQ-1 could simultaneously adsorb and degrade DEHP during the process of DEHP removal. Biochar could be used as a biological stimulant to increase abundance and metabolism, enhance the utilization of DEHP by JQ-1. Biochar (1% (w/v)) loaded with JQ-1 as DEHP removal material showed good performance. Biochar not only as an immobilized carrier, but also as a biostimulant, providing an effective strategy for the collaborative remediation of PAEs contaminated.


Subject(s)
Arthrobacter , Diethylhexyl Phthalate , Phthalic Acids , Soil Pollutants , Diethylhexyl Phthalate/metabolism , Arthrobacter/metabolism , Microbial Viability , Soil Pollutants/chemistry , Biodegradation, Environmental , Soil/chemistry
18.
Pol J Microbiol ; 72(3): 277-283, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37725900

ABSTRACT

Uricase (or Urate oxidase), a key enzyme involved in purine metabolism, is commonly used in treating conditions such as gout, hyperuricemia, and tumor lysis syndrome. In this study, a uricase-producing strain (named CSAJ-16) was isolated from the soil sample of Cangshan Mountain, Yunnan Province, China. This strain was identified as Arthrobacter sp. CSAJ-16. Based on the gene sequence alignment, the uricase gene (named aruox) of Arthrobacter sp. CSAJ-16 was amplified and heterologously expressed. The recombinant uricase (ArUOX) was about 32 kDa. The optimal pH and temperature of ArUOX were pH 7 and 20°C, respectively. The ArUOX remained above 50% relative activity after incubation at 37°C for 100 min or at pH 6.0-8.6 for 24 h. Moreover, metal ions such as K+, Mg2+, Ca2+, Ba2+ and Pb2+ can significantly enhance the activity of ArUOX (> 200%). These enzymatic properties indicate that ArUOX has potential applications in pharmaceutical enzymes and uric acid detection kits.


Subject(s)
Arthrobacter , Arthrobacter/genetics , China , Urate Oxidase/genetics , Sequence Alignment , Cloning, Molecular
19.
Ecotoxicol Environ Saf ; 263: 115361, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37597289

ABSTRACT

Cadmium (Cd) removal from soil to reduce Cd accumulation in plants is essential for agroecology, food safety, and human health. Cd enters plants from soil and affects plant growth and development. Hydrogels can easily combine with Cd, thereby altering its bioavailability in soil. However, few studies have evaluated the effects of hydrogel on the complex phytotoxicity caused by Cd uptake in plants and the microbial community structure. Herein, a new poly (acrylic acid)-grafted starch and potassium humate composite (S/K/AA) hydrogel was added to soil to evaluate its impact on tobacco growth and the soil microenvironment. The results indicate that the addition of S/K/AA hydrogel can significantly improve the biomass, chlorophyll (Chl) content, and photosynthetic capacity of tobacco plants during Cd stress conditions, and decrease Cd concentration, probably by affecting Cd absorption through the expression of Cd absorption transporters (e.g., NRAMP5, NRAMP3, and IRT1). Moreover, the application of S/K/AA hydrogel not only reduced the accumulation of reactive oxygen species (ROS), but also reduced the antioxidant activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), suggesting that S/K/AA hydrogel alleviates Cd toxicity via a non-antioxidant pathway. Notably, we further analyzed the effectiveness of the hydrogel on microbial communities in Cd-contaminated soil and found that it increased the Cd-tolerant microbial community (Arthrobacter, Massilia, Streptomyces), enhancing the remediation ability of Cd-contaminated soil and helping tobacco plants to alleviate Cd toxicity. Overall, our study provides primary insights into how S/K/AA hydrogel affects Cd bioavailability and alleviates Cd toxicity in plants.


Subject(s)
Arthrobacter , Cadmium , Humans , Cadmium/toxicity , Biological Availability , Nicotiana , Hydrogels
20.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445776

ABSTRACT

Antimicrobial peptides (AMPs) are naturally occurring molecules found in various organisms that can help to defend against invading microorganisms and reduce the likelihood of drug resistance development. This study focused on the isolation of new AMPs from the genome library of a Gram-positive bacterium called Arthrobacter sp. H5. To achieve this, we used the Bacillus subtilis expression system and employed bioinformatics techniques to optimize and modify the peptides, resulting in the development of a new synthetic antimicrobial peptide (SAMP). Ap920 is expected to be a new antimicrobial peptide with a high positive charge (+12.5). Through optimization, a new synthetic antimicrobial peptide, Ap920-WI, containing only 15 amino acids, was created. Thereafter, the antimicrobial and antifungal activities of Ap920-WI were determined using minimum inhibitory concentration (MIC) and the concentration for 50% of maximal effect (EC50). The Ap920-WI peptide was observed to target the outer membrane of fungal hyphae, leading to inhibition of growth in Rhizoctonia Solani, Sclerotinia sclerotiorum, and Botrytis cinerea. In plants, Ap920-WI showed significant antifungal activity and inhibited the infestation of S. sclerotiorum on rape leaves. Importantly, Ap920-WI was found to be safe for mammalian cells since it did not show any hemolytic activity against sheep red blood cells. Overall, the study found that the new synthetic antimicrobial peptide Ap920-WI exhibits broad-spectrum activity against microorganisms and may offer a new solution for controlling plant diseases, as well as hold potential for drug development.


Subject(s)
Anti-Infective Agents , Arthrobacter , Animals , Sheep , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Antifungal Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacillus subtilis , Plant Diseases/microbiology , Microbial Sensitivity Tests , Anti-Bacterial Agents , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...