Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.067
Filter
1.
Bioorg Chem ; 147: 107315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604017

ABSTRACT

Seven new meroterpenoids, paraphaeones A-G (1-7), and two new polyketides, paraphaeones H-I (8-9), along with eight known compounds (10-17), were isolated from the endophytic fungus Paraphaeosphaeria sp. C-XB-J-1. The structures of 1-9 were identified through the analysis of 1H, 13C, and 2D NMR spectra, assisted by HR-ESI-MS data. Compounds 1 and 7 exhibited a dose-dependent decrease in lactate dehydrogenase levels, with IC50 values of 1.78 µM and 1.54 µM, respectively. Moreover, they inhibited the secretion of IL-1ß and CASP-1, resulting in a reduction in the activity levels of NLRP3 inflammasomes. Fluorescence microscopy results indicated that compound 7 concentration-dependently attenuated cell pyroptosis. Additionally, compounds 4 and 7 showed potential inhibitory effects on the severe acute respiratory syndrome coronavirus-2 main protease (SARS-CoV-2 Mpro), with IC50 values of 10.8 ± 0.9 µM and 12.9 ± 0.7 µM, respectively.


Subject(s)
Ascomycota , Coronavirus 3C Proteases , Polyketides , SARS-CoV-2 , Terpenes , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/isolation & purification , Ascomycota/chemistry , Humans , Terpenes/chemistry , Terpenes/pharmacology , Terpenes/isolation & purification , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Molecular Structure , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Structure-Activity Relationship , COVID-19 Drug Treatment , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
2.
Chin J Nat Med ; 22(4): 356-364, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658098

ABSTRACT

A comprehensive chemical study of the endophytic fungus Arthrinium sp. ZS03, associated with Acorus tatarinowii Schott, yielded eleven pimarane diterpenoids (compounds 1-11), including seven novel compounds designated arthrinoids A-G (1-7). The determination of their structures and absolute configurations was achieved through extensive spectroscopic techniques, quantum chemical calculations of electronic circular dichroism (ECD), and single-crystal X-ray diffraction analysis. Furthermore, 7 demonstrated inhibitory activity against Klebsiella pneumoniae, comparable to the reference antibiotic amikacin, with a minimum inhibitory concentration (MIC) of 8 µg·mL-1.


Subject(s)
Abietanes , Anti-Bacterial Agents , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Abietanes/pharmacology , Abietanes/chemistry , Abietanes/isolation & purification , Molecular Structure , Ascomycota/chemistry , Klebsiella pneumoniae/drug effects , Diterpenes/pharmacology , Diterpenes/chemistry , Crystallography, X-Ray
3.
J Nat Prod ; 87(4): 914-923, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38587866

ABSTRACT

Fungal 10-membered lactones (TMLs), such as stagonolide A, herbarumin I, pinolidoxin, and putaminoxin, are promising candidates for the development of nature-derived herbicides. The aim of this study was to analyze the structure-activity relationships (SAR) of C-9-methyl-substituted TMLs with a multitarget bioassay approach to reveal compounds with useful (phytotoxic, entomotoxic, antimicrobial) or undesirable (cytotoxic) bioactivities. A new TML, stagonolide L (1), along with five known compounds (stagonolides D (2) and E (3), curvulides A (4) and B1/B2 (5a,b), and pyrenolide C (6)), were purified from cultures of the phytopathogenic fungus Stagonospora cirsii, and five semisynthetic derivatives of 3 and 4 (7-11) were obtained. The absolute configuration of 4 was revised to 2Z, 4S, 5S, 6R, and 9R. The identity of 5a,b and stagonolide H is discussed. The phytotoxicity of compound 4, the entomotoxicity of 5a,b, and nonselective toxicity of compound 6 are demonstrated. The latter confirms the hypothesis that the α,ß-unsaturated carbonyl group is associated with the high general toxicity of TML, regardless of its position in the ring and other substituents. The epoxide in compound 4 is important for phytotoxicity. The revealed SAR patterns will be useful for further rational design of TML-based herbicides including curvulide A analogs with a 4,5-epoxy group.


Subject(s)
Herbicides , Lactones , Structure-Activity Relationship , Molecular Structure , Lactones/chemistry , Lactones/pharmacology , Herbicides/pharmacology , Herbicides/chemistry , Animals , Ascomycota/chemistry
4.
J Agric Food Chem ; 72(17): 10023-10030, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630649

ABSTRACT

Some truffles are expensive and, therefore, are prone to food fraud. A particular problem is the differentiation of high-priced Tuber magnatum truffles from cheaper Tuber borchii truffles, both of which are white truffles with similar morphological characteristics. Using an untargeted approach, the volatiles isolated from samples of both species were screened for potential marker compounds by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and statistical analysis of the obtained semiquantitative data. Results suggested bis(methylsulfanyl)methane and furan-2(5H)-one as compounds characterizing T. magnatum and T. borchii, respectively. Exact quantitation of both volatiles by conventional one-dimensional gas chromatography-mass spectrometry in combination with stable isotopologues of the target compounds as internal standards confirmed both as marker compounds. The method is suitable to be used in the routine analysis for the objective species differentiation of T. magnatum and T. borchii.


Subject(s)
Ascomycota , Furans , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Volatile Organic Compounds/chemistry , Furans/chemistry , Furans/analysis , Ascomycota/chemistry , Ascomycota/classification
5.
J Agric Food Chem ; 72(17): 9599-9610, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38646697

ABSTRACT

In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 µg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 µg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 µg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 µg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 µM), which was obviously more potent than those of boscalid (IC50 = 7.92 µM) and fluxapyroxad (IC50 = 6.15 µM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.


Subject(s)
Botrytis , Fungicides, Industrial , Oximes , Plant Diseases , Pyrazoles , Rhizoctonia , Succinate Dehydrogenase , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Pyrazoles/pharmacology , Pyrazoles/chemistry , Structure-Activity Relationship , Plant Diseases/microbiology , Plant Diseases/prevention & control , Oximes/chemistry , Oximes/pharmacology , Botrytis/drug effects , Botrytis/growth & development , Molecular Docking Simulation , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ascomycota/drug effects , Ascomycota/chemistry , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
6.
Food Chem ; 449: 139175, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38593723

ABSTRACT

Postharvest harmful pathogenic infestation leads to rapid decay in longan fruit. Compared with P. longanae-infected longans, AEOW alleviated fruit disease severity and diminished the O2-. production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans.


Subject(s)
Fruit , Plant Diseases , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Fruit/chemistry , Fruit/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Oxidation-Reduction , Membrane Lipids/metabolism , Ascomycota/chemistry , Water/metabolism , Lipid Peroxidation/drug effects , Lipid Metabolism , Electrolysis
7.
Phytochemistry ; 222: 114078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574958

ABSTRACT

Six undescribed infrequent eremophilane derivatives including diaportheremopholins A - F and its previously undescribed side chain (E)-2-methyloct-2-enoic acid, together with three known compounds (testacein, xestodecalactones B and C), were isolated from the endophytic fungus Diaporthe sp. BCC69512. The chemical structures were determined based on NMR spectroscopic information in conjunction with the evidence from NOESY spectrum, Mosher's application, and chemical reactions for corroborating the absolute configurations. The isolated compounds were evaluated for biological properties such as antimalarial, anti-TB, anti-phytopathogenic fungal, antibacterial activities and for cytotoxicity against malignant (MCF-7 and NCI-H187) and non-malignant (Vero) cells. Diaportheremopholins B (2) and E (5) possessed broad antimicrobial activity against Mycobacterium tuberculosis, Bacillus cereus, Alternaria brassicicola and Colletotrichum acutatum with MICs in a range of 25.0-50.0 µg/mL. Testacein (7) exhibited strong anti-A. brassicicola and anti-C. acutatum activities with equal MIC values of 3.13 µg/mL. Moreover, diaportheremopholin F (6) and compound 8 displayed antitubercular activity with equal MIC values of 50.0 µg/mL. All tested compounds were non-cytotoxic against MCF-7, NCI-H187, and Vero cells, except those compounds 2 and 5-7 exhibited weak cytotoxicity against both malignant and non-malignant cells with IC50 values in a range of 15.5-115.5 µM.


Subject(s)
Alternaria , Ascomycota , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Humans , Ascomycota/chemistry , Chlorocebus aethiops , Alternaria/chemistry , Vero Cells , Mycobacterium tuberculosis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus cereus/drug effects , Animals , Molecular Structure , Drug Screening Assays, Antitumor , Colletotrichum/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Structure-Activity Relationship , MCF-7 Cells , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Dose-Response Relationship, Drug
8.
Phytochemistry ; 222: 114103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636686

ABSTRACT

Eight new cytochalasans rosellichalasins A-H (1-8), as well as two new shunt metabolites rosellinins A (9) and B (10) before intramolecular Diels-Alder cycloaddition reaction in cytochalasan biosynthesis, along with nine known cytochalsans (11-19) were isolated from the endophytic fungus Rosellinia sp. Glinf021, which was derived from the medicinal plant Glycyrrhiza inflata. Their structures were characterized by extensive analysis of 1D and 2D NMR as well as HRESIMS spectra and quantum chemical ECD calculations. The cytotoxic activities of these compounds were evaluated against four human cancer cell lines including HCT116, MDA-MB-231, BGC823, and PANC-1 with IC50 values ranging from 0.5 to 58.2 µM.


Subject(s)
Antineoplastic Agents , Cytochalasins , Drug Screening Assays, Antitumor , Humans , Cytochalasins/chemistry , Cytochalasins/pharmacology , Cytochalasins/isolation & purification , Molecular Structure , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Ascomycota/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Endophytes/chemistry
9.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675588

ABSTRACT

Two α-pyrone analogs were isolated from the endophytic fungus Diaporthe sp. CB10100, which is derived from the medicinal plant Sinomenium acutum. These analogs included a new compound, diaporpyrone F (3), and a known compound, diaporpyrone D (4). The structure of 3 was identified by a comprehensive examination of HRESIMS, 1D and 2D NMR spectroscopic data. Bioinformatics analysis revealed that biosynthetic gene clusters for α-pyrone analogs are common in fungi of Diaporthe species. The in vitro α-glucosidase inhibitory activity and antibacterial assay of 4 revealed that it has a 46.40% inhibitory effect on α-glucosidase at 800 µM, while no antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Mycolicibacterium (Mycobacterium) smegmatis or Klebsiella pneumoniae at 64 µg/mL. Molecular docking and molecular dynamics simulations of 4 with α-glucosidase further suggested that the compounds are potential α-glucosidase inhibitors. Therefore, α-pyrone analogs can be used as lead compounds for α-glucosidase inhibitors in more in-depth studies.


Subject(s)
Ascomycota , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyrones , alpha-Glucosidases , Pyrones/chemistry , Pyrones/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Ascomycota/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Molecular Structure , Microbial Sensitivity Tests
10.
Arch Microbiol ; 206(4): 187, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514498

ABSTRACT

Endolichenic fungi are expecting for new bioresources of pharmacological compounds. However, the number of investigations targeting antioxidant compounds produced by endolichenic fungi remains limited. To discover new antioxidant compounds, we analyzed the antioxidant activity of the methanol extracts derived from isolated lichen mycobionts or endolichenic fungi induced from Pyxine subcinerea. We performed this analysis using the oxygen radical absorbance capacity (ORAC) method. As a result, we isolated from an endolichenic fungus identified as Penicillium sp.-stain 1322P in Pyxine subcinerea. This fungus produced a red pigment, and its chemical structure was determined to be sclerotioramine based on the analytical data obtained from NMR, LC-MS/MS, and HPLC-PDA. Sclerotioramine exhibited high antioxidant activity, and the ORAC values (mean ± SD) of sclerotioramine and sclerotiorin were 11.4 ± 0.36 and 4.86 ± 0.70 mmol TE per gram of the respective pure compound. Thus, the antioxidant activity of sclerotioramine was greater than twice that of sclerotiorin. This work represents the first report that the antioxidant activity of sclerotioramine is higher than that of the sclerotiorin.


Subject(s)
Ascomycota , Penicillium , Antioxidants/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Ascomycota/chemistry , Penicillium/chemistry
11.
J Nat Prod ; 87(4): 810-819, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38427823

ABSTRACT

Eight new decahydrofluorene-class alkaloids, microascones A and B (1 and 2), 2,3-epoxyphomapyrrolidone C (3), 14,16-epiascomylactam B (4), 24-hydroxyphomapyrrolidone A (5), and microascones C-E (6-8), along with five known analogs (9-13) were isolated from the marine-derived fungus Microascus sp. SCSIO 41821. Compounds 1 and 2 have an unprecedented complex macrocyclic alkaloid skeleton with a 6/5/6/5/6/5/13 polycyclic system. Their structures and absolute configurations were determined by spectroscopic analysis, quantum chemical calculations of ECD spectra, and 13C NMR chemical shifts. Compounds 10-13 showed selective enzyme inhibitory activity against PTPSig, PTP1B, and CDC25B, and 4, 9, and 10 exhibited strong antibacterial activity against seven tested pathogens. Their structure-bioactivity relationship was discussed, and a plausible biosynthetic pathway for 1-8 was also proposed.


Subject(s)
Alkaloids , Anti-Bacterial Agents , Microbial Sensitivity Tests , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Structure-Activity Relationship , Marine Biology , Ascomycota/chemistry , Fluorenes/pharmacology , Fluorenes/chemistry , Fluorenes/isolation & purification , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors
12.
Phytochemistry ; 221: 114046, 2024 May.
Article in English | MEDLINE | ID: mdl-38460780

ABSTRACT

Eight previously undescribed chromones eleusineketones A-H (1-8), as well as eight known compounds (9-16), were isolated from the endophytic fungus Bipolaris eleusines. These planar structures were created using an in-depth analysis of their spectral data, which included 1D, 2D, and HRESIMS data. Furthermore, the absolute configurations of compounds 1, 2, and 6 were determined by spectroscopic analysis and quantum chemical computational approaches, and compound 5 was determined by single-crystal X-ray diffraction analysis. The cytotoxic activity assay revealed that compounds 1 and 5 both inhibited MDA-MB-231 cells with IC50 values of 14.48 µM and 17.99 µM, respectively.


Subject(s)
Ascomycota , Chromones , Molecular Structure , Chromones/pharmacology , Chromones/chemistry , Bipolaris , Ascomycota/chemistry
13.
Int J Biol Macromol ; 264(Pt 2): 130656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453116

ABSTRACT

Morels (Morchella spp.), which are cultivated only in a few regions of the world, are edible mushrooms known for their various properties including antioxidation, immune regulation, antiinflammation, and antitumor effects. Polysaccharides from Morchella are principally responsible for its antioxidant activity. This paper reviews the extraction, purification, structural analysis and antioxidant activity of Morchella polysaccharides (MPs), providing updated research progress. Meanwhile, the structural-property relationships of MPs were further discussed. In addition, based on in vitro and in vivo studies, the major factors responsible for the antioxidant activity of MPs were summarized including scavenging free radicals, reduction capacity, inhibitory lipid peroxidation activity, regulating the signal transduction pathway, reducing the production of ROS and NO, etc. Finally, we hope that our research can provide a reference for further research and development of MPs.


Subject(s)
Agaricales , Ascomycota , Antioxidants/metabolism , Ascomycota/chemistry , Agaricales/chemistry , Polysaccharides/pharmacology , Polysaccharides/analysis
14.
Mycologia ; 116(3): 449-463, 2024.
Article in English | MEDLINE | ID: mdl-38484286

ABSTRACT

Proteomics has been used extensively in the field of mycology, mainly in trying to understand the complex network of protein-protein interactions that has been implicated in the molecular functions of fungi. It is also a useful tool to compare metabolic differences within a genus. Species of Pseudogymnoascus, a genus under the phyla Ascomycota, have been shown to play an important role in the soil environment. They have been found in both polar and temperate regions and are a known producer of many extracellular hydrolases that contribute to soil decomposition. Despite the apparent importance of Pseudogymnoascus spp. in the soil ecosystem, investigations into their molecular functions are still very limited. In the present study, proteomic characterization of six Pseudogymnoascus spp. isolated from three biogeographic regions (the Arctic, Antarctic, and temperate regions) was carried out using tandem mass spectrometry. Prior to proteomic analysis, the optimization for protein extraction was carried out. Trichloroacetic acid­acetone­phenol was found to be the best extraction method to be used for proteomic profiling of Pseudogymnoascus spp. The proteomic analysis identified 2003 proteins that were successfully mapped to the UniProtKB database. The identified proteins were clustered according to their biological processes and molecular functions. The shared proteins found in all Pseudogymnoascus spp. (1201 proteins) showed a significantly close relationship in their basic cellular functions, despite differences in morphological structures. Analysis of Pseudogymnoascus spp. proteome also identified proteins that were unique to each region. However, a high number of these proteins belonged to protein families of similar molecular functions, namely, transferases and hydrolases. Our proteomic data can be used as a reference for Pseudogymnoascus spp. across different global regions and a foundation for future soil ecosystem function research.


Subject(s)
Ascomycota , Fungal Proteins , Proteomics , Soil Microbiology , Ascomycota/classification , Ascomycota/metabolism , Ascomycota/genetics , Ascomycota/chemistry , Ascomycota/isolation & purification , Fungal Proteins/metabolism , Fungal Proteins/genetics , Proteome , Tandem Mass Spectrometry , Arctic Regions
15.
J Nat Prod ; 87(4): 1159-1170, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38552032

ABSTRACT

Paraphaeoketones A-C (1-3) were isolated from the culture broth of Paraphaeosphaeria sp. KT4192. Their structures and relative configurations were determined using spectroscopic analysis and verified through density functional theory (DFT)-based chemical shift calculations. The absolute configurations of these compounds were determined by comparing the experimental electronic circular dichroism (ECD) spectra with those based on DFT calculations. We also propose a plausible biosynthetic route to 1-3. While our prior studies on the isolation and structural elucidation of paraphaeolactones (e.g., 4) led us to suggest a Favorskii rearrangement for their biosynthesis, the isolation of 2 prompted the proposal of an alternative biosynthesis for 4, featuring a benzilic acid rearrangement of 2. Moreover, an in vitro conversion of 2 into 4 was achieved successfully, suggesting that a biosynthetic pathway for paraphaeolactones involving a benzilic acid rearrangement is more plausible than the previously presumed Favorskii rearrangement pathway. Arguments based on DFT calculations for these pathways are also described.


Subject(s)
Ascomycota , Ketones , Ascomycota/chemistry , Ascomycota/metabolism , Lactones/chemistry , Lactones/metabolism , Molecular Structure , Ketones/chemistry , Ketones/metabolism
16.
Int J Biol Macromol ; 265(Pt 2): 131088, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521315

ABSTRACT

Curcumin is a multitargeting nutraceutical with numerous health benefits, however, its efficacy is limited due to poor aqueous solubility and reduced bioavailability. While nano-formulation has emerged as an alternative to encounter such issues, it often involves use of toxic solvents. Microbial synthesis may be an innovative solution to address this lacuna. Present study, for the first time, reports exploitation of Aureobasidium pullulans RBF4A3 for production of nano-curcumin. For this purpose, Aureobasidium pullulans RBF4A3 was inoculated in YPD media along with curcumin (0.1 mg/mL) and incubated for 24 h, 48 h, and 72 h. Subsequently, residual sugar, biomass, EPS concentration, curcumin concentration, and curcumin nanoparticle size were measured. As a result, nano-curcumin with an average particle size of 31.63 nm and enhanced aqueous solubility was obtained after 72 h. Further, investigations suggested that pullulan, a reducing polysaccharide, played a significant role in curcumin nano-formulation. Pullulan-mediated nano-curcumin formulation, with an average particle size of 24 nm was achieved with conversion rate of around 59.19 %, suggesting improved aqueous solubility. Additionally, the anti-oxidant assay of the resulting nano-curcumin was around 53.7 % per µg. Moreover, kinetics and thermodynamic studies of pullulan-based nano-curcumin revealed that it followed first-order kinetics and was favored by elevated temperature for efficient bio-conversion. Also, various physico-chemical investigations like FT-IR, NMR, and XRD reveal that pullulan backbone remains intact while forming curcumin nanoparticle. This study may open up new avenues for synthesizing nano-polyphenols through a completely green and solvent free process with plausible diverse applications.


Subject(s)
Ascomycota , Aureobasidium , Curcumin , Glucans , Fermentation , Curcumin/pharmacology , Spectroscopy, Fourier Transform Infrared , Ascomycota/chemistry , Water/chemistry
17.
Chem Biodivers ; 21(4): e202400385, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421379

ABSTRACT

Chemical prospection of an extract derived from a saprotrophic fungus Lachnum sp. IW157 resulted in the isolation and characterization of six unprecedentedly reported ambuic acid analogues named lachnuoic acids A-F (1-6). Chemical structures of 1-6 were determined based on comprehensive 1D and 2D NMR spectroscopic analyses together with HR-ESI-MS spectrometry. The relative configurations of 1-3 were defined by ROESY spectroscopic analyses while their absolute configurations were unambiguously determined by Mosher's esters method. All isolated compounds were subjected to cytotoxic, antimicrobial, antibiofilm and nematicidal activity assays where only lachnuoic acid A (1) revealed potent antimicrobial activity against Staphylococcus aureus and Bacillus subtilis at MIC values of 16.6 and 8.3 µg/mL, respectively.


Subject(s)
Anti-Infective Agents , Ascomycota , Molecular Structure , Ascomycota/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Cyclohexanones
18.
Molecules ; 29(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338348

ABSTRACT

Chronic inflammation plays a crucial role in the development and progression of numerous chronic diseases. To search for anti-inflammatory metabolites from endophytic fungi isolated from plants growing in Thai mangrove areas, a chemical investigation of those fungi was performed. Five new oxygenated isocoumarins, setosphamarins A-E (1-5) were isolated from the EtOAc extract of an endophytic fungus Setosphaeria rostrata, along with four known isocoumarins and one xanthone. Their structures were determined by extensive spectroscopic analysis. The absolute configurations of the undescribed compounds were established by comparative analysis between experimental and calculated circular dichroism (ECD) spectroscopy. All the compounds were evaluated for their anti-inflammatory activity by monitoring nitric oxide inhibition in lipopolysaccharide-induced macrophage J774A.1 cells. Only a xanthone, ravenelin (9), showed potent activity, with an IC50 value of 6.27 µM, and detailed mechanistic study showed that it suppressed iNOS and COX-2 expression.


Subject(s)
Ascomycota , Xanthones , Isocoumarins/chemistry , Thailand , Ascomycota/chemistry , Anti-Inflammatory Agents/pharmacology , Xanthones/pharmacology , Molecular Structure
19.
Z Naturforsch C J Biosci ; 79(3-4): 89-92, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38421614

ABSTRACT

A novel isocoumarin was isolated from the mycelia of the dark septate endophytic fungus Phialocephala fortinii. The chemical structure was determined to be 8-hydroxy-6-methoxy-3,7-dimethyl-1H-2-benzopyran-1-one based on mass spectrometry, 1H-nuclear magnetic resonance (NMR), and 13C-NMR spectroscopic analyses, including 2D-NMR experiments. The isolated compound inhibited root growth of Arabidopsis thaliana, suggesting its potential as a plant growth regulator.


Subject(s)
Arabidopsis , Ascomycota , Isocoumarins , Plant Roots , Isocoumarins/chemistry , Isocoumarins/pharmacology , Isocoumarins/isolation & purification , Ascomycota/chemistry , Plant Roots/microbiology , Arabidopsis/microbiology , Magnetic Resonance Spectroscopy , Endophytes/chemistry , Mycelium/growth & development , Mycelium/chemistry , Mycelium/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/chemistry , Molecular Structure
20.
J Nat Prod ; 87(2): 304-314, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38320172

ABSTRACT

Pleosmaranes A-R (1-18), 18 new isopimarane-type diterpenoids, together with four known analogs (19-22), were isolated from the mangrove endophytic fungus Pleosporales sp. HNQQJ-1. Their structures and absolute configurations were established by analysis of their spectroscopic data and electronic circular dichroism (ECD) calculations. Compounds 1-9 possess an unusual aromatic B ring and a 20-nor-isopimarane skeleton. Compounds 15-17 contain a unique 2-oxabicyclo[2.2.2]octane moiety. Compound 18 features an unexpected 2-oxabicyclo[3.2.1]octane moiety. Compounds 8 and 12 exhibited a moderate inhibitory effect against LPS-induced NO production, with IC50 values of 19 and 25 µM, respectively.


Subject(s)
Ascomycota , Diterpenes , Abietanes/pharmacology , Octanes , Ascomycota/chemistry , Diterpenes/pharmacology , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...