Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Direct ; 4: 51, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20021668

ABSTRACT

BACKGROUND: Eukaryotic Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) encode most if not all of the enzymes involved in their DNA replication. It has been inferred that genes for these enzymes were already present in the last common ancestor of the NCLDV. However, the details of the evolution of these genes that bear on the complexity of the putative ancestral NCLDV and on the evolutionary relationships between viruses and their hosts are not well understood. RESULTS: Phylogenetic analysis of the ATP-dependent and NAD-dependent DNA ligases encoded by the NCLDV reveals an unexpectedly complex evolutionary history. The NAD-dependent ligases are encoded only by a minority of NCLDV (including mimiviruses, some iridoviruses and entomopoxviruses) but phylogenetic analysis clearly indicated that all viral NAD-dependent ligases are monophyletic. Combined with the topology of the NCLDV tree derived by consensus of trees for universally conserved genes suggests that this enzyme was represented in the ancestral NCLDV. Phylogenetic analysis of ATP-dependent ligases that are encoded by chordopoxviruses, most of the phycodnaviruses and Marseillevirus failed to demonstrate monophyly and instead revealed an unexpectedly complex evolutionary trajectory. The ligases of the majority of phycodnaviruses and Marseillevirus seem to have evolved from bacteriophage or bacterial homologs; the ligase of one phycodnavirus, Emiliana huxlei virus, belongs to the eukaryotic DNA ligase I branch; and ligases of chordopoxviruses unequivocally cluster with eukaryotic DNA ligase III. CONCLUSIONS: Examination of phyletic patterns and phylogenetic analysis of DNA ligases of the NCLDV suggest that the common ancestor of the extant NCLDV encoded an NAD-dependent ligase that most likely was acquired from a bacteriophage at the early stages of evolution of eukaryotes. By contrast, ATP-dependent ligases from different prokaryotic and eukaryotic sources displaced the ancestral NAD-dependent ligase at different stages of subsequent evolution. These findings emphasize complex routes of viral evolution that become apparent through detailed phylogenomic analysis but not necessarily in reconstructions based on phyletic patterns of genes. REVIEWERS: This article was reviewed by: Patrick Forterre, George V. Shpakovski, and Igor B. Zhulin.


Subject(s)
Biological Evolution , DNA Ligases/genetics , DNA Viruses/enzymology , DNA Viruses/genetics , Asfarviridae/classification , Asfarviridae/enzymology , Asfarviridae/genetics , Cell Nucleus/enzymology , Cytoplasm/virology , DNA Ligase ATP , DNA Ligases/metabolism , DNA Viruses/classification , Eukaryota , Genome, Viral , Iridoviridae/classification , Iridoviridae/enzymology , Iridoviridae/genetics , Phycodnaviridae/classification , Phycodnaviridae/enzymology , Phycodnaviridae/genetics , Phylogeny , Poxviridae/classification , Poxviridae/enzymology , Poxviridae/genetics
2.
Biochemistry ; 45(49): 14826-33, 2006 Dec 12.
Article in English | MEDLINE | ID: mdl-17144676

ABSTRACT

We previously demonstrated that the DNA repair system encoded by the African swine fever virus (ASFV) is both extremely error-prone during the single-nucleotide gap-filling step (catalyzed by ASFV DNA polymerase X) and extremely error-tolerant during the nick-sealing step (catalyzed by ASFV DNA ligase). On the basis of these findings we have suggested that at least some of the diversity known to exist among ASFV isolates may be a consequence of mutagenic DNA repair, wherein damaged nucleotides are replaced with undamaged but incorrect nucleotides by Pol X and the resultant mismatched nicks are sealed by ASFV DNA ligase. Recently, this hypothesis appeared to be discredited by Salas and co-workers [(2003) J. Mol. Biol. 326, 1403-1412], who reported the fidelity of Pol X to be, on average, 2 orders of magnitude higher than what we previously published. In an effort to address this discrepancy and provide a definitive conclusion about the fidelity of Pol X, herein we examine the fidelity of Pol X-catalyzed single-nucleotide gap-filling in both the steady state and the pre-steady state under a diverse array of assay conditions (varying pH and ionic strength) and within different DNA sequence contexts. These studies corroborate our previously published data (demonstrating the low fidelity of Pol X to be independent of assay condition/sequence context), do not reproduce the data of Salas et al., and therefore confirm Pol X to be one of the most error-prone polymerases known. These results are discussed in light of ASFV biology and the mutagenic DNA repair hypothesis described above.


Subject(s)
Asfarviridae/enzymology , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Asfarviridae/genetics , Base Sequence , DNA Repair , Kinetics , Molecular Sequence Data , Mutation , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...