Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.361
Filter
1.
Mol Brain ; 17(1): 25, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773624

ABSTRACT

A growing body of evidence indicates intra- and inter-regional heterogeneity of astrocytes in the brain. However, because of a lack of an efficient method for isolating astrocytes from the spinal cord, little is known about how much spinal cord astrocytes are heterogeneous in adult mice. In this study, we developed a new method for isolating spinal astrocytes from adult mice using a cold-active protease from Bacillus licheniformis with an astrocyte cell surface antigen-2 (ACSA-2) antibody. Using fluorescence-activated cell sorting, isolated spinal ACSA-2+ cells were divided into two distinct populations, ACSA-2high and ACSA-2low. By analyzing the expression of cell-type marker genes, the ACSA-2high and ACSA-2low populations were identified as astrocytes and ependymal cells, respectively. Furthermore, ACSA-2high cells had mRNAs encoding genes that were abundantly expressed in the gray matter (GM) but not white matter astrocytes. By optimizing enzymatic isolation procedures, the yield of GM astrocytes also increased. Therefore, our newly established method enabled the selective and efficient isolation of GM astrocytes from the spinal cord of adult mice and may be useful for bulk- or single-cell RNA-sequencing under physiological and pathological conditions.


Subject(s)
Astrocytes , Cell Separation , Gray Matter , Spinal Cord , Animals , Astrocytes/metabolism , Astrocytes/cytology , Spinal Cord/cytology , Cell Separation/methods , Mice, Inbred C57BL , Mice , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics , Aging
2.
J Neurosci Res ; 102(5): e25356, 2024 May.
Article in English | MEDLINE | ID: mdl-38773875

ABSTRACT

From the blood brain barrier to the synaptic space, astrocytes provide structural, metabolic, ionic, and extracellular matrix (ECM) support across the brain. Astrocytes include a vast array of subtypes, their phenotypes and functions varying both regionally and temporally. Astrocytes' metabolic and regulatory functions poise them to be quick and sensitive responders to injury and disease in the brain as revealed by single cell sequencing. Far less is known about the influence of the local healthy and aging microenvironments on these astrocyte activation states. In this forward-looking review, we describe the known relationship between astrocytes and their local microenvironment, the remodeling of the microenvironment during disease and injury, and postulate how they may drive astrocyte activation. We suggest technology development to better understand the dynamic diversity of astrocyte activation states, and how basal and activation states depend on the ECM microenvironment. A deeper understanding of astrocyte response to stimuli in ECM-specific contexts (brain region, age, and sex of individual), paves the way to revolutionize how the field considers astrocyte-ECM interactions in brain injury and disease and opens routes to return astrocytes to a healthy quiescent state.


Subject(s)
Astrocytes , Brain , Extracellular Matrix , Astrocytes/physiology , Astrocytes/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/physiology , Humans , Animals , Brain/metabolism , Brain Injuries/pathology , Brain Injuries/metabolism
3.
Theranostics ; 14(7): 2856-2880, 2024.
Article in English | MEDLINE | ID: mdl-38773968

ABSTRACT

Cell metabolism reprogramming to sustain energy production, while reducing oxygen and energy consuming processes is crucially important for the adaptation to hypoxia/ischemia. Adaptive metabolic rewiring is controlled by hypoxia-inducible factors (HIFs). Accumulating experimental evidence indicates that timely activation of HIF in brain-resident cells improves the outcome from acute ischemic stroke. However, the underlying molecular mechanisms are still incompletely understood. Thus, we investigated whether HIF-dependent metabolic reprogramming affects the vulnerability of brain-resident cells towards ischemic stress. Methods: We used genetic and pharmacological approaches to activate HIF in the murine brain in vivo and in primary neurons and astrocytes in vitro. Numerous metabolomic approaches and molecular biological techniques were applied to elucidate potential HIF-dependent effects on the central carbon metabolism of brain cells. In animal and cell models of ischemic stroke, we analysed whether HIF-dependent metabolic reprogramming influences the susceptibility to ischemic injury. Results: Neuron-specific gene ablation of prolyl-4-hydroxylase domain 2 (PHD2) protein, negatively regulating the protein stability of HIF-α in an oxygen dependent manner, reduced brain injury and functional impairment of mice after acute stroke in a HIF-dependent manner. Accordingly, PHD2 deficient neurons showed an improved tolerance towards ischemic stress in vitro, which was accompanied by enhanced HIF-1-mediated glycolytic lactate production through pyruvate dehydrogenase kinase-mediated inhibition of the pyruvate dehydrogenase. Systemic treatment of mice with roxadustat, a low-molecular weight pan-PHD inhibitor, not only increased the abundance of numerous metabolites of the central carbon and amino acid metabolism in murine brain, but also ameliorated cerebral tissue damage and sensorimotor dysfunction after acute ischemic stroke. In neurons and astrocytes roxadustat provoked a HIF-1-dependent glucose metabolism reprogramming including elevation of glucose uptake, glycogen synthesis, glycolytic capacity, lactate production and lactate release, which enhanced the ischemic tolerance of astrocytes, but not neurons. We found that strong activation of HIF-1 in neurons by non-selective inhibition of all PHD isoenzymes caused a HIF-1-dependent upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 redirecting glucose-6-phosphate from pentose phosphate pathway (PPP) to the glycolysis pathway. This was accompanied by a reduction of NADPH production in the PPP, which further decreased the low intrinsic antioxidant reserve of neurons, making them more susceptible to ischemic stress. Nonetheless, in organotypic hippocampal cultures with preserved neuronal-glial interactions roxadustat decreased the neuronal susceptibility to ischemic stress, which was largely prevented by restricting glycolytic energy production through lactate transport blockade. Conclusion: Collectively, our results indicate that HIF-1-mediated metabolic reprogramming alleviates the intrinsic vulnerability of brain-resident cells to ischemic stress.


Subject(s)
Astrocytes , Carbon , Hypoxia-Inducible Factor 1, alpha Subunit , Hypoxia-Inducible Factor-Proline Dioxygenases , Ischemic Stroke , Neurons , Animals , Mice , Ischemic Stroke/metabolism , Neurons/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Carbon/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice, Inbred C57BL , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Disease Models, Animal , Brain Ischemia/metabolism , Glycolysis/drug effects , Brain/metabolism , Cellular Reprogramming/drug effects
4.
BMJ Case Rep ; 17(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724215

ABSTRACT

Autoimmune encephalitis due to glial fibrillar acidic protein (GFAP) astrocytopathy is a rare cause of subacute neuropsychiatric changes. In this case, a young patient presented with a viral prodrome and meningismus, followed by progressive encephalopathy and movement disorders over the span of 2 weeks. Due to his clinical trajectory, inflammatory cerebrospinal fluid (CSF) analysis, initial normal brain imaging and negative serum autoimmune encephalopathy panel, his initial diagnosis was presumed viral meningoencephalitis. The recurrence and progression of neuropsychiatric symptoms and myoclonus despite antiviral treatment prompted further investigation, inclusive of testing for CSF autoimmune encephalopathy autoantibodies, yielding a clinically meaningful, positive GFAP autoantibody. This case highlights the importance of appropriately testing both serum and CSF autoantibodies when an autoimmune encephalitic process is considered. Through this case, we review the clinical and radiographic manifestations of GFAP astrocytopathy, alongside notable pearls pertaining to this autoantibody syndrome and its management.


Subject(s)
Autoantibodies , Encephalitis , Glial Fibrillary Acidic Protein , Humans , Male , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/immunology , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Encephalitis/diagnosis , Encephalitis/immunology , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , Astrocytes/pathology , Astrocytes/immunology , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/immunology , Hashimoto Disease/diagnosis , Hashimoto Disease/blood , Diagnosis, Differential , Adult , Magnetic Resonance Imaging
5.
Acta Neuropathol Commun ; 12(1): 73, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715119

ABSTRACT

BACKGROUND: Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS: The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS: Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS: In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.


Subject(s)
Alzheimer Disease , Astrocytes , Lewy Body Disease , Microglia , Neuroinflammatory Diseases , Humans , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Female , Male , Aged , Aged, 80 and over , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Microglia/pathology , Microglia/metabolism , Astrocytes/pathology , Astrocytes/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Antigens, CD/metabolism , Amyloid beta-Peptides/metabolism , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Brain/pathology , Brain/metabolism , CD68 Molecule
6.
J Neurosci Res ; 102(5): e25339, 2024 May.
Article in English | MEDLINE | ID: mdl-38741550

ABSTRACT

Diets rich in saturated fats are more detrimental to health than those containing mono- or unsaturated fats. Fatty acids are an important source of energy, but they also relay information regarding nutritional status to hypothalamic metabolic circuits and when in excess can be detrimental to these circuits. Astrocytes are the main site of central fatty acid ß-oxidation, and hypothalamic astrocytes participate in energy homeostasis, in part by modulating hormonal and nutritional signals reaching metabolic neurons, as well as in the inflammatory response to high-fat diets. Thus, we hypothesized that how hypothalamic astrocytes process-specific fatty acids participates in determining the differential metabolic response and that this is sex dependent as males and females respond differently to high-fat diets. Male and female primary hypothalamic astrocyte cultures were treated with oleic acid (OA) or palmitic acid (PA) for 24 h, and an untargeted metabolomics study was performed. A clear predictive model for PA exposure was obtained, while the metabolome after OA exposure was not different from controls. The observed modifications in metabolites, as well as the expression levels of key metabolic enzymes, indicate a reduction in the activity of the Krebs and glutamate/glutamine cycles in response to PA. In addition, there were specific differences between the response of astrocytes from male and female mice, as well as between hypothalamic and cerebral cortical astrocytes. Thus, the response of hypothalamic astrocytes to specific fatty acids could result in differential impacts on surrounding metabolic neurons and resulting in varied systemic metabolic outcomes.


Subject(s)
Astrocytes , Hypothalamus , Oleic Acid , Palmitic Acid , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Oleic Acid/pharmacology , Female , Palmitic Acid/pharmacology , Hypothalamus/metabolism , Hypothalamus/drug effects , Male , Mice , Mice, Inbred C57BL , Sex Characteristics , Cells, Cultured
7.
Neuropathol Appl Neurobiol ; 50(3): e12982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38742276

ABSTRACT

AIMS: Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS: This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS: We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS: Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , Disease Models, Animal , Matrix Metalloproteinase 9 , Mice, Transgenic , Microglia , Animals , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Microglia/metabolism , Microglia/pathology , Mice , Matrix Metalloproteinase 9/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Motor Neurons/pathology , Motor Neurons/metabolism , Phagocytosis/physiology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
8.
CNS Neurosci Ther ; 30(5): e14726, 2024 05.
Article in English | MEDLINE | ID: mdl-38715251

ABSTRACT

AIMS: The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS: We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS: Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION: Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.


Subject(s)
Astrocytes , Hypothermia , Nociception , Preoptic Area , Animals , Preoptic Area/drug effects , Preoptic Area/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Nociception/physiology , Hypothermia/chemically induced , Male , Mice , Receptors, Purinergic P1/metabolism , Mice, Inbred C57BL , Adenosine/metabolism , Capsaicin/pharmacology , Formaldehyde/toxicity , Formaldehyde/pharmacology
9.
CNS Neurosci Ther ; 30(5): e14740, 2024 05.
Article in English | MEDLINE | ID: mdl-38715318

ABSTRACT

AIMS: γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS: Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS: The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS: In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.


Subject(s)
Astrocytes , Flavanones , Flavonoids , Lipopolysaccharides , Neurons , Plant Extracts , Scutellaria baicalensis , gamma-Aminobutyric Acid , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Flavanones/pharmacology , Scutellaria baicalensis/chemistry , Mice , gamma-Aminobutyric Acid/metabolism , Neurons/drug effects , Neurons/metabolism , Male , Flavonoids/pharmacology , Plant Extracts/pharmacology , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Monoamine Oxidase/metabolism , Neural Inhibition/drug effects , Hippocampus/drug effects , Hippocampus/metabolism
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 303-310, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38710514

ABSTRACT

Objective To clarify the relationship between astrocyte activation patterns and disease progression in epidemic encephalitis B (Japanese encephalitis). Methods First, a mouse model of epidemic encephalitis B was constructed by foot-pad injection of Japanese encephalitis virus (JEV), and the expression of viral protein NS3 in different brain regions was detected by immunofluorescence assay (IFA). Next, IFA, RNA sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) were used to clarify the changes in the astrocyte activation patterns at different stages of epidemic encephalitis B. Finally, intracerebroventricular administration of irisin was conducted to regulate the proportion of activation in complement C3-positive A1 astrocytes and S100A10-positive A2 astrocytes, investigating whether it could improve the body mass, behavioral scores, and brain tissue damage in a mouse model. Results NS3 protein was detected by IFA predominantly in the M1/M2 region of the motor cortex and the hippocampus. The number and volume of GFAP-positive astrocytes significantly increased in JEV-infected brain regions, in which the expression of multiple genes associated with A1/A2 astrocyte activation was significantly enhanced. Although intracerebroventricular or intraperitoneal injection of irisin did not improve the prognosis of epidemic encephalitis B, it inhibited the activation of A1 astrocytes and ameliorate neuroinflammation. Conclusion Neurons in the M1/M2 motor cortex and hippocampus are susceptible to JEV infection, in which the abnormal astrocyte activation contributes to the neuroinflammatory injury. Irisin administration may restrain A1 astrocyte activation and alleviate neuroinflammation following JEV infection.


Subject(s)
Astrocytes , Disease Models, Animal , Disease Progression , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Astrocytes/metabolism , Astrocytes/virology , Mice , Encephalitis, Japanese/immunology , Encephalitis Virus, Japanese/physiology , Brain/metabolism , Brain/virology , Brain/pathology , Male , Fibronectins/metabolism , Fibronectins/genetics
11.
Int J Neural Syst ; 34(6): 2450028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706265

ABSTRACT

Spiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original SNP systems only consider the time delay caused by the execution of rules within neurons, but not caused by the transmission of spikes via synapses between neurons and its adaptive adjustment. In view of the importance of time delay for SNP systems, which are a time encoding computation model, this study proposes SNP systems with adaptive synaptic time delay (ADSNP systems) based on the dynamic regulation mechanism of synaptic transmission delay in neural systems. In ADSNP systems, besides neurons, astrocytes that can generate adenosine triphosphate (ATP) are introduced. After receiving spikes, astrocytes convert spikes into ATP and send ATP to the synapses controlled by them to change the synaptic time delays. The Turing universality of ADSNP systems in number generating and accepting modes is proved. In addition, a small universal ADSNP system using 93 neurons and astrocytes is given. The superiority of the ADSNP system is demonstrated by comparison with the six variants. Finally, an ADSNP system is constructed for credit card fraud detection, which verifies the feasibility of the ADSNP system for solving real-world problems. By considering the adaptive synaptic delay, ADSNP systems better restore the process of information transmission in biological neural networks, and enhance the adaptability of SNP systems, making the control of time more accurate.


Subject(s)
Astrocytes , Models, Neurological , Neural Networks, Computer , Neurons , Synapses , Synaptic Transmission , Synapses/physiology , Astrocytes/physiology , Neurons/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Adenosine Triphosphate/metabolism , Time Factors , Humans
12.
JAMA Netw Open ; 7(5): e2410684, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38722627

ABSTRACT

Importance: In vivo imaging studies of reactive astrocytes are crucial for understanding the pathophysiology of schizophrenia because astrocytes play a critical role in glutamate imbalance and neuroinflammation. Objective: To investigate in vivo reactive astrocytes in patients with schizophrenia associated with positive symptoms using monoamine oxidase B (MAO-B)-binding fluorine 18 ([18F])-labeled THK5351 positron emission tomography (PET). Design, Setting, and Participants: In this case-control study, data were collected from October 1, 2021, to January 31, 2023, from the internet advertisement for the healthy control group and from the outpatient clinics of Seoul National University Hospital in Seoul, South Korea, for the schizophrenia group. Participants included patients with schizophrenia and age- and sex-matched healthy control individuals. Main Outcomes and Measures: Standardized uptake value ratios (SUVrs) of [18F]THK5351 in the anterior cingulate cortex (ACC) and hippocampus as primary regions of interest (ROIs), with other limbic regions as secondary ROIs, and the correlation between altered SUVrs and Positive and Negative Syndrome Scale (PANSS) positive symptom scores. Results: A total of 68 participants (mean [SD] age, 32.0 [7.0] years; 41 men [60.3%]) included 33 patients with schizophrenia (mean [SD] age, 32.3 [6.3] years; 22 men [66.7%]) and 35 healthy controls (mean [SD] age, 31.8 [7.6] years; 19 men [54.3%]) who underwent [18F]THK5351 PET scanning. Patients with schizophrenia showed significantly higher SUVrs in the bilateral ACC (left, F = 5.767 [false discovery rate (FDR)-corrected P = .04]; right, F = 5.977 [FDR-corrected P = .04]) and left hippocampus (F = 4.834 [FDR-corrected P = .04]) than healthy controls. Trend-level group differences between the groups in the SUVrs were found in the secondary ROIs (eg, right parahippocampal gyrus, F = 3.387 [P = .07]). There were positive correlations between the SUVrs in the bilateral ACC and the PANSS positive symptom scores (left, r = 0.423 [FDR-corrected P = .03]; right, r = 0.406 [FDR-corrected P = .03]) in patients with schizophrenia. Conclusions and Relevance: This case-control study provides novel in vivo imaging evidence of reactive astrocyte involvement in the pathophysiology of schizophrenia. Reactive astrocytes in the ACC may be a future target for the treatment of symptoms of schizophrenia, especially positive symptoms.


Subject(s)
Astrocytes , Fluorine Radioisotopes , Positron-Emission Tomography , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/metabolism , Male , Female , Adult , Astrocytes/metabolism , Case-Control Studies , Positron-Emission Tomography/methods , Gyrus Cinguli/diagnostic imaging , Hippocampus/diagnostic imaging
13.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38722791

ABSTRACT

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neurodegenerative Diseases , Neuroinflammatory Diseases , Humans , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/immunology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/immunology , Animals , Microglia/metabolism , Microglia/immunology , Inflammation/therapy , Astrocytes/metabolism
14.
Cells ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38727321

ABSTRACT

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.


Subject(s)
Disease Models, Animal , Lipopolysaccharides , Muscular Atrophy, Spinal , Animals , Lipopolysaccharides/pharmacology , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/metabolism , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 1 Protein/genetics , Mice, Inbred C57BL , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Inflammation/pathology
15.
Nat Commun ; 15(1): 4347, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773146

ABSTRACT

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Astrocytes , Depressive Disorder, Major , Mice, Knockout , Animals , Astrocytes/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Mice , Humans , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/genetics , Depressive Disorder, Major/pathology , Male , Female , Disease Models, Animal , Mice, Inbred C57BL , Neurons/metabolism , Stress, Psychological/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Behavior, Animal , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Depression/metabolism , Depression/genetics , Adult , Synaptic Transmission , Middle Aged
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167211, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701957

ABSTRACT

The interaction between glioma cells and astrocytes promotes the proliferation of gliomas. Micro-RNAs (miRNAs) carried by astrocyte exosomes (exos) may be involved in this process, but the mechanism remains unclear. The oligonucleotide AS1411, which consists of 26 bases and has a G-quadruplex structure, is an aptamer that targets nucleolin. In this study, we demonstrate exosome-miRNA-27a-mediated cross-activation between astrocytes and glioblastoma and show that AS1411 reduces astrocytes' pro-glioma activity. The enhanced affinity of AS1411 toward nucleolin is attributed to its G-quadruplex structure. After binding to nucleolin, AS1411 inhibits the entry of the NF-κB pathway transcription factor P65 into the nucleus, then downregulates the expression of miRNA-27a in astrocytes surrounding gliomas. Then, AS1411 downregulates astrocyte exosome-miRNA-27a and upregulates the expression of INPP4B, the target gene of miRNA-27a in gliomas, thereby inhibiting the PI3K/AKT pathway and inhibiting glioma proliferation. These results were verified in mouse orthotopic glioma xenografts and human glioma samples. In conclusion, the parallel structure of AS1411 allows it to bind to nucleolin and disrupt the exosome-miRNA-27a-mediated reciprocal activation loop between glioma cells and astrocytes. Our results may help in the development of a novel approach to therapeutic modulation of the glioma microenvironment.


Subject(s)
Aptamers, Nucleotide , Astrocytes , Exosomes , Glioma , MicroRNAs , Nucleolin , Oligodeoxyribonucleotides , Phosphoproteins , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Astrocytes/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Mice , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/metabolism , Oligodeoxyribonucleotides/pharmacology , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/genetics , Exosomes/metabolism , Exosomes/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Signal Transduction
17.
Sci Rep ; 14(1): 11435, 2024 05 19.
Article in English | MEDLINE | ID: mdl-38763939

ABSTRACT

Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.


Subject(s)
Autism Spectrum Disorder , Lipopolysaccharides , Prenatal Exposure Delayed Effects , Social Behavior , Valproic Acid , Animals , Female , Prenatal Exposure Delayed Effects/chemically induced , Pregnancy , Mice , Valproic Acid/adverse effects , Male , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/etiology , Microglia/drug effects , Microglia/metabolism , Disease Models, Animal , Behavior, Animal/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Mice, Inbred C57BL
18.
J Neuroimmune Pharmacol ; 19(1): 22, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771543

ABSTRACT

SARS-CoV-2 spike proteins have been shown to cross the blood-brain barrier (BBB) in mice and affect the integrity of human BBB cell models. However, the effects of SARS-CoV-2 spike proteins in relation to sporadic, late onset, Alzheimer's disease (AD) risk have not been extensively investigated. Here we characterized the individual and combined effects of SARS-CoV-2 spike protein subunits S1 RBD, S1 and S2 on BBB cell types (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) generated from induced pluripotent stem cells (iPSCs) harboring low (APOE3 carrier) or high (APOE4 carrier) relative Alzheimer's risk. We found that treatment with spike proteins did not alter iBEC integrity, although they induced the expression of several inflammatory cytokines. iAstrocytes exhibited a robust inflammatory response to SARS-CoV-2 spike protein treatment, with differences found in the levels of cytokine secretion between spike protein-treated APOE3 and APOE4 iAstrocytes. Finally, we tested the effects of potentially anti-inflammatory drugs during SARS-CoV-2 spike protein exposure in iAstrocytes, and discovered different responses between spike protein treated APOE4 iAstrocytes and APOE3 iAstrocytes, specifically in relation to IL-6, IL-8 and CCL2 secretion. Overall, our results indicate that APOE3 and APOE4 iAstrocytes respond differently to anti-inflammatory drug treatment during SARS-CoV-2 spike protein exposure with potential implications to therapeutic responses.


Subject(s)
Apolipoprotein E3 , Apolipoprotein E4 , Astrocytes , Blood-Brain Barrier , Cytokines , Spike Glycoprotein, Coronavirus , Blood-Brain Barrier/metabolism , Humans , Cytokines/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Astrocytes/metabolism , Astrocytes/virology , Astrocytes/drug effects , Apolipoprotein E3/metabolism , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , SARS-CoV-2 , COVID-19/metabolism , COVID-19/immunology , Cells, Cultured
19.
J Neuroinflammation ; 21(1): 132, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760862

ABSTRACT

BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most common neurological problems occurring in the perinatal period. However, there still is not a promising approach to reduce long-term neurodevelopmental outcomes of HIE. Recently, itaconate has been found to exhibit anti-oxidative and anti-inflammatory effects. However, the therapeutic efficacy of itaconate in HIE remains inconclusive. Therefore, this study attempts to explore the pathophysiological mechanisms of oxidative stress and inflammatory responses in HIE as well as the potential therapeutic role of a derivative of itaconate, 4-octyl itaconate (4OI). METHODS: We used 7-day-old mice to induce hypoxic-ischemic (HI) model by right common carotid artery ligation followed by 1 h of hypoxia. Behavioral experiments including the Y-maze and novel object recognition test were performed on HI mice at P60 to evaluate long-term neurodevelopmental outcomes. We employed an approach combining non-targeted metabolomics with transcriptomics to screen alterations in metabolic profiles and gene expression in the hippocampal tissue of the mice at 8 h after hypoxia. Immunofluorescence staining and RT-PCR were used to evaluate the pathological changes in brain tissue cells and the expression of mRNA and proteins. 4OI was intraperitoneally injected into HI model mice to assess its anti-inflammatory and antioxidant effects. BV2 and C8D1A cells were cultured in vitro to study the effect of 4OI on the expression and nuclear translocation of Nrf2. We also used Nrf2-siRNA to further validate 4OI-induced Nrf2 pathway in astrocytes. RESULTS: We found that in the acute phase of HI, there was an accumulation of pyruvate and lactate in the hippocampal tissue, accompanied by oxidative stress and pro-inflammatory, as well as increased expression of antioxidative stress and anti-inflammatory genes. Treatment of 4OI could inhibit activation and proliferation of microglial cells and astrocytes, reduce neuronal death and relieve cognitive dysfunction in HI mice. Furthermore, 4OI enhanced nuclear factor erythroid-2-related factor (Nfe2l2; Nrf2) expression and nuclear translocation in astrocytes, reduced pro-inflammatory cytokine production, and increased antioxidant enzyme expression. CONCLUSION: Our study demonstrates that 4OI has a potential therapeutic effect on neuronal damage and cognitive deficits in HIE, potentially through the modulation of inflammation and oxidative stress pathways by Nrf2 in astrocytes.


Subject(s)
Animals, Newborn , Astrocytes , Hypoxia-Ischemia, Brain , NF-E2-Related Factor 2 , Neuroprotective Agents , Succinates , Animals , NF-E2-Related Factor 2/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Mice , Astrocytes/drug effects , Astrocytes/metabolism , Succinates/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Signal Transduction/drug effects , Mice, Inbred C57BL , Oxidative Stress/drug effects , Oxidative Stress/physiology , Disease Models, Animal
20.
Mol Pain ; 20: 17448069241256466, 2024.
Article in English | MEDLINE | ID: mdl-38716504

ABSTRACT

Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.


Subject(s)
Myeloid Differentiation Factor 88 , Nerve Regeneration , Neuralgia , Proanthocyanidins , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4 , Animals , Proanthocyanidins/pharmacology , Toll-Like Receptor 4/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Myeloid Differentiation Factor 88/metabolism , Nerve Regeneration/drug effects , Signal Transduction/drug effects , Male , Grape Seed Extract/pharmacology , Rats , Microglia/drug effects , Microglia/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Spinal Nerves/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...