Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(11): e0242513, 2020.
Article in English | MEDLINE | ID: mdl-33211746

ABSTRACT

Antiretroviral therapy (ART) in pregnancy has dramatically reduced HIV vertical transmission rates. Consequently, there is a growing number of children that are HIV exposed uninfected (CHEUs). Studies suggest that CHEUs exposed in utero to ART may experience developmental delays compared to their peers. We investigated the effects of in utero ART exposure on perinatal neurodevelopment in mice, through assessment of developmental milestones. Developmental milestone tests (parallel to reflex testing in human infants) are reflective of brain maturity and useful in predicting later behavioral outcomes. We hypothesized that ART in pregnancy alters the in utero environment and thereby alters developmental milestone outcomes in pups. Throughout pregnancy, dams were treated with boosted-atazanavir combined with either abacavir/lamivudine (ATV/r/ABC/3TC), or tenofovir/emtricitabine (ATV/r/TDF/FTC), or water as control. Pups were assessed daily for general somatic growth and on a battery of tests for primitive reflexes including surface-righting, negative-geotaxis, cliff-aversion, rooting, ear-twitch, auditory-reflex, forelimb-grasp, air-righting, behaviors in the neonatal open field, and olfactory test. In utero exposure to either ART regimen delayed somatic growth in offspring and evoked significant delays in the development of negative geotaxis, cliff-aversion, and ear-twitch reflexes. Exposure to ATV/r/ABC/3TC was also associated with olfactory deficits in male and forelimb grasp deficits in female pups. To explore whether delays persisted into adulthood we assessed performance in the open field test. We observed no significant differences between treatment arm for males. In females, ATV/r/TDF/FTC exposure was associated with lower total distance travelled and less ambulatory time in the centre, while ATV/r/ABC/3TC exposure was associated with higher resting times compared to controls. In utero PI-based ART exposure delays the appearance of primitive reflexes that involve vestibular and sensory-motor pathways in a mouse model. Our findings suggest that ART could be disrupting the normal progress/maturation of the underlying neurocircuits and encourage further investigation for underlying mechanisms.


Subject(s)
Atazanavir Sulfate/toxicity , Developmental Disabilities/chemically induced , Exploratory Behavior/drug effects , Growth Disorders/chemically induced , HIV Protease Inhibitors/toxicity , Prenatal Exposure Delayed Effects , Animals , Anti-HIV Agents/administration & dosage , Atazanavir Sulfate/administration & dosage , Dideoxynucleosides/administration & dosage , Dideoxynucleosides/toxicity , Emtricitabine/administration & dosage , Emtricitabine/toxicity , Female , Fetal Growth Retardation/chemically induced , HIV Protease Inhibitors/administration & dosage , Hand Strength , Homing Behavior/drug effects , Lamivudine/administration & dosage , Lamivudine/toxicity , Male , Mice , Mice, Inbred C57BL , Pregnancy , Random Allocation , Reflex, Abnormal , Reflex, Righting/drug effects , Sensation Disorders/chemically induced , Taxis Response/drug effects , Tenofovir/administration & dosage , Tenofovir/toxicity
2.
J Neurovirol ; 26(5): 642-651, 2020 10.
Article in English | MEDLINE | ID: mdl-32737860

ABSTRACT

Highly active antiretroviral treatment has led to unprecedented efficacy and tolerability in people living with HIV. This effect was also observed in the central nervous system with the nowadays uncommon observation of dementias; yet in more recent works milder forms are still reported in 20-30% of optimally treated individuals. The idea of a subclinical neuronal toxicity induced by antiretrovirals has been proposed and was somehow supported by the late-emerging effects associated with efavirenz use. In this manuscript we are reviewing all the potential mechanisms by which antiretroviral drugs have been associated with in vitro, ex vivo, or in vivo toxicity to cells pertaining to the central nervous system (neurons, astrocytes, oligodendrocytes, and endothelial cells). These include direct or indirect effects and pathological pathways such as amyloid deposition, damage to small cerebral vessels, and impairment in neurotransmission. The aim of this review is therefore to provide a detailed description of the available literature in order to guide further clinical research for improving patients' neurocognition and quality of life.


Subject(s)
Alkynes/toxicity , Anti-HIV Agents/toxicity , Benzoxazines/toxicity , Central Nervous System/drug effects , Cognitive Dysfunction/chemically induced , Cyclopropanes/toxicity , HIV Infections/drug therapy , Neurons/drug effects , Antiretroviral Therapy, Highly Active/methods , Astrocytes/drug effects , Astrocytes/pathology , Astrocytes/virology , Atazanavir Sulfate/toxicity , Central Nervous System/pathology , Central Nervous System/virology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/virology , Dideoxynucleosides/toxicity , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelial Cells/virology , HIV Infections/pathology , HIV Infections/virology , Humans , Neurons/pathology , Neurons/virology , Nevirapine/toxicity , Nitriles/toxicity , Oligodendroglia/drug effects , Oligodendroglia/pathology , Oligodendroglia/virology , Pyrimidines/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...