Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.127
Filter
1.
Bull Environ Contam Toxicol ; 112(6): 77, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758236

ABSTRACT

Fulvic acids (FA) are environmentally prevalent components of dissolved organic carbon. Little research has evaluated their potential influence on the bioavailability of herbicides to non-target aquatic plants. This study evaluated the potential impacts of FA on the bioavailability of atrazine (ATZ) to the aquatic plant Lemna minor. Plants were exposed to 0, 15, 30, 60, 125, and 750 µg/L ATZ in media containing three FA concentrations (0, 5, and 15 mg/L) in a factorial study under static conditions. Fronds were counted after 7- and 14-days exposure and intrinsic growth rates (IGR) and total frond yields were calculated for analysis. Atrazine NOAECs and LOAECs within each FA treatment series (0, 5, or 15 mg/L) were identified and EC50s were estimated. NOAEC/LOAECs for yield and IGR were 60/125 µg/L except for yield in the 0 mg/L-FA series (30/60) and IGR in the 5 mg/L-FA series (30/60). NOAEC/LOAECs were 30/60 µg/L for all treatments and both endpoints after 14 days exposure. EC50s ranged from 88.2 to 106.1 µg/L (frond production 7 DAT), 158.0-186.0 µg/L (IGR, 7 DAT), 74.7-86.3 µg/L (frond production, 14 DAT), and 144.1-151.3 µg/L (IGR, 14 DAT). FA concentrations did not influence the toxicity of ATZ.


Subject(s)
Araceae , Atrazine , Benzopyrans , Herbicides , Water Pollutants, Chemical , Herbicides/toxicity , Benzopyrans/toxicity , Atrazine/toxicity , Araceae/drug effects , Water Pollutants, Chemical/toxicity
2.
Chemosphere ; 356: 141906, 2024 May.
Article in English | MEDLINE | ID: mdl-38583534

ABSTRACT

Atrazine (ATR) is one of the most commonly used herbicides worldwide. As an endocrine disruptor, it causes ovarian dysfunction, but the mechanism is unclear. We hypothesized that ATR could affect ovarian steroidogenesis, oxidative stress, inflammation, and apoptosis. In the current study, rats aged 28 days were treated with PMSG and HCG to obtain amounts of corpora lutea. Then, rats were injected with ATR (50 mg/kg/day) or saline (0.9%) for 7 days. Sera were collected to detect biochemical indices and progesterone (P4) level, ovaries were collected for antioxidant status, HE, qPCR, and WB analysis. Results showed that ATR exposure affected growth performance as well as serum TP, GLB, and ALB levels, increased serum P4 level and ovarian mRNA and protein levels of StAR, CYP11A1, and HSD3B. ATR treatment increased ovarian mRNA and protein levels of CREB but not PKA expression. ATR treatment increased ovarian mRNA abundances of Nrf-2 and Nqo1, MDA level, and decreased SOD, GST, and T-AOC levels. ATR exposure increased the mRNA abundances of pro-inflammatory cytokines including Tnf-α, Il-1ß, Il-6, Il-18, and Inos. ATR exposure increased the mRNA and protein level of Caspase 3 and the ratio of BAX/BCL-2. In conclusion, NRF-2/NQO1 signaling pathway and CREB might be involved in the regulation of ATR in luteal steroidogenesis, oxidative stress, inflammation, and apoptosis in rat ovary.


Subject(s)
Apoptosis , Atrazine , Herbicides , Inflammation , Ovary , Oxidative Stress , Progesterone , Animals , Atrazine/toxicity , Female , Ovary/drug effects , Ovary/metabolism , Oxidative Stress/drug effects , Progesterone/blood , Rats , Apoptosis/drug effects , Inflammation/chemically induced , Herbicides/toxicity , Pseudopregnancy , Endocrine Disruptors/toxicity , Rats, Sprague-Dawley
3.
Environ Sci Pollut Res Int ; 31(20): 29794-29810, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38592632

ABSTRACT

Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 µg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.


Subject(s)
Atrazine , Microplastics , Water Pollutants, Chemical , Atrazine/toxicity , Microplastics/toxicity , Animals , Water Pollutants, Chemical/toxicity , Gills/drug effects
4.
Chemosphere ; 358: 142111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663677

ABSTRACT

In this study, microalgae Chlorella vulgaris (C. vulgaris) were simultaneously exposed to environmental concentrations of amino-functionalized polystyrene nanoplastics (PS-NH2; 0.05, 0.1, 0.2, 0.3 and 0.4 mg/L) and the world's second most used pesticide, the herbicide atrazine (ATZ; 10 µg/L), in the absence and presence of humic acid (HA; 1 mg/L) for 21 days. Due to the low concentrations of PS-NH2, the majority of them could not cause a significant difference in the end-points of biomass, chlorophylls a and b, total antioxidant, total protein, and superoxide dismutase and malondialdehyde compared to the control group (p > 0.05). On the other hand, by adding ATZ to the PS-NH2, all the mentioned end-point values showed a considerable difference from the control (p < 0.05). The exposure of PS-NH2+ATZ treatments to the HA could remarkably reduce their toxicity, additionally, HA was able to decrease the changes in the expression of genes related to oxidative stress (e.g., superoxide dismutase, glutathione reductase, and catalase) in the C. vulgaris in the most toxic treatment group (e.g., PS-NH2+ATZ). The synergistic toxicity of the PS-NH2+ATZ group could be due to their enhanced bioavailability for algal cells. Nevertheless, the toxicity alleviation in the PS-NH2+ATZ treatment group after the addition of HA could be due to the eco-corona formation, and changes in their zeta potential from positive to negative value, which would increase their electrostatic repulsion with the C. vulgaris cells, in such a way that HA also caused a decrease in the formation of C. vulgaris-NPs hetero-aggregates. This research underscores the complex interplay between PS-NH2, ATZ, and HA in aquatic environments and their collective impact on microalgal communities.


Subject(s)
Atrazine , Chlorella vulgaris , Herbicides , Humic Substances , Microplastics , Oxidative Stress , Polystyrenes , Superoxide Dismutase , Water Pollutants, Chemical , Chlorella vulgaris/drug effects , Atrazine/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Superoxide Dismutase/metabolism , Herbicides/toxicity , Herbicides/chemistry , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Oxidative Stress/drug effects , Microalgae/drug effects , Chlorophyll/metabolism , Malondialdehyde/metabolism , Antioxidants/metabolism , Biomass , Chlorophyll A/metabolism
5.
J Environ Manage ; 359: 120951, 2024 May.
Article in English | MEDLINE | ID: mdl-38669877

ABSTRACT

Atrazine, a widely used herbicide in modern agriculture, can lead to soil contamination and adverse effects on specific crops. To address this, we investigated the efficacy of biochar loaded with Paenarthrobacter sp. AT5 (an atrazine-degrading bacterial strain) in mitigating atrazine's impact on soybeans in black soil. Bacterially loaded biochar (BBC) significantly enhanced atrazine removal rates in both unplanted and planted soil systems. Moreover, BBC application improved soybean biomass, photosynthetic pigments, and antioxidant systems while mitigating alterations in metabolite pathways induced by atrazine exposure. These findings demonstrate the effectiveness of BBC in reducing atrazine-induced oxidative stress on soybeans in black soil, highlighting its potential for sustainable agriculture.


Subject(s)
Atrazine , Charcoal , Glycine max , Oxidative Stress , Soil Pollutants , Soil , Atrazine/toxicity , Glycine max/drug effects , Oxidative Stress/drug effects , Soil/chemistry , Charcoal/chemistry , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Herbicides/toxicity
6.
Chemosphere ; 357: 142061, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642775

ABSTRACT

Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.


Subject(s)
Atrazine , Chlorella vulgaris , Herbicides , Humic Substances , Microplastics , Polystyrenes , Water Pollutants, Chemical , Chlorella vulgaris/drug effects , Atrazine/toxicity , Herbicides/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Oxidative Stress/drug effects , Microalgae/drug effects , Antioxidants/metabolism , Toxicity Tests, Acute , Photosynthesis/drug effects
7.
J Hazard Mater ; 471: 134251, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38640669

ABSTRACT

Corn planting is often associated with serious atrazine pollution and excessive corn straw amounts, causing severe threats to environmental and ecological security, as well as to green agricultural development. In this context, a Paenarthrobacter sp. KN0901 strain was applied to simultaneously remove atrazine and straw at low temperatures. The results of whole genome sequencing indicated that KN0901 encoded over nine straw biodegradation-related enzymes. In addition, 100 % and 27.3 % of atrazine and straw were simultaneously degraded by KN0901 following an incubation period of seven days at 15 ºC and 180 rpm in darkness. The KN0901 strain maintained high atrazine and straw biodegradation rates under temperature and pH ranges of 4-25 ºC and 5-9, respectively. The simultaneous atrazine and corn straw additions improved the microbial growth and biodegradation rates by increasing the functional gene expression level, cell viability, inner membrane permeability, and extracellular polymeric substance contents of KN0901. The hydroponic experiment results demonstrated the capability of the KN0901 strain to mitigate the toxicity of atrazine to soybeans in four days under the presence of corn straw. The present study provides a new perspective on the development of bioremediation approaches and their application to restore atrazine-polluted cornfields with large straw quantities, particularly in cold areas.


Subject(s)
Atrazine , Biodegradation, Environmental , Cold Temperature , Herbicides , Zea mays , Atrazine/toxicity , Atrazine/metabolism , Herbicides/toxicity , Herbicides/metabolism , Whole Genome Sequencing , Genome, Bacterial
8.
Chemosphere ; 358: 142080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642773

ABSTRACT

Perfluorooctanoic acid (PFOA) and atrazine are two endocrine disruptors that are widely found in waters. Negative effects of PFOA and atrazine have been studied individually, but few data have focused on their combined effects. Here, zebrafish embryos were used as model to investigate the combined toxicity of PFOA and atrazine. The acute toxicity of atrazine (11.9 mg/L) to zebrafish embryos was much higher than that of perfluorooctanoic acid (224.6 mg/L) as shown by the 120h-LC50 value. Developmental effects, including delayed yolk sac absorption, spinal curvature, and liver abnormalities, were observed in both one- and two-component exposures. Notably, the rate of embryonic malformations in the co-exposure group was more than twice as high as that of single component exposure in the concentration range of 1/8-1/2 EC50, which indicated a synergistic effect of the binary mixture. The synergistic effect of PFOA-atrazine was further validated by combinatorial index (CI) modeling. In addition, changes of amino acid metabolites, reactive oxygen species and superoxide dismutase indicated that oxidative stress might be the main pathway for enhanced toxicity under co-exposure condition. Overall, co-exposure of PFOA and atrazine resulted in stronger developmental effects and more complicated amino acid metabolic response toward zebrafish, compared with single component exposure.


Subject(s)
Atrazine , Caprylates , Embryo, Nonmammalian , Fluorocarbons , Water Pollutants, Chemical , Zebrafish , Zebrafish/embryology , Animals , Atrazine/toxicity , Fluorocarbons/toxicity , Caprylates/toxicity , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Endocrine Disruptors/toxicity , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Drug Synergism
9.
Toxicol Appl Pharmacol ; 486: 116929, 2024 May.
Article in English | MEDLINE | ID: mdl-38608961

ABSTRACT

Atrazine (ATZ), a widely used herbicide with potent endocrine-disrupting properties, has been implicated in hormonal disturbances and fertility issues. Sertoli cells (SCs) play a crucial role in providing mechanical and nutritional support of spermatogenesis. Herein, we aimed to study the effects of environmentally relevant ATZ concentrations on the nutritional support of spermatogenesis provided by SCs. For that, mouse SCs (TM4) were exposed to increasing ATZ concentrations (in µg/L: 0.3, 3, 30, 300, or 3000). After 24 h, cellular proliferation and metabolic activity were assessed. Mitochondrial activity and endogenous reactive oxygen species (ROS) production were evaluated using JC-1 and CM-H2DCFDA probes, respectively. We also analyzed protein levels of lactate dehydrogenase (LDH) using Western Blot and live cells glycolytic function through Seahorse XF Glycolysis Stress Test Kit. ATZ exposure decreased the activity of oxidoreductases in SCs, suggesting a decreased metabolic activity. Although ATZ is reported to induce oxidative stress, we did not observe alterations in mitochondrial membrane potential and ROS production across all tested concentrations. When we evaluated the glycolytic function of SCs, we observed that ATZ significantly impaired glycolysis and the glycolytic capacity at all tested concentrations. These results were supported by the decreased expression of LDH in SCs. Overall, our findings suggest that ATZ impairs the glycolytic function of SCs through LDH downregulation. Since lactate is the preferential energetic substrate for germ cells, exposure to ATZ may detrimentally impact the nutritional support crucial for spermatogenesis, hinting for a relationship between ATZ exposure and male infertility.


Subject(s)
Atrazine , Down-Regulation , Glycolysis , Herbicides , L-Lactate Dehydrogenase , Reactive Oxygen Species , Sertoli Cells , Animals , Male , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Atrazine/toxicity , Mice , Glycolysis/drug effects , Herbicides/toxicity , L-Lactate Dehydrogenase/metabolism , Down-Regulation/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Cell Line , Dose-Response Relationship, Drug , Oxidative Stress/drug effects , Cell Proliferation/drug effects , Spermatogenesis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism
10.
Pestic Biochem Physiol ; 199: 105801, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458692

ABSTRACT

Atrazine is a widely applied herbicide to improve crop yield and maintain general health. It has been reported to impair thyroid function and architecture in experimental animals. Alterations in thyroid hormones disrupt normal body function and metabolism. Silymarin, a hepatoprotective flavonolignan, was found to improve thyroid function and body metabolism. Additionally, garlic displays several protective effects on body organs. Therefore, this study explored the prophylactic impact of natural compounds comprising silymarin and garlic extract on disrupted thyroid function, hepatic iodothyronine deiodinase type 1, and metabolic parameters in atrazine-intoxicated male rats. We found that daily pre- and co-treatment of atrazine-intoxicated male rats with silymarin (100 mg/kg, p.o) and/or garlic extract (10 mg/kg, p.o) significantly improved thyroid activation and hepatic functionality as evidenced by the re-establishment of T3, T3/T4, and TSH values as well as ALT and AST activities. Interestingly, individual or concurrent supplementation of the atrazine group with silymarin and garlic extract prevented the down-regulation in hepatic iodothyronine deiodinase type 1. These effects were coupled with the repletion of serum and hepatic antioxidants and the amelioration of lipid peroxidation. In addition, current natural products markedly alleviated weight gain, dyslipidemia, hyperglycemia, glucose intolerance, and insulin resistance. Notably, a cocktail of silymarin and garlic extract exerted superior protection against atrazine-triggered deterioration of thyroid, hepatic, and metabolic functioning to individual treatments. Present findings pinpoint the prophylactic and synergistic influence of silymarin and garlic extract combinatorial regimen on thyroid activation and body metabolism via enhancing antioxidant potential, maintaining hepatic function, and iodothyronine deiodinase type 1.


Subject(s)
Atrazine , Garlic , Silymarin , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Garlic/metabolism , Atrazine/toxicity , Silymarin/pharmacology , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Iodide Peroxidase/metabolism , Iodide Peroxidase/pharmacology , Liver
11.
Sci Total Environ ; 923: 171526, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458447

ABSTRACT

Herbicides have been intensively used for weed control, raising concerns about their potentially adverse effects on non-target organisms. Research on the effects of these common agrochemicals on beneficial insects and the ecosystem services they provide (e.g., predation and pollination) is scarce. Therefore, we tested whether a commercial formulation comprising a mixture of mesotrione and atrazine was detrimental to adult females and larvae of the Neotropical predatory social wasp Polistes satan, which is an effective natural enemy of crop pests. Wasps were individually fed syrups contaminated with different concentrations of the herbicide above and below the maximum label rate (MLR = 12 mL/L). Survival was assessed. The locomotor activity, immune response, and midgut morphology of adults as well as the immune response of the larvae were also studied. Herbicide concentrations far above the MLR (12, 40, and 100 times) caused adult mortality, whereas lower concentrations (0.5, 1, and 6 times) did not. Herbicide exposure at 0.5 to 12 times the MLR increased adult activity. Adult exposure at 0.1 or 0.5 times the MLR did not affect melanotic encapsulation of foreign bodies but led to changes in the morphology of the midgut epithelium and peritrophic matrix. In larvae, the ingestion of herbicide at 0.1 or 0.2 times the MLR (corresponding to 9.6 and 19.2 ng of herbicide per individual) did not cause mortality but decreased their melanization-encapsulation response. Increased locomotor activity in herbicide-exposed adults can affect their foraging activity. The altered midgut morphology of adults coupled with the decreased immune response in larvae caused by herbicide exposure at realistic concentrations can increase the susceptibility of wasps to infections. Therefore, herbicides are toxic to predatory wasps.


Subject(s)
Atrazine , Cyclohexanones , Herbicides , Wasps , Animals , Female , Atrazine/toxicity , Larva , Predatory Behavior , Ecosystem , Herbicides/toxicity
12.
Ecotoxicology ; 33(2): 190-204, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38386230

ABSTRACT

Extensive pesticide use for agriculture can diffusely pollute aquatic ecosystems through leaching and runoff events and has the potential to negatively affect non-target organisms. Atrazine and S-metolachlor are two widely used herbicides often detected in high concentrations in rivers that drain nearby agricultural lands. Previous studies focused on concentration-response exposure of algal monospecific cultures, over a short exposure period, with classical descriptors such as cell density, mortality or photosynthetic efficiency as response variables. In this study, we exposed algal biofilms (periphyton) to a concentration gradient of atrazine and S-metolachlor for 14 days. We focused on fatty acid composition as the main concentration-response descriptor, and we also measured chlorophyll a fluorescence. Results showed that atrazine increased cyanobacteria and diatom chlorophyll a fluorescence. Both herbicides caused dissimilarities in fatty acid profiles between control and high exposure concentrations, but S-metolachlor had a stronger effect than atrazine on the observed increase or reduction in saturated fatty acids (SFAs) and very long-chain fatty acids (VLCFAs), respectively. Our study demonstrates that two commonly used herbicides, atrazine and S-metolachlor, can negatively affect the taxonomic composition and fatty acid profiles of stream periphyton, thereby altering the nutritional quality of this resource for primary consumers.


Subject(s)
Acetamides , Atrazine , Herbicides , Periphyton , Water Pollutants, Chemical , Atrazine/toxicity , Chlorophyll A , Rivers , Ecosystem , Fatty Acids , Herbicides/toxicity , Water Pollutants, Chemical/toxicity
13.
Neurotoxicology ; 101: 68-81, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340903

ABSTRACT

Several studies have shown that chronic exposure to the herbicide atrazine (ATR) causes alterations in locomotor activity and markers of the dopaminergic systems of male rats. However, few studies have evaluated the sex-dependent effects of atrazine exposure. The aim of the present study was to evaluate whether chronic ATR exposure causes alterations in behavioral performance and dopaminergic systems of female rats. At weaning, two groups of rats were exposed to 1 or 10 mg ATR/kg body weight daily thorough the food, while the control group received food without ATR for 14 months. Spontaneous locomotor activity was evaluated monthly for 12 months, while anxiety, egocentric and spatial memory, motor coordination, and olfactory function tasks were evaluated between 13 and 14 months of ATR exposure. Tyrosine hydroxylase (TH) and monoamine content in brain tissue were assessed at the end of ATR treatment. Female rats treated with 1 or 10 mg ATR showed vertical hypoactivity compared to the control group only in the first month of ATR exposure. Impairments in olfactory functions were found due to ATR exposure. Nevertheless, no alterations in anxiety, spatial and egocentric memory, or motor coordination tasks were observed, while the levels of TH and dopamine and its metabolites in brain tissue were similar among groups. These results suggest that female rats could present greater sensitivity to the neurotoxic effects of ATR on spontaneous locomotor activity in the early stages of development. However, they are unaffected by chronic ATR exposure later in life compared to male rats. More studies are necessary to unravel the sex-related differences observed after chronic ATR exposure.


Subject(s)
Atrazine , Herbicides , Rats , Male , Female , Animals , Atrazine/toxicity , Rats, Sprague-Dawley , Herbicides/toxicity , Dopamine/metabolism , Locomotion
14.
Sci Total Environ ; 922: 171015, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38369134

ABSTRACT

Atrazine (ATZ) is the most prevalent herbicide that has been widely used in agriculture to control broadleaf weeds and improve crop yield and quality. The heavy use of ATZ has caused serious environmental pollution and toxicity to human health. Lycopene (LYC), is a carotenoid that exhibits numerous health benefits, such as prevention of cardiovascular diseases and nephropathy. However, it remains unclear that whether ATZ causes cardiorenal injury or even cardiorenal syndrome (CRS) and the beneficial role of LYC on it. To test this hypothesis, mice were treated with LYC and/or ATZ for 21 days by oral gavage. This study demonstrated that ATZ exposure caused cardiorenal morphological alterations, and several inflammatory cell infiltrations mediated by activating NF-κB signaling pathways. Interestingly, dysregulation of MAPK signaling pathways and MAPK phosphorylation caused by ATZ have been implicated in cardiorenal diseases. ATZ exposure up-regulated cardiac and renal injury associated biomarkers levels that suggested the occurrence of CRS. However, these all changes were reverted, and the phenomenon of CAR was disappeared by LYC co-treatment. Based on our findings, we postulated a novel mechanism to elucidate pesticide-induced CRS and indicated that LYC can be a preventive and therapeutic agent for treating CRS by targeting MAPK/NF-κB signaling pathways.


Subject(s)
Atrazine , Cardio-Renal Syndrome , Humans , Mice , Animals , Lycopene/metabolism , Atrazine/toxicity , NF-kappa B , Cardio-Renal Syndrome/chemically induced , Oxidative Stress
15.
Food Chem Toxicol ; 185: 114483, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301994

ABSTRACT

Atrazine (ATR), a commonly used herbicide, is highly bioaccumulative and toxic, posing a threat to a wide range of organisms. Curcumin has strong antioxidant properties. However, it is unclear whether curcumin counteracts cellular pyroptosis as well as cell cycle arrest induced by ATR exposure. Therefore, we conducted a study using TCMK-1 cells and established cell models by adding 139 µmol/L ATR and 20 µmol/L curcumin. The results showed that ATR exposure produced excessive reactive oxygen species (ROS), reduced activities of enzymes such as GSH-PX, SOD and Total Antioxidant Capacity, markedly increased the content of H2O2, disrupted the antioxidant system, activated Caspase-1, and the expression levels of the pyroptosis-related genes NLRP3, GSDMD, ASC, Caspase-1, IL-1ß and IL-18 were increased. The simultaneous excess of ROS led to DNA damage, activation of P53 led to elevated expression levels of P53 and P21, as a consequence, the expression levels of cyclinE, CDK2 and CDK4 were reduced. These results suggest that Cur can modulate ATR exposure-induced pyroptosis as well as cell cycle arrest in TCMK-1 cells by governing oxidative stress.


Subject(s)
Atrazine , Curcumin , Pyroptosis , Reactive Oxygen Species/metabolism , Atrazine/toxicity , Curcumin/pharmacology , Antioxidants/pharmacology , Hydrogen Peroxide/metabolism , Tumor Suppressor Protein p53/metabolism , Signal Transduction , Oxidative Stress , Cell Cycle Checkpoints , Caspase 1/genetics
16.
Toxicol Appl Pharmacol ; 483: 116819, 2024 02.
Article in English | MEDLINE | ID: mdl-38215996

ABSTRACT

Atrazine is a pesticide used to control weeds in both in pre- and post-emergence crops. The chronic exposure to atrazine can lead to severe damage in animals, especially in the endocrine and reproduction systems, leading to the inclusion of this pesticide into the endocrine disrupting chemicals group. Studies with rats showed that atrazine exposure during lactation in dams caused changes in the juvenile offspring, however; there is still limited information regarding the effects of atrazine during puberty. Thus, the aim of this study is to evaluate the effects of peripubertal exposure of atrazine in rats, assessing motor activity, social behavior and neurochemical alterations. Juvenile rats were treated with different doses of atrazine (0, 10, 30 or 100 mg/kg) by gavage from postnatal day 22 to 41. Behavioral tests were conducted for the evaluation of motor activity and social behavior, and neurochemical evaluation was done in order to assess monoamine levels. Atrazine caused behavioral alterations, evidenced by decrease in the exploratory activity (p values variation between 0.05 and 0.0001) and deficits in the social behavior of both male and females as adults (p values variation between 0.01 and 0.0001). As for the monoaminergic neurotransmission, atrazine led to very few alterations on the dopamine and serotonin systems that were limited to the females (p < 0.05). Altogether, the results suggests that peripubertal exposure of atrazine cause behavioral and neurochemical alterations. More studies need to be conducted to fully understand the differences in atrazine's effects and its use should be considered carefully.


Subject(s)
Atrazine , Herbicides , Pesticides , Female , Rats , Animals , Male , Atrazine/toxicity , Herbicides/toxicity , Brain , Dopamine
17.
Sci Total Environ ; 917: 170238, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280601

ABSTRACT

We experimentally assessed the impact of the application of herbicides and fertilizers derived from agricultural activity through the individual and simultaneous addition of glyphosate, atrazine, and nutrients (nitrogen 'N' and phosphorus 'P') on the biofilm community and their resilience when the experimental factors were removed. We hypothesize that i) the presence of agrochemicals negatively affects the biofilm community leading to the simplification of the community structure; ii) the individual or simultaneous addition of herbicides and nutrients produces differential responses in the biofilm; and iii) the degree of biofilm recovery differs according to the treatment applied. Environmentally relevant concentrations of glyphosate (0.7 mgL-1), atrazine (44 µgL-1), phosphorus (1 mg P L-1 [KH2PO4]), and nitrogen (3 mg N L-1[NaNO3]) were used. Chlorophyll a, ash-free dry weight, abundance of main biofilm groups and nutrient contents in biofilm were analyzed. At initial exposure time, all treatments were dominated by Cyanobacteria; through the exposure period, it was observed a progressive replacement by Bacillariophyceae. This replacement occurred on day 3 for the control and was differentially delayed in all herbicides and/or nutrient treatments in which the abundance of cyanobacteria remains significant yet in T5. A significant correlation was observed between the abundance of cyanobacteria and the concentration of atrazine, suggesting that this group is less sensitive than diatoms. The presence of agrochemicals exerted differential effects on the different algal groups. Herbicides contributed to phosphorus and nitrogen inputs. The most frequently observed interactions between experimental factors (nutrients and herbicides) was additivity excepting for species richness (antagonistic effect). In the final recovery time, no significant differences were found between the treatments and the control in most of the evaluated parameters, evincing the resilience of the community.


Subject(s)
Atrazine , Cyanobacteria , Diatoms , Herbicides , Water Pollutants, Chemical , Herbicides/toxicity , Atrazine/toxicity , Chlorophyll A , Glyphosate , Phosphorus , Biofilms , Nitrogen/analysis , Fertilization , Water Pollutants, Chemical/toxicity
18.
Chemosphere ; 352: 141268, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246499

ABSTRACT

Swimming consistency and respiration of fish are recognized as the non-invasive stress biomarkers. Their alterations could directly indicate the presence of pollutants in the water ecosystem. Since these biomarkers are a routine process for fish, it is difficult to monitor their activity manually. For this reason, experts employ engineering technologies to create sensors that can monitor the regular activities of fish. Knowing the importance of these non-invasive stress biomarkers, we developed online biological behavior monitoring system-OBBMS and online biological respiratory response monitoring system-OBRRMS to monitor real-time swimming consistency and respiratory response of fish, respectively. We continuously monitored the swimming consistency and respiration (OCR, CER and RQ) of zebrafish (control and atrazine-treatments) for 7 days using our homemade real-time biological response monitoring systems. Furthermore, we analyzed oxidative stress indicators (SOD, CAT and POD) within the vital tissues (gills, brain and muscle) of zebrafish during stipulated sampling periods. The differences in the swimming consistency and respiratory rate of zebrafish between the control and atrazine treatments could be precisely differentiated on the real-time datasets of OBBMS and OBRRMS. The zebrafish exposed to atrazine toxin showed a concentration-dependent effect (hypoactivity). The OCR and CER were increased in the atrazine treated zebrafish. Both Treatment I and II received a negative response for RQ. Atrazine toxicity let to a rise in the levels of SOD, CAT and POD in the vital tissues of zebrafish. The continuous acquisition of fish signals is achieved which is one of the main merits of our OBBMS and OBRRMS. Additionally, no special data processing was done, the real-time data sets were directly used on statistical tools and the differences between the factors (groups, photoperiods, exposure periods and their interactions) were identified precisely. Hence, our OBBMS and OBRRMS could be a promising tool for biological response-based real-time water quality monitoring studies.


Subject(s)
Atrazine , Perciformes , Water Pollutants, Chemical , Animals , Antioxidants , Zebrafish/physiology , Swimming , Atrazine/toxicity , Water Quality , Ecosystem , Respiration , Superoxide Dismutase , Biomarkers , Water Pollutants, Chemical/toxicity
19.
Int J Environ Health Res ; 34(3): 1443-1452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37266965

ABSTRACT

This meta-analysis evaluates the association between atrazine (ATR) exposure and small for gestational age (SGA), preterm birth (PTB), and low birth weight (LBW). A comprehensive search was done on academic databases (e.g. PubMed, Scopus, Embase, and Google Scholar) to achieve all pertinent studies up to May 2023. A pooled odd ratio (OR) and corresponding 95% confidence interval (CI) were applied to evaluate this correlation. As a result, five eligible studies met the inclusion criteria and were included in our study, and the result of the present meta-analysis showed that ATR exposure increased the risk of SGA (OR = 1.11; 95% CI = 1.03-1.20 for highest versus lowest category of ATR), PTB (OR = 1.16; 95% CI = 1.03-1.30), and LBW (OR = 1.26; 95% CI = 1.10-1.44). This meta-analysis suggests that ATR in drinking water may be a risk factor for SGA, PTB, and LBW.


Subject(s)
Atrazine , Drinking Water , Premature Birth , Infant, Newborn , Female , Humans , Atrazine/toxicity , Atrazine/analysis , Premature Birth/chemically induced , Premature Birth/epidemiology , Infant, Low Birth Weight , Infant, Small for Gestational Age
20.
Sci Total Environ ; 912: 168924, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036146

ABSTRACT

The global prevalence of Neurological disorders has increased alarmingly in response to environmental and lifestyle changes. Atrazine (ATZ) is a difficult to degrade soil and water pollutant with well-known neurotoxicity. Melatonin (MT), an antioxidant with chemoprotective properties, has a potential therapeutic effect on cerebellar damage caused by ATZ exposure. The aim of this study was to explore the effects and underlying mechanisms of MT on the cerebellar inflammatory response and pyroptosis induced by ATZ exposure. In this study, C57BL/6J mice were treated with ATZ (170 mg/kg BW/day) and MT (5 mg/kg BW/day) for 28 days. Our results revealed that MT alleviated the histopathological changes, ultrastructural damage, oxidative stress and decrease of mitochondrial membrane potential (ΔΨm) in the cerebellum induced by ATZ exposure. ATZ exposure damaged the mitochondria leading to release of mitochondrial DNA (mtDNA) to the cytoplasm, MT activated the cyclic GMP-AMP synthetase interferon gene stimulator (cGAS-STING) axis to alleviate inflammation and pyroptosis caused by ATZ exposure. In general, our study provided new evidence that the cGAS-STING-NLRP3 axis plays an important role in the treatment of ATZ-induced cerebellar injury by MT.


Subject(s)
Atrazine , Melatonin , Nucleotides, Cyclic , Animals , Mice , Atrazine/toxicity , Atrazine/metabolism , Melatonin/metabolism , Pyroptosis , Interferons/metabolism , Interferons/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein , Mice, Inbred C57BL , Mitochondria , DNA, Mitochondrial , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...