Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Med Oncol ; 41(6): 142, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714583

ABSTRACT

The development of BCR::ABL1-targeting tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myeloid leukemia (CML). However, resistance to ABL TKIs can develop in CML patients due to BCR::ABL1 point mutations and CML leukemia stem cell (LSC). Aurora kinases are essential kinases for cell division and regulate mitosis, especially the process of chromosomal segregation. Aurora kinase members also promote cancer cell survival and proliferation. This study analyzed whether aurora kinases were regulated in the progression of CML. It also evaluated the efficacy of the ABL TKI asciminib and the aurora kinase inhibitor LY3295668. The expressions of AURKA and AURKB were higher in the CML cells compared with normal cells using a public database (GSE100026). Asciminib or LY3295668 alone inhibited CML cells after 72 h, and cellular cytotoxicity was increased. The combined use of Asciminib and LY3295668 increased superior efficacy compared with either drug alone. Colony formation was reduced by cotreatment with asciminib and LY3295668. In the cell-cycle analyses, LY3295668 induced G2/M arrest. Cell populations in the sub-G1 phase were observed when cotreating with asciminib and LY3295668. The combination treatment also changed the mitochondrial membrane potential. In addition, AURKA shRNA transfectant cells had increased asciminib sensitivity. Combining asciminib and aurora kinase inhibition enhanced the efficacy and is proposed as a new therapeutic option for patients with CML. These findings have clinical implications for a potential novel therapeutic strategy for CML patients.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Niacinamide/analogs & derivatives , Protein Kinase Inhibitors , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Drug Resistance, Neoplasm/drug effects , Protein Kinase Inhibitors/pharmacology , Aurora Kinase A/antagonists & inhibitors , Cell Line, Tumor , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Aurora Kinase B/antagonists & inhibitors , Apoptosis/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Proliferation/drug effects , Pyrazoles
2.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675528

ABSTRACT

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Glioblastoma , S-Adenosylmethionine , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , S-Adenosylmethionine/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , DNA Repair/drug effects , Aurora Kinase B/metabolism , Aurora Kinase B/antagonists & inhibitors , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Rad51 Recombinase/metabolism , Cell Cycle Checkpoints/drug effects , Mitosis/drug effects
3.
Exp Eye Res ; 239: 109753, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142764

ABSTRACT

PURPOSE: The detrimental effects of pathological angiogenesis on the visual function are indisputable. Within a prominent role in chromosome segregation and tumor progression, aurora kinase B (AURKB) assumes a prominent role. However, its role in pathological retinal angiogenesis remains unclear. This study explores this latent mechanism. METHODS: To inhibit AURKB expression, we designed specific small interfering RNAs targeting AURKB and transfected them into vascular endothelial cells. Barasertib was selected as the AURKB inhibitor. The anti-angiogenic effects of both AURKB siRNA and barasertib were assessed in vitro by cell proliferation, transwell migration, and tube formation. To evaluate the angiogentic effects of AURKB in vivo, neonatal mice were exposed to 75% oxygen followed by normoxic repositioning to establish an oxygen-induced retinopathy (OIR) model. Subsequently, phosphate-buffered saline and barasertib were administered into OIR mice via intravitreal injection. The effects of AURKB on cell cycle proteins were determined by western blot analysis. RESULTS: We found that AURKB was overexpressed during pathological angiogenesis. AURKB siRNA and barasertib significantly inhibited endothelial cell proliferation, migration, and tube formation in vitro. Furthermore, AURKB inhibition attenuated retinal angiogenesis in the OIR model. A possible mechanism is the disruption of cell cycle by AURKB inhibition. CONCLUSION: In conclusion, AURKB significantly influenced pathological retinal angiogenesis, thereby presenting a promising therapeutic target in ocular neovascular diseases.


Subject(s)
Organophosphates , Quinazolines , Retinal Diseases , Retinal Neovascularization , Animals , Mice , Angiogenesis , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Cell Division , Cell Proliferation , Endothelial Cells/metabolism , Mice, Inbred C57BL , Neovascularization, Pathologic , Oxygen , Retinal Neovascularization/metabolism , RNA, Small Interfering/therapeutic use
4.
Clin Cancer Res ; 29(16): 3237-3249, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37289191

ABSTRACT

PURPOSE: Therapeutic resistance to frontline therapy develops rapidly in small cell lung cancer (SCLC). Treatment options are also limited by the lack of targetable driver mutations. Therefore, there is an unmet need for developing better therapeutic strategies and biomarkers of response. Aurora kinase B (AURKB) inhibition exploits an inherent genomic vulnerability in SCLC and is a promising therapeutic approach. Here, we identify biomarkers of response and develop rational combinations with AURKB inhibition to improve treatment efficacy. EXPERIMENTAL DESIGN: Selective AURKB inhibitor AZD2811 was profiled in a large panel of SCLC cell lines (n = 57) and patient-derived xenograft (PDX) models. Proteomic and transcriptomic profiles were analyzed to identify candidate biomarkers of response and resistance. Effects on polyploidy, DNA damage, and apoptosis were measured by flow cytometry and Western blotting. Rational drug combinations were validated in SCLC cell lines and PDX models. RESULTS: AZD2811 showed potent growth inhibitory activity in a subset of SCLC, often characterized by, but not limited to, high cMYC expression. Importantly, high BCL2 expression predicted resistance to AURKB inhibitor response in SCLC, independent of cMYC status. AZD2811-induced DNA damage and apoptosis were suppressed by high BCL2 levels, while combining AZD2811 with a BCL2 inhibitor significantly sensitized resistant models. In vivo, sustained tumor growth reduction and regression was achieved even with intermittent dosing of AZD2811 and venetoclax, an FDA-approved BCL2 inhibitor. CONCLUSIONS: BCL2 inhibition overcomes intrinsic resistance and enhances sensitivity to AURKB inhibition in SCLC preclinical models.


Subject(s)
Antineoplastic Agents , Aurora Kinase B , Lung Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Small Cell Lung Carcinoma , Humans , Antineoplastic Agents/therapeutic use , Apoptosis , Aurora Kinase B/antagonists & inhibitors , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proteomics , Proto-Oncogene Proteins c-bcl-2/drug effects , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Xenograft Model Antitumor Assays
5.
J Pharm Biomed Anal ; 232: 115415, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37120975

ABSTRACT

This study investigated the metabolism of LXY18, a quinolone-based compound that suppresses tumorigenesis by blocking AURKB localization. Metabolite profiling of LXY18 in liver microsomes from six species and human S9 fractions revealed that LXY18 undergoes various conserved metabolic reactions, such as N-hydroxylation, N-oxygenation, O-dealkylation, and hydrolysis, resulting in ten metabolites. These metabolites were produced through a combination of CYP450 enzymes, and non-CYP450 enzymes including CES1, and AO. Two metabolites, M1 and M2 were authenticated by chemically synthesized standards. M1 was the hydrolyzed product catalyzed by CES1 whereas M2 was a mono-N-oxidative derivative catalyzed by a CYP450 enzyme. AO was identified as the enzyme responsible for the formation of M3 with the help of AO-specific inhibitors and LXY18 analogs, 5b and 5c. M1 was the intermediate of LXY18 to produce M7, M8, M9, and M10. LXY18 potently inhibited 2C19 with an IC50 of 290 nM but had a negligible impact on the other CYP450s, indicating a low risk of drug-drug interaction. Altogether, the study provides valuable insights into the metabolic process of LXY18 and its suitability as a drug candidate. The data generated serves as a significant reference point for conducting further safety assessments and optimizing drug development.


Subject(s)
Aurora Kinase B , Cytochrome P-450 Enzyme System , Microsomes, Liver , Mitosis , Humans , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Microsomes, Liver/metabolism , Oxidation-Reduction
6.
J Nat Prod ; 85(6): 1503-1513, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35687347

ABSTRACT

Aurora kinases (Aurora A, B, and C) are a family of serine/threonine kinases that play critical roles during mitotic initiation and progression. Aurora A and B kinases are ubiquitously expressed, and their overexpression and/or amplification in many cancers have been associated with poor prognosis. Several inhibitors that target Aurora kinases A, B, or both have been developed during the past decade with efficacy in different in vitro and in vivo models for a variety of cancers. Recent studies have also identified Aurora A as a synthetic lethal target for different tumor suppressors, including RB1, SMARCA4, and ARID1A, which signifies the need for Aurora-A-selective inhibitors. Here, we report the screening of a small library of quinones (nine naphthoquinones, one orthoquinone, and one anthraquinone) in a biochemical assay for Aurora A kinase that resulted in the identification of several quinones as inhibitors. IC50 determination against Aurora A and B kinases revealed the inhibition of both kinases with selectivity toward Aurora A. Two of the compounds, natural quinone naphthazarin (1) and a pseudo anthraquinone, 2-(chloromethyl)quinizarin (11), potently inhibited the proliferation of various cancer cell lines with IC50 values ranging from 0.16 ± 0.15 to 1.7 ± 0.06 and 0.15 ± 0.04 to 6.3 ± 1.8 µM, respectively. Treatment of cancer cells with these compounds for 24 h resulted in abrogated mitosis and apoptotic cell death. Direct binding of both the compounds with Aurora A kinase was also confirmed through STD NMR analysis. Docking studies predicted the binding of both compounds to the ATP binding pocket of Aurora A kinase. We have, therefore, identified quinones as Aurora kinase inhibitors that can serve as a lead for future drug discovery endeavors.


Subject(s)
Aurora Kinase A , Aurora Kinase B , Neoplasms , Protein Kinase Inhibitors , Quinones , Anthraquinones , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Cell Line, Tumor , DNA Helicases , Humans , Nuclear Proteins , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinones/chemistry , Quinones/pharmacology , Transcription Factors
7.
Bioorg Med Chem Lett ; 61: 128614, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35151865

ABSTRACT

High rates of recurrence and treatment resistance in the most common malignant adult brain cancer, glioblastoma (GBM), suggest that monotherapies are not sufficiently effective. Combination therapies are increasingly pursued, but the possibility of adverse drug-drug interactions may preclude clinical implementation. Developing single molecules with multiple targets is a feasible alternative strategy to identify effective and tolerable pharmacotherapies for GBM. Here, we report the development of a novel, first-in-class, dual aurora and lim kinase inhibitor termed F114. Aurora kinases and lim kinases are involved in neoplastic cell division and cell motility, respectively. Due to the importance of these cellular functions, inhibitors of aurora kinases and lim kinases are being pursued separately as anti-cancer therapies. Using in vitro and ex vivo models of GBM, we found that F114 inhibits GBM proliferation and invasion. These results establish F114 as a promising new scaffold for dual aurora/lim kinase inhibitors that may be used in future drug development efforts for GBM, and potentially other cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Lim Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase A/metabolism , Aurora Kinase B/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Lim Kinases/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
8.
J Enzyme Inhib Med Chem ; 37(1): 109-117, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34894976

ABSTRACT

Invasive fungal infections including Candidiasis and Aspergillosis are associated with considerable morbidity and mortality in immunocompromised individuals, such as cancer patients. Aurora B is a key mitotic kinase required for the cell division of eukaryotes from fungus to man. Here, we identified a novel Aurora B inhibitor GSK650394 that can inhibit the recombinant Aurora B from human and Aspergillus fumigatus, with IC50 values of 5.68 and 1.29 µM, respectively. In HeLa and HepG2 cells, GSK650394 diminishes the endogenous Aurora B activity and causes cell cycle arrest in G2/M phase. Further cell-based assays demonstrate that GSK650394 efficiently suppresses the proliferation of both cancer cells and Aspergillus fumigatus. Finally, the molecular docking calculation and site-directed mutagenesis analyses reveal the molecular mechanism of Aurora B inhibition by GSK650394. Our work is expected to provide new insight into the combinational therapy of cancer and Aspergillus fumigatus infection.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Aspergillus fumigatus/drug effects , Aurora Kinase B/antagonists & inhibitors , Benzoates/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Discovery , Antifungal Agents/chemistry , Antineoplastic Agents/chemistry , Aurora Kinase B/metabolism , Benzoates/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Bioorg Chem ; 117: 105451, 2021 12.
Article in English | MEDLINE | ID: mdl-34736137

ABSTRACT

Aurora B is a pivotal cell cycle regulator where errors in its function results in polyploidy, genetic instability, and tumorigenesis. It is overexpressed in many cancers, consequently, targeting Aurora B with small molecule inhibitors constitutes a promising approach for anticancer therapy. Guided by structure-based design and molecular hybridization approach we developed a series of fifteen indolin-2-one derivatives based on a previously reported indolin-2-one-based multikinase inhibitor (1). Seven derivatives, 5g, 6a, 6c-e, 7, and 8a showed preferential antiproliferative activity in NCI-60 cell line screening and out of these, carbamate 6e and cyclopropylurea 8a derivatives showed optimum activity against Aurora B (IC50 = 16.2 and 10.5 nM respectively) and MDA-MB-468 cells (IC50 = 32.6 ± 9.9 and 29.1 ± 7.3 nM respectively). Furthermore, 6e and 8a impaired the clonogenic potential of MDA-MB-468 cells. Mechanistic investigations indicated that 6e and 8a induced G2/M cell cycle arrest, apoptosis, and necrosis of MDA-MB-468 cells and western blot analysis of 8a effect on MDA-MB-468 cells revealed 8a's ability to reduce Aurora B and its downstream target, Histone H3 phosphorylation. 6e and 8a displayed better safety profiles than multikinase inhibitors such as sunitinib, showing no cytotoxic effects on normal rat cardiomyoblasts and murine hepatocytes. Finally, 8a demonstrated a more selective profile than 1 when screened against ten related kinases. Based on these findings, 8a represents a promising candidate for further development to target breast cancer via Aurora B selective inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase B/antagonists & inhibitors , Breast Neoplasms/drug therapy , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase B/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Sci Rep ; 11(1): 18707, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34548506

ABSTRACT

Aurora kinase B plays an important role in the cell cycle to orchestrate the mitotic process. The amplification and overexpression of this kinase have been implicated in several human malignancies. Therefore, Aurora kinase B is a potential drug target for anticancer therapies. Here, we combine atom-based 3D-QSAR analysis and pharmacophore model generation to identify the principal structural features of acylureidoindolin derivatives that could potentially be responsible for the inhibition of Aurora kinase B. The selected CoMFA and CoMSIA model showed significant results with cross-validation values (q2) of 0.68, 0.641 and linear regression values (r2) of 0.971, 0.933 respectively. These values support the statistical reliability of our model. A pharmacophore model was also generated, incorporating features of reported crystal complex structures of Aurora kinase B. The pharmacophore model was used to screen commercial databases to retrieve potential lead candidates. The resulting hits were analyzed at each stage for diversity based on the pharmacophore model, followed by molecular docking and filtering based on their interaction with active site residues and 3D-QSAR predictions. Subsequently, MD simulations and binding free energy calculations were performed to test the predictions and to characterize interactions at the molecular level. The results suggested that the identified compounds retained the interactions with binding residues. Binding energy decomposition identified residues Glu155, Trp156 and Ala157 of site B and Leu83 and Leu207 of site C as major contributors to binding affinity, complementary to 3D-QSAR results. To best of our knowledge, this is the first comparison of WaterSwap field and 3D-QSAR maps. Overall, this integrated strategy provides a basis for the development of new and potential AK-B inhibitors and is applicable to other protein targets.


Subject(s)
Aurora Kinase B/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Computer Simulation , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Quantitative Structure-Activity Relationship
11.
Cancer Cell ; 39(9): 1245-1261.e6, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34388376

ABSTRACT

The clinical success of EGFR inhibitors in EGFR-mutant lung cancer is limited by the eventual development of acquired resistance. We hypothesize that enhancing apoptosis through combination therapies can eradicate cancer cells and reduce the emergence of drug-tolerant persisters. Through high-throughput screening of a custom library of ∼1,000 compounds, we discover Aurora B kinase inhibitors as potent enhancers of osimertinib-induced apoptosis. Mechanistically, Aurora B inhibition stabilizes BIM through reduced Ser87 phosphorylation, and transactivates PUMA through FOXO1/3. Importantly, osimertinib resistance caused by epithelial-mesenchymal transition (EMT) activates the ATR-CHK1-Aurora B signaling cascade and thereby engenders hypersensitivity to respective kinase inhibitors by activating BIM-mediated mitotic catastrophe. Combined inhibition of EGFR and Aurora B not only efficiently eliminates cancer cells but also overcomes resistance beyond EMT.


Subject(s)
Acrylamides/pharmacology , Aniline Compounds/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Apoptosis Regulatory Proteins/metabolism , Aurora Kinase B/antagonists & inhibitors , Bcl-2-Like Protein 11/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Synergism , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Screening Assays , Humans , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins/metabolism , Small Molecule Libraries/pharmacology
12.
J Nat Prod ; 84(8): 2312-2320, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34406008

ABSTRACT

To identify novel bioactive compounds, an image-based, cell culture screening of natural product extracts was conducted. Specifically, our screen was designed to identify phytochemicals that might phenocopy inhibition of the chromosomal passenger protein complex in eliciting mitotic and cytokinetic defects. A known alkaloid, scoulerine, was identified from the rhizomes of the plant Corydalis decumbens as being able to elicit a transient mitotic arrest followed by either apoptosis induction or polyploidy. In examining the mitotic abnormality further, we observed that scoulerine could elicit supernumerary centrosomes during mitosis, but not earlier in the cell cycle. The localization of NUMA1 at spindle poles was also inhibited, suggesting diminished potential for microtubule recruitment and spindle-pole focusing. Polyploid cells emerged subsequent to cytokinetic failure. The concentration required for scoulerine to elicit all its cell division phenotypes was similar, and an examination of related compounds highlighted the requirement for proper positioning of a hydroxyl and a methoxy group about an aromatic ring for activity. Mechanistically, scoulerine inhibited AURKB activity at concentrations that elicited supernumerary centrosomes and polyploidy. AURKA was only inhibited at higher concentrations, so AURKB inhibition is the likely mechanism by which scoulerine elicited division defects. AURKB inhibition was never complete, so scoulerine may be a suboptimal AURK inhibitor or work upstream of the chromosomal passenger protein complex to reduce AURKB activity. Scoulerine inhibited the viability of a variety of human cancer cell lines. Collectively, these findings uncover a previously unknown activity of scoulerine that could facilitate targeting human cancers. Scoulerine, or a next-generation analogue, may be useful as a nontoxic component of combination therapies where inhibiting the chromosomal passenger protein complex is desired.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Berberine Alkaloids/pharmacology , Cytokinesis/drug effects , Mitosis/drug effects , Berberine Alkaloids/isolation & purification , Cell Line , China , Corydalis/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Rhizome/chemistry
13.
Eur J Med Chem ; 224: 113673, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34303872

ABSTRACT

Rare oncogenic NTRK gene fusions result in uncontrolled TRK signaling leading to various adult and pediatric solid tumors. Based on the architecture of our multi-targeted clinical candidate BPR1K871 (10), we designed and synthesized a series of quinazoline compounds as selective and orally bioavailable type II TRK inhibitors. Property-driven and lead optimization strategies informed by structure-activity relationship studies led to the identification of 39, which showed higher (about 15-fold) selectivity for TRKA over AURA and AURB, as well as potent cellular activity (IC50 = 56.4 nM) against the KM12 human colorectal cancer cell line. 39 also displayed good AUC and oral bioavailability (F = 27%), excellent in vivo efficacy (TGI = 64%) in a KM12 xenograft model, and broad-spectrum anti-TRK mutant potency (IC50 = 3.74-151.4 nM), especially in the double-mutant TRKA enzymatic assays. 39 is therefore proposed for further development as a next-generation, selective, and orally-administered type II TRK inhibitor.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Receptor, trkA/antagonists & inhibitors , Administration, Oral , Animals , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Binding Sites , Cell Line, Tumor , Half-Life , Humans , Mice , Mice, Nude , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Rats , Receptor, trkA/metabolism , Structure-Activity Relationship , Transplantation, Heterologous
14.
Exp Cell Res ; 406(1): 112741, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34302858

ABSTRACT

BACKGROUND: RNPC1 is reported to act as a tumor suppressor by binding and regulating the expression of target genes in various cancers. However, the role of RNPC1 in gastric cancer and the underlying mechanisms are still unclear. METHODS: Gastric cancer cells were stably transfected with lentivirus. Proliferation, migration, invasion, cell cycle in vitro and tumorigenesis in vivo were used to assess the role of RNPC1. Quantitative real-time PCR, western blotting and immunohistochemistry were used to detect the relationship between RNPC1 and aurora kinase B (AURKB). RNA immunoprecipitation (RIP), RNA electrophoretic mobility shift assays (REMSAs), and dual-luciferase reporter assays were used to identify the direct binding sites of RNPC1 with AURKB mRNA. A CCK-8 assay was conducted to confirm the function of AURKB in RNPC1-induced growth promotion. RESULTS: High RNPC1 expression was found in gastric cancer tissues and cell lines and was associated with high TNM stage. RNPC1 overexpression significantly promoted the proliferation, migration, and invasion of gastric cancer cells. Knockdown of RNPC1 could impede gastric cancer tumorigenesis in nude mice. AURKB expression was positively related to RNPC1. RNPC1 directly binds to the 3'-untranslated region (3'-UTR) of AURKB and enhances AURKB mRNA stability. AURKB reversed the proliferation induced by RNPC1 in gastric cancer cells. RNPC1 resulted in mitotic defects, aneuploidy and chromosomal instability in gastric cancer cells, similar to AURKB. CONCLUSION: RNPC1 acts as an oncogene in gastric cancer by influencing cell mitosis by increasing AURKB mRNA stability, which may provide a potential biomarker and a therapeutic target for gastric cancer.


Subject(s)
Aurora Kinase B/genetics , Carcinogenesis/genetics , RNA-Binding Proteins/genetics , Stomach Neoplasms/genetics , 3' Untranslated Regions , Aged , Animals , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice, Nude , Middle Aged , Mitosis , Neoplasm Staging , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , Signal Transduction , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Burden , Xenograft Model Antitumor Assays
15.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071893

ABSTRACT

Insulin-like growth factor 1 receptor (IGF1R), a receptor-type tyrosine kinase, transduces signals related to cell proliferation, survival, and differentiation. We recently reported that OSI-906, an IGF1R inhibitor, in combination with the Aurora B inhibitor ZM447439 suppresses cell proliferation. However, the mechanism underlying this suppressive effect is yet to be elucidated. In this study, we examined the effects of combination treatment with OSI-906 and ZM447439 on cell division, so as to understand how cell proliferation was suppressed. Morphological analysis showed that the combination treatment generated enlarged cells with aberrant nuclei, whereas neither OSI-906 nor ZM447439 treatment alone caused this morphological change. Flow cytometry analysis indicated that over-replicated cells were generated by the combination treatment, but not by the lone treatment with either inhibitors. Time-lapse imaging showed mitotic slippage following a severe delay in chromosome alignment and cytokinesis failure with furrow regression. Furthermore, in S-trityl-l-cysteine-treated cells, cyclin B1 was precociously degraded. These results suggest that the combination treatment caused severe defect in the chromosome alignment and spindle assembly checkpoint, which resulted in the generation of over-replicated cells. The generation of over-replicated cells with massive aneuploidy may be the cause of reduction of cell viability and cell death. This study provides new possibilities of cancer chemotherapy.


Subject(s)
Aurora Kinase B/antagonists & inhibitors , Cell Survival/drug effects , Cyclin B1/metabolism , Imidazoles/pharmacology , Mitosis/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Benzamides/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proteolysis , Quinazolines/pharmacology , Receptor, IGF Type 1/metabolism
16.
J Cancer Res Clin Oncol ; 147(8): 2187-2198, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34047821

ABSTRACT

BACKGROUND: Ensuring genetic integrity is essential during the cell cycle to avoid aneuploidy, one of the underlying causes of malignancies. Aurora kinases are serine/threonine kinase that play a vital role in maintaining the genomic integrity of the cells. There are three forms of aurora kinases in the mammalian cells, which are highly conserved and act together with several other proteins to control chromosome alignment and its equal distribution to daughter cells in mitosis and meiosis. METHODS: We provide here a detailed analysis of Aurora B kinase (ABK) in terms of its expression, structure, function, disease association and potential therapeutic implications. RESULTS: ABK plays an instrumental in mitotic entry, chromosome condensation, spindle assembly, cytokinesis, and abscission. Small-molecule inhibitors of ABK are designed and synthesized to control cancer progression. A detailed understanding of ABK pathophysiology in different cancers is of great significance in designing and developing effective therapeutic strategies. CONCLUSION: In this review, we have discussed the physiological significance of ABK followed by its role in cancer progression. We further highlighted available small-molecule inhibitors to control the tumor proliferation and their mechanistic insights.


Subject(s)
Aurora Kinase B/physiology , Molecular Targeted Therapy , Neoplasms/therapy , Animals , Antineoplastic Agents/therapeutic use , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/genetics , Cell Cycle/genetics , Chromosomes/genetics , Chromosomes/metabolism , Disease Progression , Humans , Mitosis/genetics , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Neoplasms/etiology , Neoplasms/pathology
17.
J Med Chem ; 64(11): 7312-7330, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34009981

ABSTRACT

The A-type Aurora kinase is upregulated in many human cancers, and it stabilizes MYC-family oncoproteins, which have long been considered an undruggable target. Here, we describe the design and synthesis of a series of pyrimidine-based derivatives able to inhibit Aurora A kinase activity and reduce levels of cMYC and MYCN. Through structure-based drug design of a small molecule that induces the DFG-out conformation of Aurora A kinase, lead compound 13 was identified, which potently (IC50 < 200 nM) inhibited the proliferation of high-MYC expressing small-cell lung cancer (SCLC) cell lines. Pharmacokinetic optimization of 13 by prodrug strategies resulted in orally bioavailable 25, which demonstrated an 8-fold higher oral AUC (F = 62.3%). Pharmacodynamic studies of 25 showed it to effectively reduce cMYC protein levels, leading to >80% tumor regression of NCI-H446 SCLC xenograft tumors in mice. These results support the potential of 25 for the treatment of MYC-amplified cancers including SCLC.


Subject(s)
Aurora Kinase A/antagonists & inhibitors , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-myc/metabolism , Pyrimidines/chemistry , Animals , Aurora Kinase A/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/metabolism , Binding Sites , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Humans , Lung Neoplasms/drug therapy , Male , Mice , Mice, Inbred ICR , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Small Cell Lung Carcinoma/drug therapy , Structure-Activity Relationship , Xenograft Model Antitumor Assays
18.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915740

ABSTRACT

Aurora kinase B (AURKB) is a mitotic serine/threonine protein kinase that belongs to the aurora kinase family along with aurora kinase A (AURKA) and aurora kinase C (AURKC). AURKB is a member of the chromosomal passenger protein complex and plays a role in cell cycle progression. Deregulation of AURKB is observed in several tumors and its overexpression is frequently linked to tumor cell invasion, metastasis and drug resistance. AURKB has emerged as an attractive drug target leading to the development of small molecule inhibitors. This review summarizes recent findings pertaining to the role of AURKB in tumor development, therapy related drug resistance, and its inhibition as a potential therapeutic strategy for cancer. We discuss AURKB inhibitors that are in preclinical and clinical development and combination studies of AURKB inhibition with other therapeutic strategies.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase B/antagonists & inhibitors , Biomarkers, Tumor , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aurora Kinase B/chemistry , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Carrier Proteins , Disease Susceptibility , Drug Design , Drug Development , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Multigene Family , Neoplasms/drug therapy , Neoplasms/etiology , Protein Binding , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Structure-Activity Relationship
19.
Sci Rep ; 11(1): 8156, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854138

ABSTRACT

Kinases are essential regulators of a variety of cellular signaling processes, including neurite formation-a foundational step in neurodevelopment. Aberrant axonal sprouting and failed regeneration of injured axons are associated with conditions like traumatic injury, neurodegenerative disease, and seizures. Investigating the mechanisms underlying neurite formation will allow for identification of potential therapeutics. We used a kinase inhibitor library to screen 493 kinase inhibitors and observed that 45% impacted neuritogenesis in Neuro2a (N-2a) cells. Based on the screening, we further investigated the roles of Aurora kinases A, B, and C and Nuak kinases 1 and 2. The roles of Aurora and Nuak kinases have not been thoroughly studied in the nervous system. Inhibition or overexpression of Aurora and Nuak kinases in primary cortical neurons resulted in various neuromorphological defects, with Aurora A regulating neurite initiation, Aurora B and C regulating neurite initiation and elongation, all Aurora kinases regulating arborization, and all Nuak kinases regulating neurite initiation and elongation and arborization. Our high-throughput screening and analysis of Aurora and Nuak kinases revealed their functions and may contribute to the identification of therapeutics.


Subject(s)
Aurora Kinase A/genetics , Aurora Kinase B/genetics , Neurites/physiology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/genetics , Repressor Proteins/genetics , Animals , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase B/antagonists & inhibitors , Cell Line , Female , High-Throughput Screening Assays , Loss of Function Mutation , Mice , Neurites/drug effects , Neurites/metabolism , Neurogenesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Repressor Proteins/antagonists & inhibitors
20.
Cell Death Dis ; 12(2): 152, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542222

ABSTRACT

Aurora B kinase is aberrantly overexpressed in various tumors and shown to be a promising target for anti-cancer therapy. In human oral squamous cell carcinoma (OSCC), the high protein level of Aurora B is required for maintaining of malignant phenotypes, including in vitro cell growth, colony formation, and in vivo tumor development. By molecular modeling screening of 74 commercially available natural products, we identified that Tanshinone IIA (Tan IIA), as a potential Aurora B kinase inhibitor. The in silico docking study indicates that Tan IIA docks into the ATP-binding pocket of Aurora B, which is further confirmed by in vitro kinase assay, ex vivo pull-down, and ATP competitive binding assay. Tan IIA exhibited a significant anti-tumor effect on OSCC cells both in vitro and in vivo, including reduction of Aurora B and histone H3 phosphorylation, induction of G2/M cell cycle arrest, increase the population of polyploid cells, and promotion of apoptosis. The in vivo mouse model revealed that Tan IIA delayed tumor growth of OSCC cells. Tan IIA alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Taken together, our data indicate that Tan IIA is an Aurora B kinase inhibitor with therapeutic potentials for cancer treatment.


Subject(s)
Abietanes/pharmacology , Aurora Kinase B/antagonists & inhibitors , Mouth Neoplasms/radiotherapy , Protein Kinase Inhibitors/pharmacology , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Abietanes/metabolism , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Humans , Mice, Nude , Molecular Docking Simulation , Mouth Neoplasms/enzymology , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/metabolism , Radiation-Sensitizing Agents/metabolism , Squamous Cell Carcinoma of Head and Neck/enzymology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Burden/drug effects , Tumor Burden/radiation effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...