ABSTRACT
Poor prognosis associated with the dysregulated expression of activin A in a number of malignancies has been related to with numerous aspects of tumorigenesis, including angiogenesis. The present study investigated the prognostic significance of activin A immunoexpression in blood vessels and cancer cells in a number of oral squamous cell carcinoma (OSCC) cases and applied in vitro strategies to determine the impact of activin A on angiogenesis. In a cohort of 95 patients with OSCC, immunoexpression of activin A in both blood vessels and tumor cells was quantified and the association with clinicopathological parameters and survival was analyzed. Effects of activin A on the tube formation, proliferation and migration of human umbilical vein endothelial cells (HUVECs) were evaluated in gainoffunction (treatment with recombinant activin A) or lossoffunction [treatment with activin Aantagonist follistatin or by stable transfection with short hairpin RNA (shRNA) targeting activin A] conditions. Conditioned medium from an OSCC cell line with shRNAmediated depletion of activin A was also tested. The profile of pro and antiangiogenic factors regulated by activin A was assessed with a human angiogenesis quantitative PCR (qPCR) array. Vascular endothelial growth factor A (VEGFA) and its major isoforms were evaluated by reverse transcriptionqPCR and ELISA. Activin A expression in blood vessels demonstrated an independent prognostic value in the multivariate analysis with a hazard ratio of 2.47 [95% confidence interval (CI), 1.304.71; P=0.006) for diseasespecific survival and 2.09 (95% CI, 1.074.08l: P=0.03) for diseasefree survival. Activin A significantly increased tubular formation of HUVECs concomitantly with an increase in proliferation. This effect was validated by reduced proliferation and tubular formation of HUVECs following inhibition of activin A by follistatin or shRNA, as well as by treatment of HUVECs with conditioned medium from activin Adepleted OSCC cells. Activin Aknockdown increased the migration of HUVECs. In addition, activin A stimulated the phosphorylation of SMAD2/3 and the expression and production of total VEGFA, significantly enhancing the expression of its proangiogenic isoform 121. The present findings suggest that activin A is a predictor of the prognosis of patients with OSCC, and provide evidence that activin A, in an autocrine and paracrine manner, may contribute to OSCC angiogenesis through differential expression of the isoform 121 of VEGFA.
Subject(s)
Activins/metabolism , Mouth Neoplasms/pathology , Neovascularization, Pathologic/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Vascular Endothelial Growth Factor A/metabolism , Activins/analysis , Activins/antagonists & inhibitors , Activins/genetics , Adult , Aged , Aged, 80 and over , Autocrine Communication/drug effects , Autocrine Communication/genetics , Cell Movement , Cell Proliferation , Female , Follistatin/pharmacology , Follistatin/therapeutic use , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Male , Middle Aged , Mouth Mucosa/pathology , Mouth Neoplasms/blood supply , Mouth Neoplasms/drug therapy , Mouth Neoplasms/mortality , Paracrine Communication/drug effects , Paracrine Communication/genetics , Phosphorylation/drug effects , Phosphorylation/genetics , Prognosis , Protein Isoforms/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Squamous Cell Carcinoma of Head and Neck/blood supply , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/mortalityABSTRACT
PURPOSE: We have shown that GPC3 overexpression in breast cancer cells inhibits in vivo tumor progression, by acting as a metastatic suppressor. GPC3-overexpressing cells are less clonogenic, viable and motile, while their homotypic adhesion is increased. We have presented evidences indicating that GPC3 inhibits canonical Wnt and Akt pathways, while non-canonical Wnt and p38MAPK cascades are activated. In this study, we aimed to investigate whether GPC3-induced Wnt signaling inhibition modulates breast cancer cell properties as well as to describe the interactions among pathways modulated by GPC3. METHODS: Fluorescence microscopy, qRT-PCR microarray, gene reporter assay and Western blotting were performed to determine gene expression levels, signaling pathway activities and molecule localization. Lithium was employed to activate canonical Wnt pathway and treated LM3-GPC3 cell viability, migration, cytoskeleton organization and homotypic adhesion were assessed using MTS, wound healing, phalloidin staining and suspension growth assays, respectively. RESULTS: We provide new data demonstrating that GPC3 blocks-also at a transcriptional level-both autocrine and paracrine canonical Wnt activities, and that this inhibition is required for GPC3 to modulate migration and homotypic adhesion. Our results indicate that GPC3 is secreted into the extracellular media, suggesting that secreted GPC3 competes with Wnt factors or interacts with them and thus prevents Wnt binding to Fz receptors. We also describe the complex network of interactions among GPC3-modulated signaling pathways. CONCLUSION: GPC3 is operating through an intricate molecular signaling network. From the balance of these interactions, the inhibition of breast metastatic spread induced by GPC3 emerges.
Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Glypicans/metabolism , Signal Transduction , Autocrine Communication/genetics , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Survival/genetics , Disease Progression , Female , Gene Expression , Glypicans/genetics , Humans , Paracrine Communication/genetics , Protein Binding , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Wnt Signaling PathwayABSTRACT
IL-6 is a pleiotropic cytokine with multiple pathophysiological functions. As a key factor of the senescence secretome, it can not only promote tumorigenesis and cell proliferation but also exert tumor suppressive functions, depending on the cellular context. IL-6, as do other cytokines, plays important roles in the function, growth and neuroendocrine responses of the anterior pituitary gland. The multiple actions of IL-6 on normal and adenomatous pituitary function, cell proliferation, angiogenesis and extracellular matrix remodeling indicate its importance in the regulation of the anterior pituitary. Pituitary tumors are mostly benign adenomas with low mitotic index and rarely became malignant. Premature senescence occurs in slow-growing benign tumors, like pituitary adenomas. The dual role of IL-6 in senescence and tumorigenesis is well represented in pituitary tumor development, as it has been demonstrated that effects of paracrine IL-6 may allow initial pituitary cell growth, whereas autocrine IL-6 in the same tumor triggers senescence and restrains aggressive growth and malignant transformation. IL-6 is instrumental in promotion and maintenance of the senescence program in pituitary adenomas.
Subject(s)
Adenoma/genetics , Cellular Senescence/genetics , Interleukin-6/genetics , Neovascularization, Pathologic/genetics , Pituitary Gland, Anterior/metabolism , Pituitary Neoplasms/genetics , Adenoma/metabolism , Adenoma/pathology , Animals , Autocrine Communication/genetics , Cell Cycle/genetics , Cell Proliferation , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Gene Expression Regulation , Humans , Interleukin-6/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Paracrine Communication/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Pituitary Gland, Anterior/pathology , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolismABSTRACT
The IGF-binding proteins (IGFBPs) play a dual role in the regulation of the activity and bioavailability of IGFs in different tissues. Diverse evidence has shown that IGFBPs can inhibit and/or potentiate IGF actions. In this study, igfbp1, 2, 3, 4, 5, and 6 were isolated in the fine flounder, a flat fish species that shows slow growth and inherent Gh resistance in muscle. Subsequently, the expression of all igfbps was assessed in the skeletal muscle of flounder that underwent different nutritional statuses. igfbp1 was not expressed in muscle during any of the nutritional conditions, whereas igfbp3 and igfbp5 were the lowest and the highest igfbps expressed respectively. A dynamic expression pattern was found in all the igfbps expressed in skeletal muscle, which depended on the nutritional status and sampling period. During the fasting period, igfbp2, 4, and 5 were downregulated, whereas igfbp3 was upregulated during part of the fasting period. The restoration of food modulated the expression of the igfbps dynamically, showing significant changes during both the long- and short-term refeeding. igfbp3 and igfbp6 were downregulated during short-term refeeding, whereas igfbp5 was upregulated, and igfbp2 and igfbp4 remained stable. During long-term refeeding, the expression of igfbp2, 4, 5, and 6 increased, while igfbp3 remained unchanged. In conclusion, this study shows for the first time the isolation of all igfbps in a single fish species, in addition to describing a dynamic nutritional and time-dependent response in the expression of igfbps in the skeletal muscle of a nonmammalian species.
Subject(s)
Animal Nutritional Physiological Phenomena , Fish Proteins/genetics , Flounder/genetics , Gene Expression Profiling , Insulin-Like Growth Factor Binding Proteins/genetics , Muscle, Skeletal/metabolism , Amino Acid Sequence , Animals , Autocrine Communication/genetics , Cluster Analysis , Eating/physiology , Fasting/physiology , Fish Proteins/classification , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 4/genetics , Insulin-Like Growth Factor Binding Protein 5/genetics , Insulin-Like Growth Factor Binding Protein 6/genetics , Insulin-Like Growth Factor Binding Proteins/classification , Molecular Sequence Data , Paracrine Communication/genetics , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Time FactorsABSTRACT
The neurotensin (NT) produced in the hypothalamus and in pituitary gonadotrophs and thyrotrophs participates in neuroendocrine regulation. Recently, the involvement of this peptide in normal and neoplastic cell proliferation has been postulated. In the present study, we evaluated the expression of NT and its receptors (NTR1, 2 and 3) in a series of 50 pituitary adenomas [11 growth hormone (GH)-, eight prolactin (PRL)-, four adrenocorticotrophic hormone (ACTH)- and 27 nonfunctioning adenomas]. NT mRNA expression was significantly higher in functioning compared to nonfunctioning adenomas and with normal pituitary. Nonfunctioning pituitary adenomas showed lower expression of NT mRNA than normal pituitary. In the immunohistochemical study of functioning adenomas, NT was colocalised with GH, PRL and ACTH secreting cells. In nonfunctioning adenomas, the NT immunoreactivity intensity was variable among the samples. NTR3 mRNA expression was observed in all examined samples and was higher in the adenomas, both functioning and nonfunctioning, compared to normal pituitary. By contrast, NTR1 and NTR2 mRNA were not detected in either pituitary adenomas or normal tissue. The higher expression of NTR3, as well as the expression of NT by tumoural corticotrophs, lactotrophs and somatotrophs, which are cells types that do not express this peptide in the normal pituitary, suggests that NT autocrine and/or paracrine stimulation mediated by NTR3 may be a mechanism associated with the tumourigenesis of functioning adenomas.