Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 995
Filter
1.
Molecules ; 29(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675678

ABSTRACT

Bromodomain 4 and 9 (BRD4 and BRD9) have been regarded as important targets of drug designs in regard to the treatment of multiple diseases. In our current study, molecular dynamics (MD) simulations, deep learning (DL) and binding free energy calculations are integrated to probe the binding modes of three inhibitors (H1B, JQ1 and TVU) to BRD4 and BRD9. The MD trajectory-based DL successfully identify significant functional function domains, such as BC-loop and ZA-loop. The information from the post-processing analysis of MD simulations indicates that inhibitor binding highly influences the structural flexibility and dynamic behavior of BRD4 and BRD9. The results of the MM-GBSA calculations not only suggest that the binding ability of H1B, JQ1 and TVU to BRD9 are stronger than to BRD4, but they also verify that van der Walls interactions are the primary forces responsible for inhibitor binding. The hot spots of BRD4 and BRD9 revealed by residue-based free energy estimation provide target sites of drug design in regard to BRD4 and BRD9. This work is anticipated to provide useful theoretical aids for the development of selective inhibitors over BRD family members.


Subject(s)
Bromodomain Containing Proteins , Cell Cycle Proteins , Deep Learning , Molecular Dynamics Simulation , Protein Binding , Transcription Factors , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription Factors/chemistry , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Humans , Binding Sites , Thermodynamics , Triazoles/chemistry , Triazoles/pharmacology , Azepines/chemistry , Azepines/pharmacology , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Molecular Docking Simulation
2.
Bioorg Med Chem ; 100: 117611, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38309200

ABSTRACT

Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.


Subject(s)
Inflammation , Receptor-Interacting Protein Serine-Threonine Kinases , Systemic Inflammatory Response Syndrome , Animals , Humans , Mice , Apoptosis , HT29 Cells , Inflammation/metabolism , Necrosis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Systemic Inflammatory Response Syndrome/chemically induced , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/metabolism , Azepines/chemistry , Azepines/pharmacology
3.
Nucleic Acids Res ; 52(4): 1661-1676, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38084912

ABSTRACT

Bromodomain and extraterminal (BET) proteins are extensively studied in multiple pathologies, including cancer. BET proteins modulate transcription of various genes, including those synonymous with cancer, such as MYC. Thus, BET inhibitors are a major area of drug development efforts. (+)-JQ1 (JQ1) is the prototype inhibitor and is a common tool to probe BET functions. While showing therapeutic promise, JQ1 is not clinically usable, partly due to metabolic instability. Here, we show that JQ1 and the BET-inactive (-)-JQ1 are agonists of pregnane X receptor (PXR), a nuclear receptor that transcriptionally regulates genes encoding drug-metabolizing enzymes such as CYP3A4, which was previously shown to oxidize JQ1. A PXR-JQ1 co-crystal structure identified JQ1's tert-butyl moiety as a PXR anchor and explains binding by (-)-JQ1. Analogs differing at the tert-butyl lost PXR binding, validating our structural findings. Evaluation in liver cell models revealed both PXR-dependent and PXR-independent modulation of CYP3A4 expression by BET inhibitors. We have characterized a non-BET JQ1 target, a mechanism of physiological JQ1 instability, a biological function of (-)-JQ1, and BET-dependent transcriptional regulation of drug metabolism genes.


Subject(s)
Azepines , Pregnane X Receptor , Triazoles , Azepines/chemistry , Azepines/pharmacology , Cell Line, Tumor , Cell Proliferation , Cytochrome P-450 CYP3A/genetics , Nuclear Proteins/metabolism , Pregnane X Receptor/chemistry , Proto-Oncogene Proteins c-myc/genetics , Receptors, Cytoplasmic and Nuclear , Triazoles/chemistry , Triazoles/pharmacology , Humans
4.
Bioorg Chem ; 135: 106478, 2023 06.
Article in English | MEDLINE | ID: mdl-36958121

ABSTRACT

Cancer is associated with uncontrolled cell proliferation invading adjoining tissues and organs. Despite the availability of several chemotherapeutic agents, the constant search for newer approaches and drugs is necessitated owing to the ever-growing challenge of resistance. Over the years, DNA has emerged as an important druggable therapeutic drug due to its role in critical cellular processes such as cell division and maintenance. Further, evading apoptosis stands out as a hallmark of cancer. Hence, designing new compounds that would target DNA and induce apoptosis plays an important role in cancer therapy. In the current work, we carried out the synthesis and anticancer evaluation of 1-aryl-4,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(1H)-ones/thiones (26 compounds) against selected human cancer cell lines. Among these, compounds 8ae, 8ad, 8cf, 10ad and Kenpaullone have shown good inhibitory properties against HeLa cells (IC50 < 2 µM) with good selectivity over the non-cancerous human embryonic kidney (Hek293T) cells. In cell cycle analysis, the compounds 8ad and 8cf have exhibited G2/M cell cycle arrest in HeLa cells. In addition, the compounds 8ad and 8cf induced apoptosis in a dose-dependent manner in the Annexin-V FITC staining assay. The DAPI staining clearly demonstrated the condensed and fragmented nuclei in 8ad, 8cf, 8ae and Kenpaullone-treated HeLa cells. In addition, these compounds strongly suppressed the healing after 48 h in in vitro cell migration assay. The DNA binding experiments indicated that compounds 8ae, 8cf, and 8ad as well as Kenpaullone interact with double-stranded DNA by binding in grooves which may interrupt the DNA replication and kill fast-growing cells. Molecular docking studies revealed the binding pose of 8ad and Kenpaullone at HT1 binding pocket of double-stranded DNA. Compounds 8ad and 8cf demonstrated moderate topo II inhibition which could be a possible reason for their anticancer properties. Compounds 8ad and 8cf may cause the topo II and DNA covalent complex, which leads to the inhibition of DNA replication and transcription. This eventually increases the DNA damage in cells and promotes cell apoptosis. With the above interesting biological profile, the new 1-aryl-2,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(4H)-one/thione derivatives have emerged as promising leads for the discovery of new anticancer agents.


Subject(s)
Antineoplastic Agents , Thiones , Humans , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , HEK293 Cells , HeLa Cells , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiones/pharmacology , Azepines/chemistry , Azepines/pharmacology
5.
Bioorg Chem ; 131: 106299, 2023 02.
Article in English | MEDLINE | ID: mdl-36493622

ABSTRACT

A series of novel substituted azepines (2-7) was synthesized using both traditional and ultrasonic techniques. The efficiency of the reaction rate and yield was improved by sonication technique. We identified the newly synthesized compounds based on their melting points, elemental analyses, and spectral data. Human cancers are regulated mainly by the phosphatidylinositol 3-kinase/protein kinases B (PI3K/Akt) pathway, and its abnormal activation is linked to carcinogenesis, and angiogenesis. Using in-silico studies, we evaluated the ability of all the novel substituted diazepines and oxazepines to prevent cancer growth and metastasis by targeting the PI3K/Akt signaling pathway. Based on our findings, compounds 4a and 7a were chosen for in-vitro testing as they ranked via molecular docking the highest binding energies of -10.9, -10.3, -10.6, and -10.4 kcal/mol respectively. Compounds 4a and 7a displayed significant cytotoxicity on Caco-2 colorectal cancer cells with IC50 values of 8.445 ± 2.26 and 33.04 ± 2.06 µM, respectively. Additionally, they considerably suppressed the PI3K/Akt proteins and generated reactive oxygen species (ROS), which increased p53 and Bax, decreased Bcl-2 levels, and arrested the cell cycle at sub-G0/G1 phase. We also observed a remarkable overexpression of the Tuberous Sclerosis Complex 2 (TSC2) gene, an inhibitor of the mammalian target of rapamycin (mTOR). These results showed that compounds 4a and 7a obeyed Lipinski's rule of five and might be potential cancer treatment scaffolds by preventing metastasis and proliferation via blocking the PI3K/Akt/TSC2/m-TOR signaling pathway. This supports our hypothesis that diazepine 4a and oxazepine 7a are promising drug candidates for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Tuberous Sclerosis , Humans , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , TOR Serine-Threonine Kinases/metabolism , Caco-2 Cells , Azepines/chemistry , Signal Transduction , Colorectal Neoplasms/metabolism , Cell Proliferation , Cell Line, Tumor
6.
Chem Pharm Bull (Tokyo) ; 70(8): 573-579, 2022.
Article in English | MEDLINE | ID: mdl-35908923

ABSTRACT

The atropisomeric properties of N-alkyl and N-aryl 4-substituted 5H-dibenz[b,f]azepines were investigated. The N-alkylation and N-arylation of 4-Cl or 4-Me substituted compounds was performed; however, none of the atropisomers produced were separated by chiral HPLC. Notably, we observed that the rotation of the four axes (ax. 1-4) in the 4-substituted 5H-dibenz[b,f]azepine structure is so rapid that N-alkylation or N-arylation is not sufficient to freeze it at room temperature. Additionally, the X-ray crystal structures of N-aryl compounds 13b and 14a indicated that the N atom in the triphenyl amine moiety in their structures shows sp2-like property.


Subject(s)
Azepines , Azepines/chemistry
7.
Bioorg Med Chem ; 58: 116658, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35183880

ABSTRACT

Function-oriented molecular editing of the polycyclic scaffold of securinine led to the preparation of a library of simplified analogs that have been evaluated for their cytotoxicity potential against HCT116 and HL60 human cell lines. Chemical diversity at the C14 position (securinine numbering) was generated through the site-selective γ-iodination followed by Pd-catalyzed Sonogashira and Suzuki-Miyaura reactions. To explain the selectivity in the iodination step, a reaction mechanism has been proposed. Surprisingly, the piperidine ring (ring A) of the securinine skeleton has been found to be irrelevant for the cytotoxic activity. Based on this finding, the pharmacophoric core of securinine could be simplified to the key BCD motif. The nature of the substituent at the nitrogen can vary from a methyl or an isobutyl group to a benzyl or a carbamate moiety. Interestingly, the N-benzyl substituted simplified analog exhibited the same cytotoxic activity as the parent compound securinine. This functional group tolerance paves the way for the installation of reactive handles for the synthesis of molecular probes for target identification.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/pharmacology , Heterocyclic Compounds, Bridged-Ring/pharmacology , Lactones/pharmacology , Piperidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Azepines/chemical synthesis , Azepines/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Density Functional Theory , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , HL-60 Cells , Heterocyclic Compounds, Bridged-Ring/chemical synthesis , Heterocyclic Compounds, Bridged-Ring/chemistry , Humans , Lactones/chemical synthesis , Lactones/chemistry , Molecular Conformation , Piperidines/chemical synthesis , Piperidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
8.
Molecules ; 27(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35164062

ABSTRACT

The geometry of dibenzoazepine analogues-typical multifunctional drugs-was investigated to find the geometrical parameters sensitive to the substitution of the central seven-membered ring. Exploration of the crystal structure database (CSD) shows that the geometrical parameter sensitive to the substitution of the carbon atom distance of the central ring not included in the aromatic rings to the plane through the carbon atoms common for the central ring and the aromatic side rings. Presence of the double bond in the central ring was reflected in its partial aromaticity expressed by the HOMED parameter. Some derivatives of 5H-dibenzo[b,f]azepine with flat conformation of the central ring are characterized by mobility of the electron density comparable to the mobility in the aromatic side rings. Influence of the surrounding on the investigated compounds was confirmed by comparison of the optimized molecules and the molecules in the crystal state where the packing forces can influence the molecular geometry.


Subject(s)
Azepines/chemistry , Models, Chemical , Azepines/pharmacology , Cyclization , Density Functional Theory , Molecular Structure , Thermodynamics
9.
J Am Chem Soc ; 144(2): 701-708, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34994556

ABSTRACT

Proteolysis-targeting chimeras (PROTACs), heterobifunctional compounds that consist of protein-targeting ligands linked to an E3 ligase recruiter, have arisen as a powerful therapeutic modality for targeted protein degradation (TPD). Despite the popularity of TPD approaches in drug discovery, only a small number of E3 ligase recruiters are available for the >600 E3 ligases that exist in human cells. Here, we have discovered a cysteine-reactive covalent ligand, EN106, that targets FEM1B, an E3 ligase recently discovered as the critical component of the cellular response to reductive stress. By targeting C186 in FEM1B, EN106 disrupts recognition of the key reductive stress substrate of FEM1B, FNIP1. We further establish that EN106 can be used as a covalent recruiter for FEM1B in TPD applications by demonstrating that a PROTAC linking EN106 to the BET bromodomain inhibitor JQ1 or the kinase inhibitor dasatinib leads to the degradation of BRD4 and BCR-ABL, respectively. Our study showcases a covalent ligand that targets a natural E3 ligase-substrate binding site and highlights the utility of covalent ligand screening in expanding the arsenal of E3 ligase recruiters suitable for TPD applications.


Subject(s)
Acetamides/chemistry , Cell Cycle Proteins/metabolism , Proteolysis , Ubiquitin-Protein Ligase Complexes/metabolism , Animals , Azepines/chemistry , Binding Sites , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line , Cysteine/chemistry , Dasatinib/chemistry , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Humans , Mice , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Kinase Inhibitors/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Triazoles/chemistry , Ubiquitin-Protein Ligase Complexes/antagonists & inhibitors , Ubiquitin-Protein Ligase Complexes/genetics
10.
Elife ; 112022 01 04.
Article in English | MEDLINE | ID: mdl-34982029

ABSTRACT

Nicotinic partial agonists provide an accepted aid for smoking cessation and thus contribute to decreasing tobacco-related disease. Improved drugs constitute a continued area of study. However, there remains no reductionist method to examine the cellular and subcellular pharmacokinetic properties of these compounds in living cells. Here, we developed new intensity-based drug-sensing fluorescent reporters (iDrugSnFRs) for the nicotinic partial agonists dianicline, cytisine, and two cytisine derivatives - 10-fluorocytisine and 9-bromo-10-ethylcytisine. We report the first atomic-scale structures of liganded periplasmic binding protein-based biosensors, accelerating development of iDrugSnFRs and also explaining the activation mechanism. The nicotinic iDrugSnFRs detect their drug partners in solution, as well as at the plasma membrane (PM) and in the endoplasmic reticulum (ER) of cell lines and mouse hippocampal neurons. At the PM, the speed of solution changes limits the growth and decay rates of the fluorescence response in almost all cases. In contrast, we found that rates of membrane crossing differ among these nicotinic drugs by >30-fold. The new nicotinic iDrugSnFRs provide insight into the real-time pharmacokinetic properties of nicotinic agonists and provide a methodology whereby iDrugSnFRs can inform both pharmaceutical neuroscience and addiction neuroscience.


Subject(s)
Alkaloids/chemistry , Azepines/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Nicotinic Agonists/chemistry , Smoking Cessation , Alkaloids/metabolism , Animals , Azocines/chemistry , Azocines/metabolism , Fluorescence , Humans , Ligands , Mice , Quinolizines/chemistry , Quinolizines/metabolism
11.
Mar Drugs ; 19(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34940713

ABSTRACT

From the marine-derived fungus Penicillium sumatrense (Trichocomaceae), a pair of enantiomers [(+)-1 and (-)-1] were isolated with identical 1D NMR data to drazepinone, which was originally reported to have a trisubstituted naphthofuroazepinone skeleton. In this study, we confirmed the structures of the two enantiomers as drazepinone and revised their structures by detailed analysis of extensive 2D NMR data and a comparison of the calculated 13C chemical shifts, ECD, VCD, and ORD spectra with those of the experiment ones. (+)-1 and (-)-1 were evaluated for their PTP inhibitory activity in vitro. (-)-1 showed selective PTP inhibitory activity against PTP1B and TCPTP with IC50 values of 1.56 and 12.5 µg/mL, respectively.


Subject(s)
Azepines/pharmacology , Enzyme Inhibitors/pharmacology , Naphthalenes/pharmacology , Penicillium , Protein Tyrosine Phosphatases/antagonists & inhibitors , Animals , Aquatic Organisms , Azepines/chemistry , Enzyme Inhibitors/chemistry , Naphthalenes/chemistry , Protein Tyrosine Phosphatases/metabolism , Structure-Activity Relationship
12.
J Nanobiotechnology ; 19(1): 433, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930269

ABSTRACT

BACKGROUND: The construction of a nanoimmune controlled-release system that spatiotemporally recognizes tumor lesions and stimulates the immune system response step by step is one of the most potent cancer treatment strategies for improving the sensitivity of immunotherapy response. RESULTS: Here, a composite nanostimulator (CNS) was constructed for the release of second near-infrared (NIR-II) photothermal-mediated immune agents, thereby achieving spatiotemporally controllable photothermal-synergized immunotherapy. CNS nanoparticles comprise thermosensitive liposomes as an outer shell and are internally loaded with a NIR-II photothermal agent, copper sulfide (CuS), toll-like receptor-9 (TLR-9) agonist, cytosine-phospho-guanine oligodeoxynucleotides, and programmed death-ligand 1 (PD-L1) inhibitors (JQ1). Following NIR-II photoirradiation, CuS enabled the rapid elevation of localized temperature, achieving tumor ablation and induction of immunogenic cell death (ICD) as well as disruption of the lipid shell, enabling the precise release of two immune-therapeutical drugs in the tumor region. Combining ICD, TLR-9 stimulation, and inhibited expression of PD-L1 allows the subsequent enhancement of dendritic cell maturation and increases infiltration of cytotoxic T lymphocytes, facilitating regional antitumor immune responses. CONCLUSION: CNS nanoparticle-mediated photothermal-synergized immunotherapy efficiently suppressed the growth of primary and distant tumors in two mouse models and prevented pulmonary metastasis. This study thus provides a novel sight into photo-controllably safe and efficient immunotherapy.


Subject(s)
Immunotherapy/methods , Infrared Rays , Nanoparticles/chemistry , Neoplasms/therapy , Phototherapy/methods , Animals , Azepines/chemistry , Azepines/pharmacology , Azepines/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Cell Line, Tumor , Copper/chemistry , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Immunogenic Cell Death/drug effects , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Liposomes/chemistry , Mice , Mice, Inbred C57BL , Neoplasms/pathology , Toll-Like Receptor 9/metabolism , Transplantation, Heterologous , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/therapeutic use
13.
Article in English | MEDLINE | ID: mdl-34731742

ABSTRACT

Besifloxacin has been embraced for the treatment of ocular bacterial infections. While LC-MS/MS has been used in investigating BSF pharmacokinetics, those costly instruments are not universally available and have complicated requirements for operation and maintenance. Additionally, pharmacokinetics of besifloxacin in dose-intense regimens are still unknown. Herein, a new quantification method was developed employing the widely accessible HPLC with fluorescence detection and applied to an ocular pharmacokinetic study with an intense regimen. Biosamples were pre-treated using protein precipitation. Chromatographic separation was achieved on a C18 column using mobile phase of 0.1% trifluoroacetic acid and acetonitrile. To address the weak fluorescence issue of besifloxacin, effects of detection parameters, elution pattern, pH of mobile phase, and reconstitution solvents were investigated. The method was fully validated per US-FDA guidelines and demonstrated precision (<13%), accuracy (91-112%), lower limit of quantification (5 ng/mL), linearity over clinically relevant concentrations (R2 > 0.999), matrix-effects (93-105%), recoveries (95-106%), and excellent selectivity. The method showed agreement with agar disk diffusion assays for in vitro screening and comparable in vivo performance to LC-MS/MS (Deming Regression, y = 1.010x + 0.123, r = 0.997; Bland-Altman analysis, mean difference was -6.3%; n = 21). Pharmacokinetic parameters suggested superior surface-retentive properties of besifloxacin. Maximum concentrations were 1412 ± 1910 and 0.15 ± 0.12 µg/mL; area under the curve was 1,637 and 1.08 µg·h/g; and half-life was 4.9 and 4.1 h; and pharmacokinetic-to-pharmacodynamic ratios were ≥ 409 and ≤ 17.8 against ocular pathogens in tears and aqueous humor, respectively. This readily available method is sensitive for biosamples and practical for routine use, facilitating besifloxacin therapy development.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Azepines/chemistry , Azepines/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacokinetics , Keratitis/drug therapy , Tandem Mass Spectrometry/methods , Animals , Anti-Bacterial Agents/administration & dosage , Aqueous Humor/chemistry , Azepines/administration & dosage , Chromatography, High Pressure Liquid/instrumentation , Female , Fluorescence , Fluoroquinolones/administration & dosage , Humans , Limit of Detection , Male , Rabbits , Tears/chemistry
14.
Org Lett ; 23(20): 7814-7818, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34595919

ABSTRACT

A family of axially chiral azepine-containing seven-membered cyclic P,N-ligands (named Indole-azepinap) have been prepared by using l-alanine as an original chirality source. The direct chromatographic separation of two diastereomeric phosphine oxides on silica gel enabled these ligands to be easy available, allowing further structural and electronic modifications. Preliminary application of these Indole-azepinaps has been demonstrated in a Pd-catalyzed asymmetric allylic alkylation with high yields and moderate enantioselectivities.


Subject(s)
Alanine/chemistry , Azepines/chemistry , Indoles/chemistry , Alkylation , Catalysis , Ligands , Molecular Structure , Palladium/chemistry , Phosphines , Stereoisomerism
15.
Bioorg Chem ; 116: 105406, 2021 11.
Article in English | MEDLINE | ID: mdl-34628227

ABSTRACT

INTRODUCTION: Investigating the binding site of six novel curcumin-based diazepine compounds as a non-competitive antagonist on ionotropic, AMPA-type glutamate receptors, including homomeric and heteromeric subunits. These receptors play a pivotal role in neurodegenerative diseases such as Alzheimer's and epilepsy due to excitotoxicity. Furthermore, it appears that AMPAR signaling plays a significant role in disease development outside the nervous system, as a potential relationship between AMPAR activation and cancer development may exist. OBJECTIVES: Study the biophysical gating effects of the curcumin-based diazepine on AMPAR variants and identify CBD binding sites on AMPARs with the hopes of discovering more potent drug candidates with less undesirable side effects. METHODS: Our current study uses patch-clamp electrophysiology technology to estimate whole-cell amplitudes changes when exposing HEK293T cells expressing AMPAR subunits to different curcumin-based diazepines. RESULTS: The non-competitive antagonist curcumin-based compounds successfully reduced AMPAR activation currents and increased the rate of desensitization and deactivation. CBD-4 and CBD-5 show the most significant impact on AMPARs, reducing the current by 7-fold. The results contrast with those obtained by the halogenated benzodiazepine-fused curcumins reported previously and lake pyrimidine and pyrazine moieties. This indicates that the N's presence in the effused rings plays a significant role in binding to receptors. CBD-4 showed the highest effect on GluA2 subunits in receptors, while CBD-5 most dramatically impacting GluA1 homomeric receptors, demonstrating that the compounds are more selective towards AMPA-type glutamate receptors. The compounds also showed significant cytotoxic activities against breast cancer cell line (MCF-7), with CBD-4 having the most significant impact. CONCLUSION: Curcumin-based compounds (i.e., CBD-4 and CBD-5) yield significant neurodegenerative drug potential, and it creates a novel structure with significant activities in reducing AMPAR excitation compared to traditional benzodiazepine analogs, yet their binding mechanisms are still not fully understood. Moreover, AMPARs appear to have a potential influence on cancer development, and the curcumin-based compounds might provide insight into the nature of this relationship.


Subject(s)
Azepines/pharmacology , Curcumin/pharmacology , Receptors, AMPA/antagonists & inhibitors , Azepines/chemical synthesis , Azepines/chemistry , Curcumin/chemical synthesis , Curcumin/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Receptors, AMPA/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 52: 128353, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34492302

ABSTRACT

The HBV core protein serves multiple essential functions in the viral life cycle that enable chronic HBV infection to persist, and as such, represents a promising drug target. Modulation of the HBV capsid assembly has shown efficacy in early clinical trials through use of small molecule capsid assembly modulators (CAMs). Herein is described the evolution and SAR of a novel pyrazolo piperidine lead series into advanced oxadiazepinone HBV CAMs.


Subject(s)
Antiviral Agents/pharmacology , Azepines/pharmacology , Capsid Proteins/antagonists & inhibitors , Hepatitis B virus/drug effects , Antiviral Agents/chemistry , Azepines/chemistry , Capsid Proteins/metabolism , Dose-Response Relationship, Drug , Hepatitis B virus/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
17.
Biomolecules ; 11(9)2021 09 10.
Article in English | MEDLINE | ID: mdl-34572552

ABSTRACT

Dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore have been widely reported to show tumor cell selectivity. These compounds target the ubiquitin-proteasome system (UPS), known to be essential for the viability of tumor cells. The induction of oxidative stress, depletion of glutathione, and induction of high-molecular-weight (HMW) complexes have also been reported. We here examined the response of acute myeloid leukemia (AML) cells to the dienone compound VLX1570. AML cells have relatively high protein turnover rates and have also been reported to be sensitive to depletion of reduced glutathione. We found AML cells of diverse cytogenetic backgrounds to be sensitive to VLX1570, with drug exposure resulting in an accumulation of ubiquitin complexes, induction of ER stress, and the loss of cell viability in a dose-dependent manner. Caspase activation was observed but was not required for the loss of cell viability. Glutathione depletion was also observed but did not correlate to VLX1570 sensitivity. Formation of HMW complexes occurred at higher concentrations of VLX1570 than those required for the loss of cell viability and was not enhanced by glutathione depletion. To study the effect of VLX1570 we developed a zebrafish PDX model of AML and confirmed antigrowth activity in vivo. Our results show that VLX1570 induces UPS inhibition in AML cells and encourage further work in developing compounds useful for cancer therapeutics.


Subject(s)
Azepines/pharmacology , Benzylidene Compounds/pharmacology , Leukemia, Myeloid, Acute/pathology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/antagonists & inhibitors , Animals , Azepines/chemistry , Benzylidene Compounds/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/pharmacology , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Endoplasmic Reticulum Stress/drug effects , Glutathione/metabolism , Heme Oxygenase-1/metabolism , Humans , Molecular Weight , Polyubiquitin/metabolism , Time Factors , Ubiquitin/metabolism , Ubiquitination/drug effects , Zebrafish/embryology
18.
J Med Chem ; 64(19): 14745-14756, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34549949

ABSTRACT

To better understand the role of bromodomain and extra-terminal domain (BET) proteins in epigenetic mechanisms, we developed a series of thienodiazepine-based derivatives and identified two compounds, 3a and 6a, as potent BET inhibitors. Further in vivo pharmacokinetic studies and analysis of in vitro metabolic stability of 6a revealed excellent brain penetration and reasonable metabolic stability. Compounds 3a and 6a were radiolabeled with fluorine-18 in two steps and utilized in positron emission tomography (PET) imaging studies in mice. Preliminary PET imaging results demonstrated that [18F]3a and [18F]6a have good brain uptake (with maximum SUV = 1.7 and 2, respectively) and binding specificity in mice brains. These results show that [18F]6a is a potential PET radiotracer that could be applied to imaging BET proteins in the brain. Further optimization and improvement of the metabolic stability of [18F]6a are still needed in order to create optimal PET imaging probes of BET family members.


Subject(s)
Azepines/chemistry , Drug Design , Molecular Probes/chemistry , Positron-Emission Tomography/methods , Protein Domains , Animals , Azepines/pharmacokinetics , Mice , Molecular Docking Simulation , Molecular Probes/pharmacokinetics , Transcription Factors/metabolism
19.
Eur J Med Chem ; 226: 113853, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34547507

ABSTRACT

Dysfunction of the bromo and extra terminal domain (BET) family proteins is associated with many human diseases, therefore the BET family proteins have been considered as promising targets for drug development. Numerous small molecular compounds targeting the N-terminal two tandem bromodomains BD1 and BD2 of the BET family proteins have been reported, and a number of them have been advanced into clinical trials. Most of the BET inhibitors entered clinical trials are pan-BET inhibitors which show poor selectivity among BET members and bind to the BD1 and BD2 of the BET family proteins with comparable binding affinities. In order to elucidate the distinct functions of BD1s and BD2s, many BD1 and BD2 selective BET inhibitors have also been developed. In this review, we summarized the recent progress in the development of BD1 and BD2 selective BET inhibitors, and provided the perspectives for future studies of BET inhibitors.


Subject(s)
Azepines/pharmacology , Drug Development , Proteins/antagonists & inhibitors , Triazoles/pharmacology , Azepines/chemical synthesis , Azepines/chemistry , Humans , Molecular Structure , Protein Domains/drug effects , Proteins/chemistry , Proteins/metabolism , Triazoles/chemical synthesis , Triazoles/chemistry
20.
Org Lett ; 23(16): 6222-6226, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34369782

ABSTRACT

The proposed structures of parvistemoamide have been achieved by macrolactamization, but none of the characterization data of synthetic samples matched with those of the natural sample. The transformation of the highly strained 10-membered lactam ring in parvistemoamide into the pyrrolo[1,2-a]-azepine nucleus in stemoamide is accomplished for the first time by either transannular cyclization or Pilli's transformation. This research may promote the total synthesis of other more complex stemoamide-type or medium-sized-ring-containing Stemona alkaloids.


Subject(s)
Alkaloids/chemistry , Azepines/chemistry , Heterocyclic Compounds, 3-Ring/chemical synthesis , Lactams/chemistry , Stemonaceae/chemistry , Cyclization , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...