Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Pak J Biol Sci ; 23(11): 1473-1480, 2020 Jan.
Article in English | MEDLINE | ID: mdl-33274877

ABSTRACT

BACKGROUND AND OBJECTIVE: In the rainy season farmers don't interest to cultivate shallot because in addition to providing a high dosage of fertilizer they are also sensitive to pathogenic attacks so they are afraid of crop failure and cause low shallot production. This study aimed to knew effect of agronomic component and quality of shallot under different concentrations of biofertilizer and Ammonium Sulphate (AS) fertilizer dose in the rainy season. MATERIALS AND METHODS: The study was conducted in Cangkring, Srandakan, Bantul, Special Region of Yogyakarta Indonesia from August to October 2019. The study was arranged in RCBD factorial with three replications. The first factor was a various dose of ammonium sulphate (100, 200 and 300 kg ha-1). The second factor was various concentrations of biofertilizer (2, 3 and 4%), and control. The observed variables were the analysis of growth yield and quality component of shallot plant. The analyzed using analysis of variance at 5% of significance then continued by DMRT at 5% of significance. RESULTS: There was the interaction between the application of AS dosage and biofertilizer concentration on all of variable observations. There was a significant difference between treatment with control on all of the observation variables. CONCLUSION: The combination of AS fertilizer 200 kg ha-1 dose and 3% biofertilizer concentration increased agronomic efficiency, growth, bulbs yields, and quality of bulbs include provitamin A, oleoresin compounds.


Subject(s)
Ammonium Sulfate , Crops, Agricultural/growth & development , Fertilizers/microbiology , Nutritive Value , Rain , Seasons , Shallots/growth & development , Soil Microbiology , Aspergillus/growth & development , Azospirillum/growth & development , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Indonesia , Plant Extracts/metabolism , Provitamins/metabolism , Shallots/metabolism , Shallots/microbiology , Trichoderma/growth & development , Vitamin A/metabolism
2.
Sci Rep ; 7(1): 8411, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827706

ABSTRACT

Maize inoculation by Azospirillum stimulates root growth, along with soil nitrogen (N) uptake and root carbon (C) exudation, thus increasing N use efficiency. However, inoculation effects on soil N-cycling microbial communities have been overlooked. We hypothesized that inoculation would (i) increase roots-nitrifiers competition for ammonium, and thus decrease nitrifier abundance; and (ii) increase roots-denitrifiers competition for nitrate and C supply to denitrifiers by root exudation, and thus limit or benefit denitrifiers depending on the resource (N or C) mostly limiting these microorganisms. We quantified (de)nitrifiers abundance and activity in the rhizosphere of inoculated and non-inoculated maize on 4 sites over 2 years, and ancillary soil variables. Inoculation effects on nitrification and nitrifiers (AOA, AOB) were not consistent between the three sampling dates. Inoculation influenced denitrifiers abundance (nirK, nirS) differently among sites. In sites with high C limitation for denitrifiers (i.e. limitation of denitrification by C > 66%), inoculation increased nirS-denitrifier abundance (up to 56%) and gross N2O production (up to 84%), likely due to increased root C exudation. Conversely, in sites with low C limitation (<47%), inoculation decreased nirS-denitrifier abundance (down to -23%) and gross N2O production (down to -18%) likely due to an increased roots-denitrifiers competition for nitrate.


Subject(s)
Azospirillum/growth & development , Carbon/analysis , Microbial Interactions , Nitrogen/analysis , Soil Microbiology , Soil/chemistry , Zea mays/microbiology , Azospirillum/metabolism , Denitrification , Nitrification , Nitrogen Oxides/metabolism , Plant Roots/microbiology
3.
Microbiol Res ; 202: 21-29, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28647119

ABSTRACT

Osmotic variations in the soil can affect bacterial growth diminishing the number of inoculated bacteria. In a scenario of water deficit having tolerant bacteria would be beneficial to achieve a better response of the plant to stress. Thus, selection of more resistant bacteria could be useful to design new inoculants to be used in arid zones. In this sense, a group of Azospirillum isolates deposited in INTA collection was characterized in order to select strains tolerant to osmotic stress. The results obtained demonstrated that Az19 strain has similar in vitro PGPR characteristics to Az39, the most used strain in Argentina for inoculants industries, with the advantage of a better tolerance to osmotic and salt stress. Inoculation of maize plants with this strain resulted in a better response against water deficit compared to Az39 strain, encouraging us to further study the behavior of this strain in greenhouse and field trials in view of developing new inoculants suitable for areas with water deficit.


Subject(s)
Adaptation, Physiological , Azospirillum/physiology , Droughts , Osmotic Pressure , Zea mays/growth & development , Zea mays/microbiology , Argentina , Azospirillum/genetics , Azospirillum/growth & development , Azospirillum/isolation & purification , Carbon-Carbon Lyases/metabolism , Cell Survival , Colony Count, Microbial , Genotype , Indoles/metabolism , Nitrogen Fixation , Phosphates/metabolism , Proline/analysis , Seeds/growth & development , Siderophores/metabolism , Soil , Trehalose/metabolism , Water/chemistry , Zea mays/physiology
4.
World J Microbiol Biotechnol ; 33(4): 81, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28357640

ABSTRACT

A sustainable alternative to improve yield and the nutritive value of forage is the use of plant growth-promoting bacteria (PGPB) that release nutrients, synthesize plant hormones and protect against phytopathogens (among other mechanisms). Azospirillum genus is considered an important PGPB, due to the beneficial effects observed when inoculated in several plants. The aim of this study was to evaluate the diversity of new Azospirillum isolates and select bacteria according to the plant growth promotion ability in three forage species from the Brazilian Pantanal floodplain: Axonopus purpusii, Hymenachne amplexicaulis and Mesosetum chaseae. The identification of bacterial isolates was performed using specific primers for Azospirillum in PCR reactions and partial sequencing of the 16S rRNA and nifH genes. The isolates were evaluated in vitro considering biological nitrogen fixation (BNF) and indole-3-acetic acid (IAA) production. Based on the results of BNF and IAA, selected isolates and two reference strains were tested by inoculation. At 31 days after planting the plant height, shoot dry matter, shoot protein content and root volume were evaluated. All isolates were able to fix nitrogen and produce IAA, with values ranging from 25.86 to 51.26 mg N mL-1 and 107-1038 µmol L-1, respectively. The inoculation of H. amplexicaulis and A. purpusii increased root volume and shoot dry matter. There were positive effects of Azospirillum inoculation on Mesosetum chaseae regarding plant height, shoot dry matter and root volume. Isolates MAY1, MAY3 and MAY12 were considered promising for subsequent inoculation studies in field conditions.


Subject(s)
Azospirillum/classification , Azospirillum/isolation & purification , Poaceae/microbiology , Azospirillum/genetics , Azospirillum/growth & development , DNA, Fungal/analysis , Indoleacetic Acids/metabolism , Nitrogen Fixation , Phylogeny , Plant Proteins/analysis , Plant Roots/metabolism , Plant Roots/microbiology , Poaceae/growth & development , Sequence Analysis, DNA
5.
Rev. biol. trop ; 65(1): 21-30, Jan.-Mar. 2017. tab, ilus
Article in Spanish | LILACS | ID: biblio-897522

ABSTRACT

ResumenLa industria petrolera ha generado derrames crónicos de petróleo y su acumulación en Gleysoles en zonas anegadas en el estado de Tabasco, en el sureste de México. El anegamiento es un factor que limita el uso de tecnologías de remediación por el alto costo y los bajos niveles de degradación del petróleo, sin embargo, Leersia hexandra Sw. es un pasto que crece en estas zonas contaminadas con petróleo intemperizado. El objetivo del estudio fue evaluar la densidad de bacterias, producción de biomasa vegetal y fitorremediación de L.hexandra en suelo contaminado con petróleos fresco e intemperizado, bajo condiciones experimentales de anegamiento. Se realizaron dos experimentos (E1 y E2) en un túnel de plástico. El E1 se basó en ocho dosis: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 y 180 000 mg kg-1 base seca (b.s.) de hidrocarburos totales de petróleo fresco (HTPF), y en el E2 se evaluaron cinco dosis: 14 173, 28 400, 50 598, 75 492 y 112 142 mg kg-1 b. s. de hidrocarburos totales de petróleo intemperizado (HTPI), con ocho repeticiones en cada experimento, además se utilizó un testigo con 2 607 mg kg-1 b. s. de HTP de origen biogénico. Las variables evaluadas a los tres y seis meses fueron 1) densidad microbiana de las bacterias fijadoras de nitrógeno de vida libre totales (BFN), del grupo Azospirillum (AZP) y Azotobacter (AZT), por cuenta viable en placa seriada; 2) producción de materia seca total (MS), se cuantificó por el peso seco por gravimetría, y 3) el porcentaje de descontaminación de los hidrocarburos (DSC) por extracción en equipo soxhlet. En suelos con HTPF, la población de BFN, AZP y AZT se estimuló hasta cinco veces más que el tratamiento testigo a los tres y seis meses; sin embargo, concentraciones de 150 000 y 180 000 mg kg-1 b. s. inhibieron entre un 70 y 89 % la densidad bacteriana. A su vez, en suelos con PI, la inhibición se registró hasta en un 90 %, a excepción del tratamiento con 14 173 mg kg-1 b. s., el cual estimuló las BNF y AZT en 2 y 0.10 veces más que testigo, respectivamente. La producción de MS fue continua en los experimentos hasta los seis meses, con valores de 63 y 89 g en PF y PI, respectivamente; sin diferencias significativas con el testigo (p ≤ 0.05). El DSC alcanzó valores del 66 % al 87 % en HTPF como HTPI a los seis meses, respectivamente. Estos resultados demuestran la habilidad del L. hexandra para desarrollar una rizósfera con alta densidad de BFN, producir biomasa vegetal y fitorremediar Gleysoles con petróleo fresco e intemperizado en ambientes tropicales inundados.


Abstract:The oil industry has generated chronic oil spills and their accumulation in wetlands of the state of Tabasco, in Southeastern Mexico. Waterlogging is a factor that limits the use of remediation technologies because of its high cost and low levels of oil degradation. However, Leersia hexandra is a grass that grows in these contaminated areas with weathered oil. The aim of the study was to evaluate the bacteria density, plant biomass production and phytoremediation of L. hexandra in contaminated soil. For this, two experiments in plastic tunnel were performed with fresh (E1) and weathered petroleum (E2) under waterlogging experimental conditions. The E1 was based on eight doses: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 and 180 000 mg.kg-1 dry basis (d. b.) of total petroleum hydrocarbons fresh (TPH-F), and the E2, that evaluated five doses: 14 173, 28 400, 50 598, 75 492 and 112 142 mg. kg-1 d. b. of total petroleum hydrocarbons weathered (TPH-W); a control treatment with 2 607 mg.kg-1 d. b. was used. Each experiment, with eight replicates per treatment, evaluated after three and six months: a) microbial density of total free-living nitrogen-fixing bacteria (NFB) of Azospirillum (AZP) and Azotobacter group (AZT), for viable count in serial plate; b) dry matter production (DMP), quantified gravimetrically as dry weight of L. hexandra; and c) the decontamination percentage of hydrocarbons (PDH) by Soxhlet extraction. In soil with TPH-F, the NFB, AZP y AZT populations were stimulated five times more than the control both at the three and six months; however, concentrations of 150 000 and 180 000 mg.kg-1 d. b. inhibited the bacterial density between 70 and 89 %. Likewise, in soil with TPH-W, the FNB, AZP and AZT inhibitions were 90 %, with the exception of the 14 173 mg.kg-1 d. b. treatment, which stimulated the NFB and AZT in 2 and 0.10 times more than the control, respectively. The DMP was continued at the six months in the experiments, with values of 63 and 89 g in fresh and weathered petroleum, respectively; had no significant differences with the control (p≤0.05). The PDH reached values of 66 to 87 % both TPH-F and TPH-W at six months, respectively. These results demonstrated the ability the L. hexandra rhizosphere to stimulate the high NFB density, vegetal biomass production and phytoremediation of contaminated soils (with fresh and weathered petroleum), in a tropical waterlogging environment. Rev. Biol. Trop. 65 (1): 21-30. Epub 2017 March 01.


Subject(s)
Soil Pollutants/chemistry , Biodegradation, Environmental , Petroleum Pollution/prevention & control , Poaceae/microbiology , Poaceae/chemistry , Reference Values , Soil/chemistry , Soil Microbiology , Azotobacter/growth & development , Time Factors , Petroleum/analysis , Colony Count, Microbial , Reproducibility of Results , Azospirillum/growth & development , Biomass , Hydrocarbons/analysis , Hydrocarbons/chemistry
6.
Rev Biol Trop ; 65(1): 21-30, 2017 Mar.
Article in Spanish | MEDLINE | ID: mdl-29465955

ABSTRACT

The oil industry has generated chronic oil spills and their accumulation in wetlands of the state of Tabasco, in Southeastern Mexico. Waterlogging is a factor that limits the use of remediation technologies because of its high cost and low levels of oil degradation. However, Leersia hexandra is a grass that grows in these contaminated areas with weathered oil. The aim of the study was to evaluate the bacteria density, plant biomass production and phytoremediation of L. hexandra in contaminated soil. For this, two experiments in plastic tunnel were performed with fresh (E1) and weathered petroleum (E2) under waterlogging experimental conditions. The E1 was based on eight doses: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 and 180 000 mg.kg-1 dry basis (d. b.) of total petroleum hydrocarbons fresh (TPH-F), and the E2, that evaluated five doses: 14 173, 28 400, 50 598, 75 492 and 112 142 mg. kg-1 d. b. of total petroleum hydrocarbons weathered (TPH-W); a control treatment with 2 607 mg.kg-1 d. b. was used. Each experiment, with eight replicates per treatment, evaluated after three and six months: a) microbial density of total free-living nitrogen-fixing bacteria (NFB) of Azospirillum (AZP) and Azotobacter group (AZT), for viable count in serial plate; b) dry matter production (DMP), quantified gravimetrically as dry weight of L. hexandra; and c) the decontamination percentage of hydrocarbons (PDH) by Soxhlet extraction. In soil with TPH-F, the NFB, AZP y AZT populations were stimulated five times more than the control both at the three and six months; however, concentrations of 150 000 and 180 000 mg.kg-1 d. b. inhibited the bacterial density between 70 and 89 %. Likewise, in soil with TPH-W, the FNB, AZP and AZT inhibitions were 90 %, with the exception of the 14 173 mg.kg-1 d. b. treatment, which stimulated the NFB and AZT in 2 and 0.10 times more than the control, respectively. The DMP was continued at the six months in the experiments, with values of 63 and 89 g in fresh and weathered petroleum, respectively; had no significant differences with the control (p≤0.05). The PDH reached values of 66 to 87 % both TPH-F and TPH-W at six months, respectively. These results demonstrated the ability the L. hexandra rhizosphere to stimulate the high NFB density, vegetal biomass production and phytoremediation of contaminated soils (with fresh and weathered petroleum), in a tropical waterlogging environment.


Subject(s)
Biodegradation, Environmental , Petroleum Pollution/prevention & control , Poaceae/chemistry , Poaceae/microbiology , Soil Pollutants , Azospirillum/growth & development , Azotobacter/growth & development , Biomass , Colony Count, Microbial , Hydrocarbons/analysis , Hydrocarbons/chemistry , Petroleum/analysis , Reference Values , Reproducibility of Results , Soil/chemistry , Soil Microbiology , Soil Pollutants/chemistry , Time Factors
7.
FEMS Microbiol Ecol ; 91(6)2015 Jun.
Article in English | MEDLINE | ID: mdl-25962762

ABSTRACT

Pathogenic Leptospira spp. represent one cause of leptospirosis worldwide and have long been regarded as solitary organisms in soil and aquatic environments. However, in the present study, Leptospira interrogans was observed to be associated with environmental biofilms with 21 bacterial isolates belonging to 10 genera. All 21 isolates were examined for their coaggregation and biofilm-forming ability with leptospires in vitro. Among these, Azospirillum brasilense RMRCPB showed maximum interspecies coaggregation with leptospiral strains (>75%, visual score of +4). Other significant coaggregating isolates belonged to the genera Sphingomonas, Micrococcus, Brevundimonas, Acinetobacter and Paracoccus. Biofilms of leptospires in combination with A. brasilense RMRCPB showed high resistance to penicillin G, ampicillin and tetracycline (minimum bactericidal concentration ≥800 µg/mL) and tolerance to UV radiation and high temperature (up to 49°C). This study hypothesized that biofilm formation with A. brasilense protects the pathogenic Leptospira from adverse environmental conditions/stress. This coexistence of pathogenic Leptospira with other bacteria may be the key factor for its persistence and survival. However, the mechanism of biofilm formation by leptospires needs to be explored to help devise an appropriate control strategy and reduce transmission of leptospires.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azospirillum/growth & development , Biofilms/drug effects , Leptospira interrogans/growth & development , Microbial Interactions/physiology , Ampicillin/pharmacology , Azospirillum/drug effects , Azospirillum/isolation & purification , Biofilms/growth & development , Drug Resistance, Multiple, Bacterial , Environment , Hot Temperature , Leptospira interrogans/drug effects , Leptospira interrogans/isolation & purification , Leptospirosis/microbiology , Microbial Sensitivity Tests , Penicillin G/pharmacology , Tetracycline/pharmacology , Ultraviolet Rays
8.
Mikrobiologiia ; 84(6): 691-6, 2015.
Article in Russian | MEDLINE | ID: mdl-26964358

ABSTRACT

Capacity of associative soil bacteria of the genera Azospirillum and Niveispirillum for degradation of lignin model compounds was demonstrated. Lignin and Mn-peroxidases were detected in the culture liquid of the type strains of these genera. The data on involvement of nonspecific bacterial peroxidases in lignin degradation were obtained.


Subject(s)
Azospirillum/growth & development , Bacterial Proteins/metabolism , Lignin/metabolism , Peroxidase/metabolism , Azospirillum/classification
9.
Biomed Res Int ; 2013: 863240, 2013.
Article in English | MEDLINE | ID: mdl-23957006

ABSTRACT

The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.


Subject(s)
Agricultural Inoculants , Plant Roots/microbiology , Rhizosphere , Soil Microbiology , Azospirillum/classification , Azospirillum/growth & development , Plant Roots/growth & development
12.
Mikrobiol Z ; 74(5): 92-8, 2012.
Article in Ukrainian | MEDLINE | ID: mdl-23126017

ABSTRACT

The number of diazotrophic bacteria and nitrogenase activity in the root zone of isogenic monogene-dominant Vrn lines were measured in the field experiments throughout their vegetation from tillering to heading. The total number of diazotrophic bacteria and nitrogenase activity in the root zone of these lines during this period were increased irrespective of their genotypes. The above indices of the winter cultivar (Vrn loci bottom recessive) were lower than those of the spring lines--Vrn-A1, Vrn-B1 and Vrn-D1. Plants of Vrn-B1 line have the lowest indices among the spring lines with the exception of some indices. This line plants flowered later than those of Vrn-A1 and Vrn-D1 lines. We hypothesized the differences between plants of these lines as to nitrogen fixation activity and the number of diazotrophic bacteria are mediately determined by Vrn loci through their effects on metabolism intensity and assimilate reflux in the form of root exudates, therefore the total number of diazotrophic bacteria and nitrogenase activity increases.


Subject(s)
Azospirillum/growth & development , Azotobacter/growth & development , Genes, Plant , Plant Roots/microbiology , Symbiosis/genetics , Triticum/microbiology , Alleles , Bacterial Load , Bacterial Proteins/metabolism , Flowers/genetics , Genes, Recessive , Genetic Loci , Genotype , Germination/physiology , Nitrogen Fixation/physiology , Nitrogenase/metabolism , Plant Roots/genetics , Plants, Genetically Modified/microbiology , Seasons , Triticum/genetics
13.
DNA Res ; 17(1): 37-50, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20047946

ABSTRACT

We determined the nucleotide sequence of the entire genome of a diazotrophic endophyte, Azospirillum sp. B510. Strain B510 is an endophytic bacterium isolated from stems of rice plants (Oryza sativa cv. Nipponbare). The genome of B510 consisted of a single chromosome (3,311,395 bp) and six plasmids, designated as pAB510a (1,455,109 bp), pAB510b (723,779 bp), pAB510c (681,723 bp), pAB510d (628,837 bp), pAB510e (537,299 bp), and pAB510f (261,596 bp). The chromosome bears 2893 potential protein-encoding genes, two sets of rRNA gene clusters (rrns), and 45 tRNA genes representing 37 tRNA species. The genomes of the six plasmids contained a total of 3416 protein-encoding genes, seven sets of rrns, and 34 tRNAs representing 19 tRNA species. Eight genes for plasmid-specific tRNA species are located on either pAB510a or pAB510d. Two out of eight genomic islands are inserted in the plasmids, pAB510b and pAB510e, and one of the islands is inserted into trnfM-CAU in the rrn located on pAB510e. Genes other than the nif gene cluster that are involved in N(2) fixation and are homologues of Bradyrhizobium japonicum USDA110 include fixABCX, fixNOQP, fixHIS, fixG, and fixLJK. Three putative plant hormone-related genes encoding tryptophan 2-monooxytenase (iaaM) and indole-3-acetaldehyde hydrolase (iaaH), which are involved in IAA biosynthesis, and ACC deaminase (acdS), which reduces ethylene levels, were identified. Multiple gene-clusters for tripartite ATP-independent periplasmic-transport systems and a diverse set of malic enzymes were identified, suggesting that B510 utilizes C(4)-dicarboxylate during its symbiotic relationship with the host plant.


Subject(s)
Agriculture , Azospirillum/genetics , Genome, Bacterial/genetics , Oryza/growth & development , Oryza/microbiology , Azospirillum/growth & development , Bacterial Proteins/genetics , Biological Transport/genetics , Colony Count, Microbial , DNA Transposable Elements/genetics , Genes, Bacterial , Genomic Islands/genetics , Molecular Sequence Data , Multigene Family , Nitrogen Fixation/genetics , Plant Growth Regulators/metabolism , RNA, Bacterial/genetics , Replication Origin/genetics , Replicon/genetics , Sequence Analysis, DNA
14.
Microbes Environ ; 25(1): 58-61, 2010.
Article in English | MEDLINE | ID: mdl-21576855

ABSTRACT

Inoculation experiments with the endophytic bacterium Azospirillum sp. strain B510, an isolate from surface-sterilized stems of field-grown rice, were conducted in pots in a greenhouse, and in paddy fields in Hokkaido, Japan. B510 significantly enhanced the growth of newly generated leaves and shoot biomass under greenhouse conditions. When rice seedlings were treated with 1×10(8) CFU ml(-1), then transplanted to paddy fields, tiller numbers and seed yield significantly increased. Azospirillum sp. strain B510 is a promising bacterial inoculant for plant growth promotion and agricultural practices.


Subject(s)
Azospirillum/physiology , Biomass , Oryza/growth & development , Oryza/microbiology , Azospirillum/growth & development , Azospirillum/isolation & purification , Azospirillum/metabolism , Japan , Plant Leaves/growth & development , Plant Leaves/microbiology , Plant Shoots/growth & development , Plant Shoots/microbiology , Seedlings/growth & development , Seedlings/microbiology
15.
An. acad. bras. ciênc ; 80(4): 749-761, Dec. 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-497117

ABSTRACT

This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.


Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos), e genotípica (seqüenciamento de 16S rDNA), comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades encontradas em amostras de solo e raiz de sítios contaminados foram semelhantes àquelas relatadas na literatura para solos agrícolas. Isolados de Azospirillum spp. de solos contaminados e estirpes tipo oriundas de solos não contaminados variaram substancialmente com relação à tolerância a Zn+2 e Cd+2, sendo que Cd+2 mais tóxico que Zn+2. Dentre os isolados mais tolerantes (UFLA 1S, 1R, S181, S34, e S22), alguns(1R, S34 e S22) foram mais tolerantes a metais pesados que rizóbios isolados de solos de áreas tropicais e temperadas. A maioria dos isolados mais tolerantes a metais pesados também foi tolerante ao estresse salino, o que foi indicado por seu crescimento em meio sólido suplementado com 30 g L-1 de NaCl in vitro. Cinco isolados apresentaram alta dissimilaridade em perfis protéicos e o seqüenciamento do gene 16S rDNA em dois deles revelou que apresentam novas seqüências de Azospirillum.


Subject(s)
Azospirillum/drug effects , Burkholderia/drug effects , Herbaspirillum/drug effects , Metals, Heavy/toxicity , Plant Roots/microbiology , Poaceae/microbiology , Soil Microbiology , Azospirillum/genetics , Azospirillum/growth & development , Burkholderia/genetics , Burkholderia/growth & development , Colony Count, Microbial , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Genotype , Herbaspirillum/genetics , Herbaspirillum/growth & development , Metals, Heavy/analysis , Phenotype , /genetics
16.
An Acad Bras Cienc ; 80(4): 749-61, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19039496

ABSTRACT

This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.


Subject(s)
Azospirillum/drug effects , Burkholderia/drug effects , Herbaspirillum/drug effects , Metals, Heavy/toxicity , Plant Roots/microbiology , Poaceae/microbiology , Soil Microbiology , Azospirillum/genetics , Azospirillum/growth & development , Burkholderia/genetics , Burkholderia/growth & development , Colony Count, Microbial , DNA, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Genotype , Herbaspirillum/genetics , Herbaspirillum/growth & development , Metals, Heavy/analysis , Phenotype , RNA, Ribosomal, 16S/genetics
17.
Acta Microbiol Immunol Hung ; 54(2): 167-77, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17899796

ABSTRACT

Azospirillum bioinoculant is well known for its high nitrogen fixing and plant growth promoting characters. The carrier based bioinoculants generally suffer from shorter shelf life, poor quality, high contamination and low field performance. Therefore, it is necessary to develop alternative new formulation of inoculants where cyst based inoculants can play significant role. The cyst based liquid formulation was developed by inoculating Azospirillum into the cyst inducing minimal salts medium (MSM). One hundred per cent conversion of vegetative cells into cyst cells was noticed in 96 h. The survival of cyst cells in the MSM was observed up to one year and two months and interestingly, the population level of 10(8) was maintained till the final observation. The cyst cells of Azospirillum accumulated poly-beta-hydroxybutyrate (PHB) granules and exhibited desiccation tolerance up to 20 days and temperature tolerance up to 40 degrees C. Thus the cyst based liquid formulation has twin advantage of longer shelf life and tolerance to harmful environmental conditions. Regeneration of cyst cells into vegetative cells in different media viz., tap water, sterile water, rice gruel and nutrient broth was studied. The changes started within 3 h and complete return of vegetative cells was observed at 24 h. Although all the media tested favoured regeneration, comparatively quicker regeneration was observed in nutrient broth and followed by rice gruel. Thus, cyst based liquid formulation of Azospirillum has all the survival advantages and can be used as a potential bioinoculant.


Subject(s)
Azospirillum/physiology , Spores, Fungal/growth & development , Agriculture , Azospirillum/growth & development , Colony Count, Microbial , Culture Media , Hydroxybutyrates/metabolism , Industrial Microbiology/methods , Industrial Microbiology/standards , Oryza/microbiology , Plant Roots/microbiology , Polyesters/metabolism , Temperature , Time Factors
18.
J Appl Microbiol ; 103(4): 1158-69, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17897221

ABSTRACT

AIMS: To isolate micro-organisms capable of utilizing polyhexamethylene biguanide (PHMB) as a sole source of nitrogen, and to demonstrate biodegradation of the biocide. METHODS AND RESULTS: Two consortia of bacteria were successfully enriched at the expense of PHMB, using sand from PHMB-treated swimming pools as inoculum. Both consortia were shown to contain bacteria belonging to the genera Sphingomonas, Azospirillum and Mesorhizobium. It was shown that the presence of both Sphingomonas and Azospirillum spp. was required for extensive growth of the consortia. In addition, the Sphingomonads were the only isolates capable of growth in axenic cultures dosed with PHMB. Using a stable isotope (15N)-labelled PHMB, metabolism of the biocide by both consortia was demonstrated. By comparing the level of 15N atom incorporation into bacterial DNA after growth on either 15N-PHMB or 15N-labelled NH4Cl, it was possible to estimate the percentage of PHMB biodegradation. CONCLUSIONS: The microbial metabolism of nitrogen from the biguanide moiety of PHMB has been demonstrated. It was revealed that Sphingomonas and Azospirillum spp. are the principal organisms responsible for growth at the expense of PHMB. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate the microbial metabolism of PHMB.


Subject(s)
Bacteria/metabolism , Biguanides/metabolism , Disinfectants/metabolism , Industrial Microbiology/methods , Azospirillum/genetics , Azospirillum/growth & development , Azospirillum/isolation & purification , Azospirillum/metabolism , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Bacterial Typing Techniques/methods , Biodegradation, Environmental , Culture Media , DNA, Bacterial/metabolism , Nitrogen Radioisotopes/pharmacokinetics , Phylogeny , Sphingomonas/genetics , Sphingomonas/growth & development , Sphingomonas/isolation & purification , Sphingomonas/metabolism
19.
Plant Physiol Biochem ; 44(11-12): 873-9, 2006.
Article in English | MEDLINE | ID: mdl-17123824

ABSTRACT

Azospirillum-plant association is accompanied by biochemical changes in roots which, in turn, promote plant-growth and tolerance to water stress. To shed light on the possible factors underlying these effects, roots from Azospirillum brasilense Sp245-inoculated Triticum aestivum seedlings growing in darkness under osmotic stress were analyzed for phospholipid (PL) composition, fatty acid (FA) distribution profiles and degree of unsaturation of the major PL classes. Azospirillum inoculation diminished ion leakage and increased 2,3,5-tripheniltetrazolium reducing ability in roots of well irrigated and water-stressed wheat seedlings. Total root PL content remained unaltered in all treatments. Six PL classes were detected, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) comprising over 80% of the total. While water stress increased PC content and diminished that of PE, none of these changes were observed either under Azospirillum inoculation alone or when both treatments were combined. The major FAs found in both PC and PE were 16:0, 18:0, 18:1, 18:2, and 18:3. Higher PC and lower PE unsaturation than in well irrigated controls were observed in roots from Azospirillum-inoculated, water-stressed seedlings. Azospirillum inoculation could contribute to protect wheat seedlings from water stress through changes in the FA distribution profiles of PC and PE major root phospholipids.


Subject(s)
Azospirillum , Phospholipids/biosynthesis , Plant Roots/metabolism , Seedlings/metabolism , Triticum/metabolism , Azospirillum/growth & development , Azospirillum/metabolism , Dehydration/metabolism , Plant Roots/microbiology , Seedlings/microbiology , Triticum/microbiology
20.
Int J Syst Evol Microbiol ; 56(Pt 6): 1263-1271, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16738102

ABSTRACT

Fifteen bacterial strains isolated from molasses grass (Melinis minutiflora Beauv.) were identified as nitrogen-fixers by using the acetylene-reduction assay and PCR amplification of nifH gene fragments. These strains were classified as a unique group by insertion sequence-PCR fingerprinting, SDS-PAGE protein patterns, DNA-DNA hybridization, 16S rRNA gene sequencing and morphological characterization. Phylogenetic analysis of the 16S rRNA gene indicated that these diazotrophic strains belonged to the genus Azospirillum and were closely related to Azospirillum lipoferum (with 97.5 % similarity). In all the analyses, including in addition phenotypic characterization using Biolog MicroPlates and comparison of cellular fatty acids, this novel group was found to be different from the most closely related species, Azospirillum lipoferum. Based on these data, a novel species, Azospirillum melinis sp. nov., is proposed for these endophytic diazotrophs of M. minutiflora, with TMCY 0552(T) (=CCBAU 5106001(T) = LMG 23364(T) = CGMCC 1.5340(T)) as the type strain.


Subject(s)
Azospirillum/classification , Poaceae/microbiology , Acetylene/metabolism , Azospirillum/genetics , Azospirillum/growth & development , Azospirillum/isolation & purification , Base Sequence , China , Culture Media , DNA Primers , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...