Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
1.
Curr Microbiol ; 81(10): 311, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153035

ABSTRACT

The two-component system GacS/A and the posttranscriptional control system Rsm constitute a genetic regulation pathway in Gammaproteobacteria; in some species of Pseudomonas, this pathway is part of a multikinase network (MKN) that regulates the activity of the Rsm system. In this network, the activity of GacS is controlled by other kinases. One of the most studied MKNs is the MKN-GacS of Pseudomonas aeruginosa, where GacS is controlled by the kinases RetS and LadS; RetS decreases the kinase activity of GacS, whereas LadS stimulates the activity of the central kinase GacS. Outside of the Pseudomonas genus, the network has been studied only in Azotobacter vinelandii. In this work, we report the study of the RetS kinase of A. vinelandii; as expected, the phenotypes affected in gacS mutants, such as production of alginates, polyhydroxybutyrate, and alkylresorcinols and swimming motility, were also affected in retS mutants. Interestingly, our data indicated that RetS in A. vinelandii acts as a positive regulator of GacA activity. Consistent with this finding, mutation in retS also negatively affected the expression of small regulatory RNAs belonging to the Rsm family. We also confirmed the interaction of RetS with GacS, as well as with the phosphotransfer protein HptB.


Subject(s)
Alginates , Azotobacter vinelandii , Bacterial Proteins , Gene Expression Regulation, Bacterial , Azotobacter vinelandii/genetics , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Alginates/metabolism , Resorcinols/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Polyesters/metabolism , Hydroxybutyrates/metabolism
2.
Microb Biotechnol ; 17(7): e14523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023513

ABSTRACT

The capture and reduction of atmospheric dinitrogen gas to ammonium can be accomplished through the enzyme nitrogenase in a process known as biological nitrogen fixation (BNF), by a class of microbes known as diazotrophs. The diazotroph Azotobacter vinelandii is a model organism for the study of aerobic nitrogen fixation, and in recent years has been promoted as a potential producer of biofertilizers. Prior reports have demonstrated the potential to partially deregulate BNF in A. vinelandii, resulting in accumulation and extracellular release of ammonium. In many cases, deregulation requires the introduction of transgenic genes or elements to yield the desired phenotype, and the long-term stability of these strains has been reported to be somewhat problematic. In this work, we constructed two strains of A. vinelandii where regulation can be precisely controlled without the addition of any foreign genes or genetic markers. Regulation is maintained through native promoters found in A. vinelandii that can be induced through the addition of extraneous galactose. These strains result in varied degrees of regulation of BNF, and as a result, the release of extracellular ammonium is controlled in a precise, and galactose concentration-dependent manner. In addition, these strains yield high biomass levels, similar to the wild-type A. vinelandii strain and are further able to produce high percentages of the bioplastic polyhydroxybutyrate.


Subject(s)
Ammonium Compounds , Azotobacter vinelandii , Gene Expression Regulation, Bacterial , Nitrogen Fixation , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Nitrogen Fixation/genetics , Ammonium Compounds/metabolism , Metabolic Engineering , Promoter Regions, Genetic , Hydroxybutyrates/metabolism , Polyhydroxybutyrates
3.
Biochem Biophys Res Commun ; 728: 150345, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-38971001

ABSTRACT

The transfer of nitrogen fixation (nif) genes from diazotrophs to non-diazotrophic hosts is of increasing interest for engineering biological nitrogen fixation. A recombinant Escherichia coli strain expressing Azotobacter vinelandii 18 nif genes (nifHDKBUSVQENXYWZMF, nifiscA, and nafU) were previously constructed and showed nitrogenase activity. In the present study, we constructed several E. coli strain derivatives in which all or some of the 18 nif genes were additionally integrated into the fliK locus of the chromosome in various combinations. E. coli derivatives with the chromosomal integration of nifiscA, nifU, and nifS, which are involved in the biosynthesis of the [4Fe-4S] cluster of dinitrogenase reductase, exhibited enhanced nitrogenase activity. We also revealed that overexpression of E. coli fldA and ydbK, which encode flavodoxin and flavodoxin-reducing enzyme, respectively, enhanced nitrogenase activity, likely by facilitating electron transfer to dinitrogenase reductase. The additional expression of nifM, putatively involved in maturation of dinitrogenase reductase, further enhanced nitrogenase activity and the amount of soluble NifH. By combining these factors, we successfully improved nitrogenase activity 10-fold.


Subject(s)
Azotobacter vinelandii , Escherichia coli , Nitrogen Fixation , Nitrogenase , Azotobacter vinelandii/genetics , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nitrogenase/metabolism , Nitrogenase/genetics , Nitrogen Fixation/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Nat Chem Biol ; 20(8): 1078-1085, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38890433

ABSTRACT

Biological nitrogen fixation requires substantial metabolic energy in form of ATP as well as low-potential electrons that must derive from central metabolism. During aerobic growth, the free-living soil diazotroph Azotobacter vinelandii transfers electrons from the key metabolite NADH to the low-potential ferredoxin FdxA that serves as a direct electron donor to the dinitrogenase reductases. This process is mediated by the RNF complex that exploits the proton motive force over the cytoplasmic membrane to lower the midpoint potential of the transferred electron. Here we report the cryogenic electron microscopy structure of the nitrogenase-associated RNF complex of A. vinelandii, a seven-subunit membrane protein assembly that contains four flavin cofactors and six iron-sulfur centers. Its function requires the strict coupling of electron and proton transfer but also involves major conformational changes within the assembly that can be traced with a combination of electron microscopy and modeling.


Subject(s)
Azotobacter vinelandii , Cryoelectron Microscopy , Nitrogen Fixation , Azotobacter vinelandii/metabolism , Azotobacter vinelandii/enzymology , Models, Molecular , Protein Conformation , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Oxidoreductases/metabolism , Oxidoreductases/chemistry
5.
mBio ; 15(7): e0127124, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38869277

ABSTRACT

Life depends on a conserved set of chemical energy currencies that are relics of early biochemistry. One of these is ATP, a molecule that, when paired with a divalent metal ion such as Mg2+, can be hydrolyzed to support numerous cellular and molecular processes. Despite its centrality to extant biochemistry, it is unclear whether ATP supported the function of ancient enzymes. We investigate the evolutionary necessity of ATP by experimentally reconstructing an ancestral variant of the N2-reducing enzyme nitrogenase. The Proterozoic ancestor is predicted to be ~540-2,300 million years old, post-dating the Great Oxidation Event. Growth rates under nitrogen-fixing conditions are ~80% of those of wild type in Azotobacter vinelandii. In the extant enzyme, the hydrolysis of two MgATP is coupled to electron transfer to support substrate reduction. The ancestor has a strict requirement for ATP with no other nucleotide triphosphate analogs (GTP, ITP, and UTP) supporting activity. Alternative divalent metal ions (Fe2+, Co2+, and Mn2+) support activity with ATP but with diminished activities compared to Mg2+, similar to the extant enzyme. Additionally, it is shown that the ancestor has an identical efficiency in ATP hydrolyzed per electron transferred to the extant of two. Our results provide direct laboratory evidence of ATP usage by an ancient enzyme.IMPORTANCELife depends on energy-carrying molecules to power many sustaining processes. There is evidence that these molecules may predate the rise of life on Earth, but how and when these dependencies formed is unknown. The resurrection of ancient enzymes provides a unique tool to probe the enzyme's function and usage of energy-carrying molecules, shedding light on their biochemical origins. Through experimental reconstruction, this research investigates the ancestral dependence of a nitrogen-fixing enzyme on the energy carrier ATP, a requirement for function in the modern enzyme. We show that the resurrected ancestor does not have generalist nucleotide specificity. Rather, the ancestor has a strict requirement for ATP, like the modern enzyme, with similar function and efficiency. The findings elucidate the early-evolved necessity of energy-yielding molecules, delineating their role in ancient biochemical processes. Ultimately, these insights contribute to unraveling the intricate tapestry of evolutionary biology and the origins of life-sustaining dependencies.


Subject(s)
Adenosine Triphosphate , Azotobacter vinelandii , Adenosine Triphosphate/metabolism , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Nitrogenase/metabolism , Nitrogenase/genetics , Nitrogenase/chemistry , Evolution, Molecular , Nitrogen Fixation/genetics , Oxidation-Reduction , Hydrolysis
6.
Appl Microbiol Biotechnol ; 108(1): 378, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888816

ABSTRACT

Non-symbiotic N2-fixation would greatly increase the versatility of N-biofertilizers for sustainable agriculture. Genetic modification of diazotrophic bacteria has successfully enhanced NH4+ release. In this study, we compared the competitive fitness of A. vinelandii mutant strains, which allowed us to analyze the burden of NH4+ release under a broad dynamic range. Long-term competition assays under regular culture conditions confirmed a large burden for NH4+ release, exclusion by the wt strain, phenotypic instability, and loss of the ability to release NH4+. In contrast, co-inoculation in mild autoclaved soil showed a much longer co-existence with the wt strain and a stable NH4+ release phenotype. All genetically modified strains increased the N content and changed its chemical speciation in the soil. This study contributes one step forward towards bridging a knowledge gap between molecular biology laboratory research and the incorporation of N from the air into the soil in a molecular species suitable for plant nutrition, a crucial requirement for developing improved bacterial inoculants for economic and environmentally sustainable agriculture. KEY POINTS: • Genetic engineering for NH4+ excretion imposes a fitness burden on the culture medium • Large phenotypic instability for NH4+-excreting bacteria in culture medium • Lower fitness burden and phenotypic instability for NH4+-excreting bacteria in soil.


Subject(s)
Ammonium Compounds , Azotobacter vinelandii , Soil Microbiology , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Ammonium Compounds/metabolism , Nitrogen Fixation , Nitrogen/metabolism , Genetic Fitness , Phenotype , Soil/chemistry , Culture Media/chemistry , Genetic Engineering
7.
Nat Commun ; 15(1): 4041, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740794

ABSTRACT

Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.


Subject(s)
Azotobacter vinelandii , Molybdoferredoxin , Nitrogenase , Selenium , Sulfur , Electron Spin Resonance Spectroscopy/methods , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Nitrogenase/metabolism , Nitrogenase/chemistry , Molybdoferredoxin/metabolism , Molybdoferredoxin/chemistry , Selenium/metabolism , Selenium/chemistry , Sulfur/metabolism , Sulfur/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
8.
Biochim Biophys Acta Mol Cell Res ; 1871(6): 119750, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762171

ABSTRACT

Azotobacter vinelandii is a genetically tractable Gram-negative proteobacterium able to fix nitrogen (N2) under aerobic growth conditions. This narrative describes how biochemical-genetic approaches using A. vinelandii to study nitrogen fixation led to the formulation of the "scaffold hypothesis" for the assembly of both simple and complex [Fe-S] clusters associated with biological nitrogen fixation. These studies also led to the discovery of a parallel, but genetically distinct, pathway for maturation of [Fe-S] proteins that support central metabolic processes.


Subject(s)
Azotobacter vinelandii , Bacterial Proteins , Iron-Sulfur Proteins , Nitrogen Fixation , Azotobacter vinelandii/metabolism , Azotobacter vinelandii/genetics , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
9.
PLoS One ; 19(4): e0299640, 2024.
Article in English | MEDLINE | ID: mdl-38574051

ABSTRACT

The stringent response exerted by (p)ppGpp and RNA-polymerase binding protein DksA regulates gene expression in diverse bacterial species. To control gene expression (p)ppGpp, synthesized by enzymes RelA and SpoT, interacts with two sites within the RNA polymerase; site 1, located in the interphase between subunits ß' and ω (rpoZ), and site 2 located in the secondary channel that is dependent on DksA protein. In Escherichia coli, inactivation of dksA results in a reduced sigma factor RpoS expression. In Azotobacter vinelandii the synthesis of polyhydroxybutyrate (PHB) is under RpoS regulation. In this study, we found that the inactivation of relA or dksA, but not rpoZ, resulted in a negative effect on PHB synthesis. We also found that the dksA, but not the relA mutation reduced both rpoS transcription and RpoS protein levels, implying that (p)ppGpp and DksA control PHB synthesis through different mechanisms. Interestingly, despite expressing rpoS from a constitutive promoter in the dksA mutant, PHB synthesis was not restored to wild type levels. A transcriptomic analysis in the dksA mutant, revealed downregulation of genes encoding enzymes needed for the synthesis of acetyl-CoA, the precursor substrate for PHB synthesis. Together, these data indicate that DksA is required for optimal expression of RpoS which in turn activates transcription of genes for PHB synthesis. Additionally, DksA is required for optimal transcription of genes responsible for the synthesis of precursors for PHB synthesis.


Subject(s)
Azotobacter vinelandii , Escherichia coli Proteins , Polyhydroxybutyrates , Escherichia coli Proteins/genetics , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Guanosine Pentaphosphate , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
10.
Angew Chem Int Ed Engl ; 63(21): e202400273, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38527309

ABSTRACT

Nitrogenase reduces N2 to NH3 at its active-site cofactor. Previous studies of an N2-bound Mo-nitrogenase from Azotobacter vinelandii suggest binding of three N2 species via asymmetric belt-sulfur displacements in the two cofactors of its catalytic component (designated Av1*), leading to the proposal of stepwise N2 reduction involving all cofactor belt-sulfur sites; yet, the evidence for the existence of multiple N2 species on Av1* remains elusive. Here we report a study of ATP-independent, EuII/SO3 2--driven turnover of Av1* using GC-MS and frequency-selective pulse NMR techniques. Our data demonstrate incorporation of D2-derived D by Av1* into the products of C2H2- and H+-reduction, and decreased formation of NH3 by Av1* concomitant with the release of N2 under H2; moreover, they reveal a strict dependence of these activities on SO3 2-. These observations point to the presence of distinct N2 species on Av1*, thereby providing strong support for our proposed mechanism of stepwise reduction of N2 via belt-sulfur mobilization.


Subject(s)
Azotobacter vinelandii , Nitrogen , Nitrogenase , Nitrogenase/metabolism , Nitrogenase/chemistry , Azotobacter vinelandii/metabolism , Azotobacter vinelandii/enzymology , Nitrogen/chemistry , Nitrogen/metabolism , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry
11.
J Hazard Mater ; 466: 133553, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266589

ABSTRACT

Vanadium dioxide (VO2) has been used in a variety of products due to its outstanding phase transition properties. However, as potential heavy metal contaminants, the environmental hazards and risks of VO2 should be systematically investigated. Biological nitrogen fixation is one of the most dominant processes in biogeochemical cycle, which is associated with nitrogen-fixing bacteria. In this study, we reported the environmental bio-effects of VO2 micro/nanoparticles on the nitrogen-fixing bacterium Azotobacter vinelandii. VO2 at 10 and 30 mg/L caused severe hazards to A. vinelandii, such as cell apoptosis, oxidative damage, physical damage, genotoxicity, and the loss of nitrogen fixation activity. The up-regulated differentially expressed genes of A. vinelandii were related to stress response, and the down-regulated genes were mainly related to energy metabolism. Surprisingly, VO2 of 10 mg/L decreased the nif gene expression but elevated the vnf gene expression, which enhanced the ability of A. vinelandii to reduce acetylene in anaerobic environment. In addition, under tested conditions, VO2 nanoparticles exhibited insignificantly higher toxicity than VO2 microparticles.


Subject(s)
Azotobacter vinelandii , Nitrogen-Fixing Bacteria , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Nitrogen Fixation/genetics , Nitrogen/metabolism
12.
J Inorg Biochem ; 253: 112484, 2024 04.
Article in English | MEDLINE | ID: mdl-38219407

ABSTRACT

The light-driven reduction of dinitrogen (N2) to ammonia (NH3) catalyzed by a cadmium sulfide (CdS) nanocrystal­nitrogenase MoFe protein biohybrid is dependent on a range of different factors, including an appropriate hole-scavenging sacrificial electron donor (SED). Here, the impact of different SEDs on the overall rate of N2 reduction catalyzed by a CdS quantum dot (QD)-MoFe protein system was determined. The selection of SED was guided by several goals: (i) molecules with standard reduction potentials sufficient to reduce the oxidized CdS QD, (ii) molecules that do not absorb the excitation wavelength of the CdS QD, and (iii) molecules that could be readily reduced by sustainable processes. Earlier studies utilized buffer molecules or ascorbic acid as the SED. The effectiveness of ascorbic acid as SED was compared to dithionite (DT), triethanolamine (TEOA), and hydroquinone (HQ) across a range of concentrations in supporting N2 reduction to NH3 in a CdS QD-MoFe protein photocatalytic system. It was found that TEOA supported N2 reduction rates comparable to those observed for dithionite and ascorbic acid. HQ was found to support significantly higher rates of N2 reduction compared to the other SEDs at a concentration of 50 mM. A comparison of the rates of N2 reduction by the biohybrid complex to the standard reduction potential (Eo) of the SEDs reveals that Eo is not the only factor impacting the efficiency of hole-scavenging. These findings reveal the importance of the SED properties for improving the efficiency of hole-scavenging in the light-driven N2 reduction reaction catalyzed by a CdS QD-MoFe protein hybrid.


Subject(s)
Azotobacter vinelandii , Cadmium Compounds , Nitrogenase , Sulfides , Nitrogenase/metabolism , Molybdoferredoxin/metabolism , Oxidation-Reduction , Dithionite/metabolism , Catalysis , Ascorbic Acid/metabolism , Azotobacter vinelandii/metabolism
13.
J Chem Phys ; 159(23)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38117020

ABSTRACT

The biological reduction of N2 to ammonia requires the ATP-dependent, sequential delivery of electrons from the Fe protein to the MoFe protein of nitrogenase. It has been demonstrated that CdS nanocrystals can replace the Fe protein to deliver photoexcited electrons to the MoFe protein. Herein, light-activated electron delivery within the CdS:MoFe protein complex was achieved in the frozen state, revealing that all the electron paramagnetic resonance (EPR) active E-state intermediates in the catalytic cycle can be trapped and characterized by EPR spectroscopy. Prior to illumination, the CdS:MoFe protein complex EPR spectrum was composed of a S = 3/2 rhombic signal (g = 4.33, 3.63, and 2.01) consistent with the FeMo-cofactor in the resting state, E0. Illumination for sequential 1-h periods at 233 K under 1 atm of N2 led to a cumulative attenuation of E0 by 75%. This coincided with the appearance of S = 3/2 and S = 1/2 signals assigned to two-electron (E2) and four-electron (E4) reduced states of the FeMo-cofactor, together with additional S = 1/2 signals consistent with the formation of E6 and E8 states. Simulations of EPR spectra allowed quantification of the different E-state populations, along with mapping of these populations onto the Lowe-Thorneley kinetic scheme. The outcome of this work demonstrates that the photochemical delivery of electrons to the MoFe protein can be used to populate all of the EPR active E-state intermediates of the nitrogenase MoFe protein cycle.


Subject(s)
Azotobacter vinelandii , Quantum Dots , Molybdoferredoxin/chemistry , Molybdoferredoxin/metabolism , Temperature , Oxidation-Reduction , Nitrogenase/chemistry , Nitrogenase/metabolism , Electron Spin Resonance Spectroscopy/methods , Azotobacter vinelandii/metabolism
14.
PLoS One ; 18(11): e0286440, 2023.
Article in English | MEDLINE | ID: mdl-37967103

ABSTRACT

In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.


Subject(s)
Azotobacter vinelandii , Sigma Factor , Sigma Factor/genetics , Sigma Factor/metabolism , Regulon/genetics , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Proteomics , Heat-Shock Proteins/metabolism , Alginates/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/genetics
15.
Int J Biol Macromol ; 253(Pt 8): 127681, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37890746

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has attracted substantial attention as a promising material for industrial applications. In this study, different PHBV films with distinct 3-hydroxyvalerate (3HV) contents produced by Azotobacter vinelandii OP were evaluated. The 3HV fraction ranged from 18.6 to 36.7 mol%, and the number-average molecular weight (Mn) was between 238 and 434 kDa. In the bioreactor, a 3HV fraction (36.7 mol%) and an Mn value of 409 kDa were obtained with an oxygen transfer rate (OTR) of 12.5 mmol L-1 h-1. Thermal analysis measurements showed decreased melting (Tm) and glass transition (Tg) temperatures, and values with relatively high 3HV fractions indicated improved thermomechanical properties. The incorporation of the 3HV fraction in the PHBV chain improved the thermal stability of the films, reduced the polymer Tm, and affected the tensile strength. PHBV film with 36.7 mol% 3HV showed an increase in its tensile strength (51.8 MPa) and a decrease in its Tm (170.61 °C) compared with PHB. Finally, scanning electron microscopy (SEM) results revealed that the PHBV film with 32.8 mol% 3HV showed a degradation upon contact with soil, water, or soil bacteria, showing more porous surfaces after degradation. The latter phenomenon indicated that thermomechanical properties played an important role in biodegradation.


Subject(s)
Azotobacter vinelandii , Azotobacter vinelandii/metabolism , Hydroxybutyrates , Polyesters/metabolism , Poly A , Soil
16.
Proc Natl Acad Sci U S A ; 120(30): e2302732120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459513

ABSTRACT

NifL is a conformationally dynamic flavoprotein responsible for regulating the activity of the σ54-dependent activator NifA to control the transcription of nitrogen fixation (nif) genes in response to intracellular oxygen, cellular energy, or nitrogen availability. The NifL-NifA two-component system is the master regulatory system for nitrogen fixation. NifL serves as a sensory protein, undergoing signal-dependent conformational changes that modulate its interaction with NifA, forming the NifL-NifA complex, which inhibits NifA activity in conditions unsuitable for nitrogen fixation. While NifL-NifA regulation is well understood, these conformationally flexible proteins have eluded previous attempts at structure determination. In work described here, we advance a structural model of the NifL dimer supported by a combination of scattering techniques and mass spectrometry (MS)-coupled structural analyses that report on the average structure in solution. Using a combination of small angle X-ray scattering-derived electron density maps and MS-coupled surface labeling, we investigate the conformational dynamics responsible for NifL oxygen and energy responses. Our results reveal conformational differences in the structure of NifL under reduced and oxidized conditions that provide the basis for a model for modulating NifLA complex formation in the regulation of nitrogen fixation in response to oxygen in the model diazotroph, Azotobacter vinelandii.


Subject(s)
Azotobacter vinelandii , Transcription Factors , Transcription Factors/metabolism , Bacterial Proteins/metabolism , Nitrogen Fixation/physiology , Signal Transduction , Oxidation-Reduction , Oxygen/metabolism , Gene Expression Regulation, Bacterial , Nitrogen/metabolism , Genes, Bacterial , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism
17.
Mol Microbiol ; 120(1): 91-102, 2023 07.
Article in English | MEDLINE | ID: mdl-37328957

ABSTRACT

In several Gram-negative bacteria, the general stress response is mediated by the alternative sigma factor RpoS, a subunit of RNA polymerase that confers promoter specificity. In Escherichia coli, regulation of protein levels of RpoS involves the adaptor protein RssB, which binds RpoS for presenting it to the ClpXP protease for its degradation. However, in species from the Pseudomonadaceae family, RpoS is also degraded by ClpXP, but an adaptor has not been experimentally demonstrated. Here, we investigated the role of an E. coli RssB-like protein in two representative Pseudomonadaceae species such as Azotobacter vinelandii and Pseudomonas aeruginosa. In these bacteria, inactivation of the rssB gene increased the levels and stability of RpoS during exponential growth. Downstream of rssB lies a gene that encodes a protein annotated as an anti-sigma factor antagonist (rssC). However, inactivation of rssC in both A. vinelandii and P. aeruginosa also increased the RpoS protein levels, suggesting that RssB and RssC work together to control RpoS degradation. Furthermore, we identified an in vivo interaction between RssB and RpoS only in the presence of RssC using a bacterial three-hybrid system. We propose that both RssB and RssC are necessary for the ClpXP-dependent RpoS degradation during exponential growth in two species of the Pseudomonadaceae family.


Subject(s)
Azotobacter vinelandii , Escherichia coli Proteins , Sigma Factor/genetics , Sigma Factor/metabolism , Transcription Factors/metabolism , Escherichia coli/metabolism , DNA-Binding Proteins/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Escherichia coli Proteins/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
18.
Plant Mol Biol ; 112(4-5): 279-291, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37326800

ABSTRACT

A long-held goal of synthetic biology has been the transfer of a bacterial nitrogen-fixation pathway into plants to reduce the use of chemical fertiliser on crops such as rice, wheat and maize. There are three classes of bacterial nitrogenase, named after their metal requirements, containing either a MoFe-, VFe- or FeFe-cofactor, that converts N2 gas to ammonia. Relative to the Mo-nitrogenase the Fe-nitrogenase is not as efficient for catalysis but has less complex genetic and metallocluster requirements, features that may be preferable for engineering into crops. Here we report the successful targeting of bacterial Fe-nitrogenase proteins, AnfD, AnfK, AnfG and AnfH, to plant mitochondria. When expressed as a single protein AnfD was mostly insoluble in plant mitochondria, but coexpression of AnfD with AnfK improved its solubility. Using affinity-based purification of mitochondrially expressed AnfK or AnfG we were able to demonstrate a strong interaction of AnfD with AnfK and a weaker interaction of AnfG with AnfDK. This work establishes that the structural components of the Fe-nitrogenase can be engineered into plant mitochondria and form a complex, which will be a requirement for function. This report outlines the first use of Fe-nitrogenase proteins within a plant as a preliminary step towards engineering an alternative nitrogenase into crops.


Subject(s)
Azotobacter vinelandii , Nitrogenase , Nitrogenase/genetics , Nitrogenase/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Iron , Nitrogen Fixation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
19.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 401-408, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37071394

ABSTRACT

26 well selected oxidized P-clusters (P2+) from the crystallographic data deposited in the Protein Data Bank have been analysed statistically by the bond-valence sum method with weighting schemes for MoFe proteins at different resolutions. Interestingly, the oxidation states of P2+ clusters correspond to Fe23+Fe62+ with high electron delocalization, showing the same oxidation states as the resting states of P-clusters (PN) in nitrogenases. The previously uncertain reduction of P2+ to PN clusters by two electrons was assigned as a double protonation of P2+, in which decoordination of the serine residue and the peptide chain of cysteine take place, in MoFe proteins. This is further supported by the obviously shorter α-alkoxy C-O bond (average of 1.398 Å) in P2+ clusters and longer α-hydroxy C-O bond (average of 1.422 Å) in PN clusters, while no change is observed in the electronic structures of Fe8S7 Fe atoms in P-clusters. Spatially, the calculations show that Fe3 and Fe6, the most oxidized and most reduced Fe atoms, have the shortest distances of 9.329 Šfrom the homocitrate in the FeMo cofactor and 14.947 Šfrom the [Fe4S4] cluster, respectively, and may well function as important electron-transport sites.


Subject(s)
Azotobacter vinelandii , Molybdoferredoxin , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Electrons , Azotobacter vinelandii/chemistry , Azotobacter vinelandii/metabolism , Electron Transport , Oxidation-Reduction , Electron Spin Resonance Spectroscopy
20.
J Hazard Mater ; 452: 131373, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37031673

ABSTRACT

Metal-organic frameworks (MOFs) are rapidly developed materials with fantastic properties and wide applications. The increasing studies highlighted the potential threats of MOF materials to the environment. Comparing to the limited species of metal elements, the organic ligands have much higher diversity, but the influence of organic ligands on the environmental impacts of MOFs has not been revealed. Herein, we synthesized three Cu-MOFs with different organic ligands, namely Cu-BDC (1,4-terephthalic acid), Cu-IM (imidazole) and Cu-TATB (2,4,6-tris(4-carboxyphenyl)- 1,3,5-triazine), and evaluated their environmental toxicity to the nitrogen-fixing bacterium Azotobacter vinelandii. Cu-BDC inhibited the bacterial growth at lower concentrations than Cu-IM and Cu-TATB. The transcriptomes suggested the changes of membrane components by Cu-MOFs, consistent with the membrane leakage and cell wall damages. Cu-MOFs inhibited the nitrogen fixation activity through energy metabolism disturbance according to Gene Ontology functional annotation of ATP binding, Ca2+Mg2+-ATPase activity and ATP content. Only Cu-IM lowered the nitrogen fixation related nif genes, and affected the ribosome, purine metabolism and oxidative phosphorylation pathways. Otherwise, Cu-BDC and Cu-TATB mainly affected the flagellar assemblies and bacterial chemotaxis pathways. Our results collectively indicated that organic ligands regulated the environmental toxicity of MOFs through different metabolism pathways.


Subject(s)
Azotobacter vinelandii , Metal-Organic Frameworks , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Metal-Organic Frameworks/chemistry , Nitrogen/metabolism , Environment , Adenosine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL