Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
1.
Neuroscience ; 537: 105-115, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38006962

ABSTRACT

Intracerebral hemorrhage (ICH) is a severe disease with high mortality. Recently, the role of BCL-3 in ICH has started to gain attention, but its mechanism remains unclear. A collagenase injection method was used to establish an ICH model in rats, and the expression of BCL-3 were detected. Rat brain microvascular endothelial cells (rBMECs) were isolated and induced with Hemin to establish an in vitro ICH model. The expression of BCL-3 was assessed, followed by detection of cell apoptosis. In the cell model, the recruitment, polarization, and pro-inflammatory features of the microglia (MGs) were assessed after co-cultured with rBMECs. Finally, in the ICH animal model, after knockdown of BCL-3, comprehensive evaluations of inflammatory responses in brain tissue, polarization and recruitment of microglia, and apoptosis were conducted. Results revealed an upregulated expression of BCL-3 in brain tissue of the ICH animal model. In Hemin-treated rBMECs, an upward trend in BCL-3 expression was observed, accompanied by an increase of cell apoptosis. After co-culturing with the in vitro model, microglia exhibited enhanced M1 polarization and intensified inflammatory responses. However, when BCL-3 expression was inhibited in the in vitro model, a reversal occurred in the polarization tendency and inflammatory responses of microglia. Additionally, after knockdown of BCL-3 in the animal model, notable improvements occurred in M1 polarization, infiltration of macrophages, and inflammatory reactions in the brain tissue. Therefore, BCL-3 modulates the inflammatory response after ICH occurrence through the BMECs/MGs microenvironment. Additionally, BCL-3 might be a potential therapeutic target for ICH management.


Subject(s)
Endothelial Cells , Hemin , Animals , Rats , Cerebral Hemorrhage/metabolism , Endothelial Cells/metabolism , Hemin/metabolism , Inflammation/metabolism , Microglia/metabolism , B-Cell Lymphoma 3 Protein/metabolism
2.
BMC Immunol ; 24(1): 35, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794349

ABSTRACT

BACKGROUND: Bcl-3 is a member of the IκB protein family and an essential modulator of NF-κB activity. It is well established that Bcl-3 is critical for the normal development, survival and differentiation of adaptive immune cells, especially T cells. However, the regulation of immune cell function by Bcl-3 through metabolic pathways has rarely been studied. RESULTS: In this study, we explored the role of Bcl-3 in the metabolism and function of T cells via the mTOR pathway. We verified that the proliferation of Bcl-3-deficient Jurkat T cells was inhibited, but their activation was promoted, and Bcl-3 depletion regulated cellular energy metabolism by reducing intracellular ATP and ROS production levels and mitochondrial membrane potential. Bcl-3 also regulates cellular energy metabolism in naive CD4+ T cells. In addition, the knockout of Bcl-3 altered the expression of mTOR, Akt, and Raptor, which are metabolism-related genes, in Jurkat cells. CONCLUSIONS: This finding indicates that Bcl-3 may mediate the energy metabolism of T cells through the mTOR pathway, thereby affecting their function. Overall, we provide novel insights into the regulatory role of Bcl-3 in T-cell energy metabolism for the prevention and treatment of immune diseases.


Subject(s)
Apoptosis , B-Cell Lymphoma 3 Protein , NF-kappa B , T-Lymphocytes , Humans , Cell Survival , Energy Metabolism , NF-kappa B/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , B-Cell Lymphoma 3 Protein/metabolism , T-Lymphocytes/metabolism
3.
Arthritis Rheumatol ; 75(12): 2148-2160, 2023 12.
Article in English | MEDLINE | ID: mdl-37410754

ABSTRACT

OBJECTIVE: IĸB protein B cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signaling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance, and osteoarthritic pathology. METHODS: To assess the contribution of BCL3 to skeletal homeostasis, neonatal mice (n = 6-14) lacking BCL3 (Bcl3-/- ) and wild-type (WT) controls were characterized for bone phenotype and density. To reveal the contribution to bone phenotype by the osteoblast compartment in Bcl3-/- mice, transcriptomic analysis of early osteogenic differentiation and cellular function (n = 3-7) were assessed. Osteoclast differentiation and function in Bcl3-/- mice (n = 3-5) was assessed. Adult 20-week Bcl3-/- and WT mice bone phenotype, strength, and turnover were assessed. A destabilization of the medial meniscus model of osteoarthritic osteophytogenesis was used to understand adult bone formation in Bcl3-/- mice (n = 11-13). RESULTS: Evaluation of Bcl3-/- mice revealed congenitally increased bone density, long bone dwarfism, increased bone biomechanical strength, and altered bone turnover. Molecular and cellular characterization of mesenchymal precursors showed that Bcl3-/- cells displayed an accelerated osteogenic transcriptional profile that led to enhanced differentiation into osteoblasts with increased functional activity, which could be reversed with a mimetic peptide. In a model of osteoarthritis-induced osteophytogenesis, Bcl3-/- mice exhibited decreased pathological osteophyte formation (P < 0.05). CONCLUSION: Cumulatively, these findings demonstrate that BCL3 controls developmental mineralization to enable appropriate bone formation, whereas in a pathological setting, it contributes to skeletal pathology.


Subject(s)
B-Cell Lymphoma 3 Protein , Bone and Bones , Osteogenesis , Animals , Mice , Bone and Bones/metabolism , Bone Density , Cell Differentiation , NF-kappa B/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , B-Cell Lymphoma 3 Protein/genetics
4.
PLoS Pathog ; 18(11): e1010502, 2022 11.
Article in English | MEDLINE | ID: mdl-36318581

ABSTRACT

The atypical IκB family member Bcl3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in the nucleus, and positively or negatively modulates transcription in a context-dependent manner. In mice lacking Bcl3 globally or specifically in CD11c+ cells, we previously reported that Toxoplasma gondii infection is uniformly fatal and is associated with an impaired Th1 immune response. Since Bcl3 expression in dendritic cells (DC) is pivotal for antigen presentation and since classical DCs (cDC) are major antigen presenting cells, we investigated the role of Bcl3 specifically in cDCs in vivo by crossing Zbtb46 cre mice with Bcl3flx/flx mice. Bcl3flx/flx Zbtb46 cre mice were as susceptible to lethal T. gondii infection as total Bcl3-/- mice and generated poor Th1 immune responses. Consistent with this, compared to wildtype controls, splenic Xcr1+ Bcl3-deficient cDC1 cells were defective in presenting Ova antigen to OT-I cells both for Ova257-264 peptide and after infection with Ovalbumin-expressing T. gondii. Moreover, splenic CD4+ and CD8+ T cells from infected Bcl3flx/flx Zbtb46 cre mice exhibited decreased T. gondii-specific priming as revealed by both reduced cytokine production and reduced T. gondii-specific tetramer staining. In vitro differentiation of cDCs from bone marrow progenitors also revealed Bcl3-dependent cDC-specific antigen-presentation activity. Consistent with this, splenocyte single cell RNA seq (scRNAseq) in infected mice revealed Bcl3-dependent expression of genes involved in antigen processing in cDCs. We also identified by scRNAseq, a unique Bcl3-dependent hybrid subpopulation of Zbtb46+ DCs co-expressing the monocyte/macrophage transcription factor Lysozyme M. This subpopulation exhibited Bcl3-dependent expansion after infection. Likewise, by flow cytometry we identified two T. gondii-induced hybrid subpopulations of Bcl3-dependent cDC1 and cDC2 cells both expressing monocyte/macrophage markers, designated as icDC1 and icDC2. Together, our results indicate that Bcl3 in classical DCs is a major determinant of protective T cell responses and survival in T. gondii-infection.


Subject(s)
B-Cell Lymphoma 3 Protein , Toxoplasma , Toxoplasmosis , Animals , Mice , CD8-Positive T-Lymphocytes , Dendritic Cells , Mice, Inbred C57BL , NF-kappa B/metabolism , Toxoplasma/metabolism , Toxoplasmosis/metabolism , B-Cell Lymphoma 3 Protein/metabolism
5.
Breast Cancer Res ; 24(1): 40, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681213

ABSTRACT

BACKGROUND: The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. METHODS: We utilized bcl-3-/- mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3-/- organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. RESULTS: Bcl-3-/- mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3-/- mammary organoid cultures. Bcl-3-/- organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3-/- glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3-/- glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3-/- lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. CONCLUSIONS: Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3-/- mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.


Subject(s)
Adenocarcinoma , B-Cell Lymphoma 3 Protein , Breast Neoplasms , Carcinoma, Squamous Cell , Mammary Glands, Animal , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Apoptosis/genetics , B-Cell Lymphoma 3 Protein/metabolism , Breast Neoplasms/pathology , Carcinogenesis/metabolism , Carcinoma, Squamous Cell/pathology , Collagen/metabolism , Epithelial Cells/metabolism , Female , Lactation , Mammary Glands, Animal/metabolism , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Pregnancy , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
6.
Cell Death Dis ; 13(5): 510, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641486

ABSTRACT

Acute liver failure (ALF) is a rare entity but exhibits a high mortality. The mechanisms underlying ALF are not completely understood. The present study explored the role of the hepatic B cell leukemia-3 (Bcl-3), a transcriptional regulator of nuclear factor-kappa B (NF-κB), in two independent models of ALF. We employed a recently developed transgenic mouse model in a C57BL6/J background comparing wild-type (WT) and transgenic littermates with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) in the ALF model of d-galactosamine (d-GalN) and lipopolysaccharide (LPS). Additionally, the apoptosis-inducing CD95 (FAS/APO-1)-ligand was explored. Bcl-3Hep mice exhibited a significant protection from ALF with decreased serum transaminases, decreased activation of the apoptotic caspases 8, 9, and 3, lower rates of oxidative stress, B-cell lymphoma 2 like 1 (BCL2L1/BCL-XL) degradation and accompanying mitochondrial cytochrome c release, and ultimately a decreased mortality rate from d-GalN/LPS compared to WT mice. d-GalN/LPS treatment resulted in a marked inflammatory cytokine release and stimulated the activation of signal transducer and activator of transcription (STAT) 3, c-Jun N-terminal kinases (JNK) and extracellular signal-regulated kinase (ERK) signaling comparably in the hepatic compartment of Bcl-3Hep and WT mice. However, in contrast to the WT, Bcl-3Hep mice showed a diminished rate of IkappaB kinase-beta (IKK-ß) degradation, persistent receptor interacting protein kinase (RIPK) 1 function and thus prolonged cytoprotective nuclear factor-kappa B (NF-κB) p65 signaling through increased p65 stability and enhanced transcription. Likewise, Bcl-3 overexpression in hepatocytes protected from ALF with massive hepatocyte apoptosis induced by the anti-FAS antibody Jo2. The protection was also linked to IKK-ß stabilization. Overall, our study showed that Bcl-3 rendered hepatocytes more resistant to hepatotoxicity induced by d-GalN/LPS and FAS-ligand. Therefore, Bcl-3 appears to be a critical regulator of the dynamics in ALF through IKK-ß.


Subject(s)
B-Cell Lymphoma 3 Protein , Liver Failure, Acute , Receptors, Death Domain , Animals , Apoptosis/physiology , B-Cell Lymphoma 3 Protein/metabolism , Galactosamine/metabolism , Hepatocytes/metabolism , I-kappa B Kinase/metabolism , Ligands , Lipopolysaccharides , Liver Failure, Acute/genetics , Liver Failure, Acute/metabolism , Mice , NF-kappa B/metabolism , Receptors, Death Domain/metabolism , bcl-X Protein/metabolism
7.
Front Immunol ; 13: 847699, 2022.
Article in English | MEDLINE | ID: mdl-35355979

ABSTRACT

The NF-κB transcription factor family controls the transcription of many genes and regulates a number of pivotal biological processes. Its activity is regulated by the IκB family of proteins. Bcl-3 is an atypical member of the IκB protein family that regulates the activity of nuclear factor NF-κB. It can promote or inhibit the expression of NF-κB target genes according to the received cell type and stimulation, impacting various cell functions, such as proliferation and differentiation, induction of apoptosis and immune response. Bcl-3 is also regarded as an environment-dependent cell response regulator that has dual roles in the development of B cells and the differentiation, survival and proliferation of Th cells. Moreover, it also showed a contradictory role in inflammation. At present, in addition to the work aimed at studying the molecular mechanism of Bcl-3, an increasing number of studies have focused on the effects of Bcl-3 on inflammation, immunity and malignant tumors in vivo. In this review, we focus on the latest progress of Bcl-3 in the regulation of the NF-κB pathway and its extensive physiological role in inflammation and immune cells, which may help to provide new ideas and targets for the early diagnosis or targeted treatment of various inflammatory diseases, immunodeficiency diseases and malignant tumors.


Subject(s)
I-kappa B Proteins , NF-kappa B , Apoptosis , B-Cell Lymphoma 3 Protein , Humans , I-kappa B Proteins/metabolism , Inflammation , NF-kappa B/metabolism , NF-kappa B p50 Subunit
8.
Cell Death Differ ; 29(6): 1176-1186, 2022 06.
Article in English | MEDLINE | ID: mdl-34853447

ABSTRACT

Tumor necrosis factor-α (TNF) is described as a main regulator of cell survival and apoptosis in multiple types of cells, including hepatocytes. Dysregulation in TNF-induced apoptosis is associated with many autoimmune diseases and various liver diseases. Here, we demonstrated a crucial role of Bcl-3, an IκB family member, in regulating TNF-induced hepatic cell death. Specifically, we found that the presence of Bcl-3 promoted TNF-induced cell death in the liver, while Bcl-3 deficiency protected mice against TNF/D-GalN induced hepatoxicity and lethality. Consistently, Bcl-3-depleted hepatic cells exhibited decreased sensitivity to TNF-induced apoptosis when stimulated with TNF/CHX. Mechanistically, the in vitro results showed that Bcl-3 interacted with the deubiquitinase CYLD to synergistically switch the ubiquitination status of RIP1 and facilitate the formation of death-inducing Complex II. This complex further resulted in activation of the caspase cascade to induce apoptosis. By revealing this novel role of Bcl-3 in regulating TNF-induced hepatic cell death, this study provides a potential therapeutic target for liver diseases caused by TNF-related apoptosis.


Subject(s)
B-Cell Lymphoma 3 Protein , GTPase-Activating Proteins , Hepatocytes , Tumor Necrosis Factor-alpha , Animals , Apoptosis/physiology , B-Cell Lymphoma 3 Protein/metabolism , Caspases/metabolism , GTPase-Activating Proteins/metabolism , Hepatocytes/cytology , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/cytology , Liver/drug effects , Liver/metabolism , Mice , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination
9.
Nat Commun ; 12(1): 6338, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732719

ABSTRACT

Rare, recurrent balanced translocations occur in a variety of cancers but are often not functionally interrogated. Balanced translocations with the immunoglobulin heavy chain locus (IGH; 14q32) in chronic lymphocytic leukemia (CLL) are infrequent but have led to the discovery of pathogenic genes including CCND1, BCL2, and BCL3. Following identification of a t(X;14)(q28;q32) translocation that placed the mature T cell proliferation 1 gene (MTCP1) adjacent to the immunoglobulin locus in a CLL patient, we hypothesized that this gene may have previously unrecognized importance. Indeed, here we report overexpression of human MTCP1 restricted to the B cell compartment in mice produces a clonal CD5+/CD19+ leukemia recapitulating the major characteristics of human CLL and demonstrates favorable response to therapeutic intervention with ibrutinib. We reinforce the importance of genetic interrogation of rare, recurrent balanced translocations to identify cancer driving genes via the story of MTCP1 as a contributor to CLL pathogenesis.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Translocation, Genetic , Adult , Aged , Aged, 80 and over , Animals , B-Cell Lymphoma 3 Protein , Cyclin D1 , Female , Gene Expression Regulation , Genes, Immunoglobulin Heavy Chain , Humans , Immunoglobulin Heavy Chains/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Oncogenes/genetics , Proto-Oncogene Proteins c-bcl-2
10.
Gastroenterology ; 161(1): 318-332.e9, 2021 07.
Article in English | MEDLINE | ID: mdl-33819482

ABSTRACT

BACKGROUND & AIMS: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. METHODS: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. RESULTS: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. CONCLUSIONS: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.


Subject(s)
B-Cell Lymphoma 3 Protein/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/metabolism , Animals , B-Cell Lymphoma 3 Protein/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/secondary , Cell Differentiation , Cell Line, Tumor , Cell Movement , Cell Proliferation , Energy Metabolism , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neoplasm Invasiveness , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Signal Transduction , Tumor Burden , Tumor Cells, Cultured
11.
Sci Rep ; 11(1): 5665, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707466

ABSTRACT

The alkylating agent, temozolomide (TMZ), is the most commonly used chemotherapeutic for the treatment of glioblastoma (GBM). The anti-glioma effect of TMZ involves a complex response that includes G2-M cell cycle arrest and cyclin-dependent kinase 1 (CDK1) activation. While CDK1 phosphorylation is a well-described consequence of TMZ treatment, we find that TMZ also robustly induces CDK1 expression. Analysis of this pathway demonstrates that CDK1 is regulated by NF-κB via a putative κB-site in its proximal promoter. CDK1 was induced in a manner dependent on mature p50 and the atypical inhibitor κB protein, BCL-3. Treatment with TMZ induced binding of NF-κB to the κB-site as assessed by gel shift analysis and chromatin immunoprecipitation. Examination of a CDK1 promoter-reporter demonstrated the functional relevance of the κB-site and underlined the requirement of p50 and BCL-3 for activation. Targeted knockdown of CDK1 or chemical inhibition with the selective CDK1 inhibitor, RO-3306, potentiated the cytotoxic effect of TMZ. These results identify CDK1 as an NF-κB target gene regulated by p50 and BCL-3 and suggest that targeting CDK1 may be a strategy to improve the efficacy of TMZ against GBM.


Subject(s)
Brain Neoplasms/metabolism , CDC2 Protein Kinase/metabolism , Glioblastoma/metabolism , NF-kappa B/metabolism , Temozolomide/pharmacology , B-Cell Lymphoma 3 Protein/metabolism , Base Sequence , Binding Sites , Brain Neoplasms/genetics , Brain Neoplasms/pathology , CDC2 Protein Kinase/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Promoter Regions, Genetic/genetics
12.
Mol Cancer Ther ; 20(5): 775-786, 2021 05.
Article in English | MEDLINE | ID: mdl-33649105

ABSTRACT

The development of antimetastatic drugs is an urgent healthcare priority for patients with cancer, because metastasis is thought to account for around 90% of cancer deaths. Current antimetastatic treatment options are limited and often associated with poor long-term survival and systemic toxicities. Bcl3, a facilitator protein of the NF-κB family, is associated with poor prognosis in a range of tumor types. Bcl3 has been directly implicated in the metastasis of tumor cells, yet is well tolerated when constitutively deleted in murine models, making it a promising therapeutic target. Here, we describe the identification and characterization of the first small-molecule Bcl3 inhibitor, by using a virtual drug design and screening approach against a computational model of the Bcl3-NF-kB1(p50) protein-protein interaction. From selected virtual screening hits, one compound (JS6) showed potent intracellular Bcl3-inhibitory activity. JS6 treatment led to reductions in Bcl3-NF-kB1 binding, tumor colony formation, and cancer cell migration in vitro; and tumor stasis and antimetastatic activity in vivo, while being devoid of overt systemic toxicity. These results represent a successful application of in silico screening in the identification of protein-protein inhibitors for novel intracellular targets, and confirm Bcl3 as a potential antimetastatic target.


Subject(s)
B-Cell Lymphoma 3 Protein/antagonists & inhibitors , Neoplasms/drug therapy , Animals , Cell Line, Tumor , Humans , Mice , Mice, Nude , Models, Molecular
13.
Biol Chem ; 402(2): 207-219, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33544468

ABSTRACT

This study was designed to illustrate the function and role of PCAT1 in CCA. The relative expression was confirmed by RT-qPCR and western blot. The biological function of PCAT1 was evaluated by CCK8, EdU, colony formation, wound healing, transwell, and subcutaneous tumor formation assays. Protein levels of EMT markers were measured by western blot. The binding relationship was predicted by JASPAR and starBase. The binding of YY1 to PCAT1 promoter was assessed by ChIP and luciferase reporter. The binding capacity between miR-216a-3p and PCAT1 as well as BCL3 was assessed by luciferase reporter and AGO2-RIP assays. In this study, we found that PCAT1 was up-regulated in CCA tissues and cells, and the PCAT1 overexpression was associated with poor prognosis. Moreover, PCAT1 was assessed as an independent risk factor of prognosis for CCA patients. Amplified PCAT1 was found to promote tumor proliferation, migration, invasion and EMT process, whereas PCAT1 knockdown inhibited these malignant phenotypes. Mechanistically, PCAT1 was predominantly localized in the cytoplasm and competitively bound miR-216a-3p to increase BCL3 expression. In addition, PCAT1 was activated by transcription factor YY1. This study revealed that PCAT1 acted as an oncogene in CCA, and the YY1/PCAT1/miR-216a-3p/BCL3 axis exhibited critical functions in CCA progression.


Subject(s)
B-Cell Lymphoma 3 Protein/metabolism , Bile Duct Neoplasms/metabolism , Cholangiocarcinoma/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Up-Regulation , YY1 Transcription Factor/metabolism , B-Cell Lymphoma 3 Protein/genetics , Bile Duct Neoplasms/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Cholangiocarcinoma/pathology , Female , Humans , Male , MicroRNAs/genetics , Middle Aged , RNA, Long Noncoding/genetics , YY1 Transcription Factor/genetics
14.
Immunol Cell Biol ; 99(6): 586-595, 2021 07.
Article in English | MEDLINE | ID: mdl-33525048

ABSTRACT

Regulatory T cells (Tregs) exert inhibitory function under various physiological conditions and adopt diverse characteristics following environmental cues. Multiple subsets of Tregs expressing master transcription factors of helper T cells such as RORγt, T-bet, Gata3 and PPARγ have been characterized, but the molecular mechanism governing the differentiation of these subsets remains largely unknown. Here we report that the atypical IκB protein family member Bcl-3 suppresses RORγt+ Treg accumulation. The suppressive effect of Bcl-3 was particularly evident in the mouse immune tolerance model of anti-CD3 therapy. Using conditional knockout mice, we illustrate that loss of Bcl-3 specifically in Tregs was sufficient to boost RORγt+ Treg formation and resistance of mice to dextran sulfate sodium-induced colitis. We further demonstrate the suppressive effect of Bcl-3 on RORγt+ Treg differentiation in vitro. Our results reveal a novel role of nuclear factor-kappa B signaling pathways in Treg subset differentiation that may have clinical implications in immunotherapy.


Subject(s)
Colitis , Nuclear Receptor Subfamily 1, Group F, Member 3 , Animals , B-Cell Lymphoma 3 Protein , Cell Differentiation , Colitis/chemically induced , Forkhead Transcription Factors , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , T-Lymphocytes, Regulatory , Th17 Cells
15.
PLoS Pathog ; 17(1): e1009249, 2021 01.
Article in English | MEDLINE | ID: mdl-33508001

ABSTRACT

Bcl-3 is an atypical member of the IκB family that acts in the nucleus to modulate transcription of many NF-κB targets in a highly context-dependent manner. Accordingly, complete Bcl-3-/- mice have diverse defects in both innate and adaptive immune responses; however, direct effects of Bcl-3 action in individual immune cell types have not been clearly defined. Here, we document a cell-autonomous role for Bcl-3 in CD8+ T cell differentiation during the response to lymphocytic choriomeningitis virus infection. Single-cell RNA-seq and flow cytometric analysis of virus-specific Bcl3-/- CD8+ T cells revealed that differentiation was skewed towards terminal effector cells at the expense of memory precursor effector cells (MPECs). Accordingly, Bcl3-/- CD8+ T cells exhibited reduced memory cell formation and a defective recall response. Conversely, Bcl-3-overexpression in transgenic CD8+ T cells enhanced MPEC formation but reduced effector cell differentiation. Together, our results establish Bcl-3 as an autonomous determinant of memory/terminal effector cell balance during CD8+ T cell differentiation in response to acute viral infection. Our results provide proof-of-principle for targeting Bcl-3 pharmacologically to optimize adaptive immune responses to infectious agents, cancer cells, vaccines and other stimuli that induce CD8+ T cell differentiation.


Subject(s)
B-Cell Lymphoma 3 Protein/metabolism , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , NF-kappa B/immunology , Animals , B-Cell Lymphoma 3 Protein/genetics , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Female , Flow Cytometry , Male , Mice , Mice, Transgenic , Sequence Analysis, RNA , Single-Cell Analysis
16.
Int J Mol Med ; 47(3)2021 03.
Article in English | MEDLINE | ID: mdl-33495811

ABSTRACT

Human gingival fibroblasts (HGFs) are the main cells that comprise gingival tissue, where they transfer mechanical signals under physiological and pathological conditions. The exact mechanism underlying gingival tissue reconstruction under compressive forces remains unclear. The present study aimed to explore the effects of Smad4, caspase­3 and Bcl­2 on the proliferation of HGFs induced by compressive force. HGFs were cultured on poly(lactide­co­glycolide) (PLGA) scaffolds under an optimal compressive force of 25 g/cm2. Cell viability was determined via Cell Counting Kit­8 assays at 0, 12, 24, 48 and 72 h. The expression levels of Smad4, caspase­3 and Bcl­2 were measured via reverse transcription­quantitative PCR and western blotting. The application of compressive force on HGFs for 24 h resulted in a significant increase in cell proliferation and Bcl­2 expression, but a significant decrease in the expression of Smad4 and caspase­3; however, inverse trends were observed by 72 h. Subsequently, a lentivirus was used to overexpress Smad4 in HGFs, which attenuated the effects of compressive force on HGF proliferation and Bcl­2 expression, but enhanced caspase­3 expression, suggesting that Smad4 may regulate compressive force­induced apoptosis in HGFs. In conclusion, these findings increased understanding regarding the mechanisms of compressive force­induced HGF proliferation and apoptosis, which may provide further insight for improving the efficacy and stability of orthodontic treatment.


Subject(s)
B-Cell Lymphoma 3 Protein/biosynthesis , Caspase 3/biosynthesis , Fibroblasts/metabolism , Gene Expression Regulation , Gingiva/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Smad4 Protein/metabolism , Tissue Scaffolds/chemistry , Adolescent , Child , Compressive Strength , Female , Humans , Male
17.
Gene ; 769: 145240, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33068678

ABSTRACT

Serotonin (5-HT) is a monoamine and it could regulate cell growth by its receptors working on signaling pathways. 5-HTP is the precursor of 5-HT that help 5-HT synthesis. B cell leukemia/lymphoma 3 (Bcl-3) involved in cell death and proliferation through mitogen activated protein kinase (MAPK) pathway. However, there is little information about the effects of MAPK/Bcl-3 on apoptosis of goat mammary gland epithelial cells (GMECs). The aim of this study is to explore the interaction among 5-HTP, MAPK and Bcl-3 in GMEC apoptosis. In this study, 5-HTP treatment decreased cell apoptosis and promoted phosphorylation of ERK1/2 in GMEC. We also found that the activation and inhibition of ERK1/2 could affect GMEC apoptosis. The Annexin V-FITC/PI staining and western blotting results suggested that 5-HTP decreased GMEC apoptosis through ERK1/2 signaling pathway. And the results of RT-qPCR and western blotting demonstrated that both 5-HTP and ERK1/2 positively regulated Bcl-3 expression. Sum up all the results, we could draw the conclusion that 5-HTP decreased GMEC apoptosis through MAPK/ERK/Bcl-3 pathway.


Subject(s)
5-Hydroxytryptophan/pharmacology , Apoptosis/drug effects , B-Cell Lymphoma 3 Protein/metabolism , Epithelial Cells/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/drug effects , Mammary Glands, Animal/drug effects , Animals , Cell Proliferation/drug effects , Cells, Cultured , Goats , Mammary Glands, Animal/cytology , Phosphorylation , Signal Transduction/drug effects
18.
Eur J Immunol ; 51(1): 197-205, 2021 01.
Article in English | MEDLINE | ID: mdl-32652549

ABSTRACT

Bcl-3 is an atypical member of the IκB family that modulates NF-κB activity in nuclei. lpr mice carry the lpr mutation in Fas, resulting in functional loss of this death receptor; they serve as models for lupus erythematosus and autoimmune lymphoproliferation syndrome (ALPS). To explore the biologic roles of Bcl-3 in this disease model, we generated BL6/lpr mice lacking Bcl-3. Unlike lpr mice on an MRL background, BL6/lpr mice present with very mild lupus- or ALPS-like phenotypes. Bcl-3 KO BL6/lpr mice, however, developed severe splenomegaly, dramatically increased numbers of double negative T cells - a hallmark of human lupus, ALPS, and MRL/lpr mice - and exhibited inflammation in multiple organs, despite low levels of autoantibodies, similar to those in BL6/lpr mice. Loss of Bcl-3 specifically in T cells exacerbated select lupus-like phenotypes, specifically organ infiltration. Mechanistically, elevated levels of Tnfα in Bcl-3 KO BL6/lpr mice may promote lupus-like phenotypes, since loss of Tnfα in these mice reversed the pathology due to loss of Bcl-3. Contrary to the inhibitory functions of Bcl-3 revealed here, this regulator has also been shown to promote inflammation in different settings. Our findings highlight the profound, yet highly context-dependent roles of Bcl-3 in the development of inflammation-associated pathology.


Subject(s)
B-Cell Lymphoma 3 Protein/immunology , Lupus Erythematosus, Systemic/prevention & control , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/prevention & control , B-Cell Lymphoma 3 Protein/deficiency , B-Cell Lymphoma 3 Protein/genetics , Disease Models, Animal , Female , Kidney/immunology , Kidney/pathology , Liver/immunology , Liver/pathology , Lung/immunology , Lung/pathology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/pathology , Male , Mice , Mice, Inbred MRL lpr , Mice, Knockout , Phenotype , Splenomegaly/genetics , Splenomegaly/immunology , Splenomegaly/prevention & control , Tumor Necrosis Factor-alpha/immunology
19.
Cell Mol Biol (Noisy-le-grand) ; 66(5): 87-91, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-33040819

ABSTRACT

Colorectal cancer (CBC) is the third most common cancer in men and the second most common cancer in women in the world, as well as the second leading cause of death among the world's cancers. In this study, to identify the genes involved in the CRC clinical outcomes, the expression of B cell leukemia/lymphoma 3 (BCL-3) gene in patients with colorectal cancer was investigated along with serum level of ß-catenin. In this study, samples of 23 patients with colorectal cancer were prepared. mRNA was extracted and then cDNA was prepared for evaluation of PCR. Then, with specific primers for the BCL3, a semi-quantitative RT-PCR test was performed. The enzyme-linked immunosorbent assay (ELISA) was used to assess the serum level of ß-catenin. In this study, 23 men with an average age of years were included. BCL-3 expression in tumor tissue was significantly higher than its level in healthy tissue (P=0.021). BCL-3 expression at stage 0 of the tumor was significantly lower than at all other stages (P<0.05), and the comparison between the rest of the CRC stages was not significant (P>0.05). The median of serum ß-catenin levels in the patients was 32.83 (22.45, 46.09). There was no significant difference in the amount of serum ß-catenin between all 5 stages of the disease and in terms of lymph node metastasis. There were no relationships between age, BMI, smoking history, familial CRC history, and BCL-3 or ß-catenin serum levels (P>0.05). In this study, the expression of the BCL-3 gene in tumor specimens was high. It can be said that the BCL-3 gene can act as one of the genes involved in colorectal cancer, along with some genes such as ß-catenin. While BCL-3 was associated with a higher stage of CRC, ß-catenin didn't show such a relationship with CRC.


Subject(s)
B-Cell Lymphoma 3 Protein/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Signal Transduction/genetics , beta Catenin/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Male , Middle Aged , Neoplasm Staging/methods , RNA, Messenger/genetics
20.
BMC Genomics ; 21(1): 409, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32552669

ABSTRACT

BACKGROUND: Japanese encephalitis virus (JEV) is one of the common causes of acute encephalitis in humans. Japanese encephalitis is characterized by the uncontrolled release of inflammatory cytokines, which ultimately results in neuronal cell damage. In recent years, with the advancement of high-throughput sequencing technology, studies have shown that circRNAs, by competing with endogenous miRNAs, play a vital role in the pathology of CNS diseases. However, it is unknown whether circRNAs participate in JEV-induced neuroinflammation. RESULTS: By employing Illumina RNA-sequencing, we identified 180 circRNAs and 58 miRNAs that showed significant differential expression in JEV-infected mice brain tissues. The functional enrichment analyses revealed that these differentially regulated circRNAs were predominantly related to neurotransmission, histone modifications, transcription misregulation, and inflammation-associated calcium signaling pathway. Our established competing endogenous RNA (ceRNA) interaction network suggested the correlation of several circRNAs, miRNAs, and mRNAs in regulating the inflammatory response during JEV infection. Among the predicted interactions, the correlation between circ_0000220, miR-326-3p, and BCL3/MK2/TRIM25 mRNAs was experimentally validated by knockdown or overexpression of the non-coding RNA entities in cultured mouse microglia. The knockdown of circ_0000220 or overexpression of miR-326-3p caused a lower production of JEV-induced inflammatory cytokines. CONCLUSIONS: Conclusively, our study provides new insights into the host response to JEV infection and proposes the circRNA-targeting therapeutic interventions to rein in Japanese encephalitis.


Subject(s)
Encephalitis Virus, Japanese/pathogenicity , Encephalitis, Japanese/genetics , Exome Sequencing/methods , MicroRNAs/genetics , RNA, Circular/genetics , Animals , B-Cell Lymphoma 3 Protein/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Intracellular Signaling Peptides and Proteins/genetics , Mice , Microglia/chemistry , Microglia/cytology , Protein Serine-Threonine Kinases/genetics , Sequence Analysis, RNA/methods , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...