ABSTRACT
Germline inactivating variants in BRCA1 lead to a significantly increased risk of breast and ovarian cancers in carriers. While the functional effect of many variants can be inferred from the DNA sequence, determining the effect of missense variants present a significant challenge. A series of biochemical and cell biological assays have been successfully used to explore the impact of these variants on the function of BRCA1, which contribute to assessing their likelihood of pathogenicity. It has been determined that variants that co-localize with structural or functional motifs are more likely to disrupt the stability and function of BRCA1. Here we assess the functional impact of 37 variants chosen to probe the functional impact of variants in phosphorylation sites and in the BRCT domains. In addition, we perform a meta-analysis of 170 unique variants tested by the transcription activation assays in the carboxy-terminal domain of BRCA1 using a recently developed computation model to provide assessment for functional impact and their likelihood of pathogenicity.
Subject(s)
BRCA1 Protein/chemistry , BRCA1 Protein/metabolism , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Alleles , Amino Acid Substitution , BRCA1 Protein/genetics , Bayes Theorem , Conserved Sequence , Humans , Mutation, Missense , Protein Interaction Domains and Motifs/genetics , ThermodynamicsABSTRACT
Chromosomal instability is a key feature in cancer progression. Recently we have reported that BRCA1 regulates the transcription of several genes in prostate cancer, including ATM (ataxia telangiectasia mutated). Although it is well accepted that ATM is a pivotal mediator in genotoxic stress, it is unknown whether ATM transcription is regulated during the molecular response to DNA damage. Here we investigate ATM transcription regulation in human prostate tumor PC3 cell line. We have found that doxorubicin and mitoxantrone repress ATM transcription in PC3 cells but etoposide and methotrexate do not affect ATM expression. We have demonstrated that BRCA1 binds to ATM promoter and after doxorubicin exposure, it is released. BRCA1 overexpression increases ATM transcription and this enhancement is abolished by BRCA1 depletion. Moreover, BRCA1-BRCT domain loss impairs the ability of BRCA1 to regulate ATM promoter activity, strongly suggesting that BRCT domain is essential for ATM regulation by BRCA1. BRCA1-overexpressing PC3 cells exposed to KU55933 ATM kinase inhibitor showed significant decreased ATM promoter activity compared to untreated cells, suggesting that ATM transcriptional regulation by BRCA1 is partially mediated by the ATM kinase activity. In addition, we have demonstrated E2F1 binding to ATM promoter before and after doxorubicin exposure. E2F1 overexpression diminishes ATM transcription after doxorubicin exposure which is impaired by E2F1 dominant negative mutants. Finally, the co-regulator of transcription CtIP increases ATM transcription. CtIP increases ATM transcription. Altogether, BRCA1/E2F1/CtIP binding to ATM promoter activates ATM transcription. Doxorubicin exposure releases BRCA1 and CtIP from ATM promoter still keeping E2F1 recruited and, in turn, represses ATM expression.