Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Dis ; 102(1): 107-113, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30673448

ABSTRACT

Successful management of the soybean cyst nematode Heterodera glycines is limited by increased virulence of nematode populations on resistant soybean cultivars and persistence of the nematode in the soil in the absence of hosts. Seed treatments are now available for H. glycines management. However, it is unclear how these treatments affect specific life stages of the nematode. The objectives of this study were to assess the effects of ILeVO (with active ingredient fluopyram) and VOTiVO (with active ingredient Bacillus firmus I-1582) seed treatments on H. glycines reproduction and important processes in the nematode life cycle, such as second-stage juvenile (J2) hatching, motility, and root penetration. The effects of seed treated with formulated (ILeVO and VOTiVO) and nonformulated active ingredient (fluopyram and B. firmus I-1582) on H. glycines reproduction were conducted in a greenhouse. Nematode reproduction on plants grown from seed treated with ILeVO or technical fluopyram (active ingredient only) was reduced by 35 to 97% relative to the nontreated control, suggesting that the fluopyram active ingredient was affecting H. glycines directly and was not an inert ingredient in the seed treatment formulation. Hatching, motility, and root penetration experiments also were conducted using only the formulated seed treatments. Exudates collected from ILeVO-treated seed reduced J2 hatching and motility by more than 95% in laboratory assays. Exudates from radicles grown from ILeVO-treated seed reduced hatching in vitro by 48% in one run but had no significant effect in the second run compared with the nontreated control exudates. There also were no consistent effects of radicle exudates, regardless of treatment, on hatching and motility of the J2. ILeVO reduced root penetration of H. glycines J2 at different inoculation densities in a growth chamber experiment. VOTiVO did not affect any of the processes or life stages of the nematode studied. The results of this study indicate that the use of nematode-protectant seed treatments may be useful in controlling H. glycines; however, additional investigations into the precise effects of ILeVO and VOTiVO on H. glycines life processes and in different parts of the soil profile are necessary.


Subject(s)
Antinematodal Agents/pharmacology , Bacillus firmus/chemistry , Benzamides/pharmacology , Glycine max/parasitology , Pyridines/pharmacology , Tylenchoidea/drug effects , Animals , Exudates and Transudates/physiology , Feeding Behavior/drug effects , Reproduction/drug effects , Seeds
2.
J Biomol Struct Dyn ; 36(15): 3978-3992, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29129140

ABSTRACT

Local conformational changes and global unfolding pathways of wildtype xyn11A recombinant and its mutated structures were studied through a series of atomistic molecular dynamics (MD) simulations, along with enzyme activity assays at three incubation temperatures to investigate the effects of mutations at three different sites to the thermostability. The first mutation was to replace an unstable negatively charged residue at a surface beta turn near the active site (D32G) by a hydrophobic residue. The second mutation was to create a disulphide bond (S100C/N147C) establishing a strong connection between an alpha helix and a distal beta hairpin associated with the thermally sensitive Thumb loop, and the third mutation add an extra hydrogen bond (A155S) to the same alpha helix. From the MD simulations performed, MM/PBSA energy calculations of the unfolding energy were in a good agreement with the enzyme activities measured from the experiment, as all mutated structures demonstrated the improved thermostability, especially the S100C/N147C proved to be the most stable mutant both by the simulations and the experiment. Local conformational analysis at the catalytic sites and the xylan access region also suggested that mutated xyn11A structures could accommodate xylan binding. However, the analysis of global unfolding pathways showed that structural disruptions at the beta sheet regions near the N-terminal were still imminent. These findings could provide the insight on the molecular mechanisms underlying the enhanced thermostability due to mutagenesis and changes in the protein unfolding pathways for further protein engineering of the GH11 family xylanase enzymes.


Subject(s)
Bacillus firmus/chemistry , Bacterial Proteins/chemistry , Endo-1,4-beta Xylanases/chemistry , Molecular Dynamics Simulation , Mutation , Protein Engineering/methods , Bacillus firmus/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Enzyme Assays , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Kinetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structural Homology, Protein , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL