Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
Microb Biotechnol ; 17(7): e14518, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953907

ABSTRACT

Porcine epidemic diarrhoea virus (PEDV) infects pigs of all ages by invading small intestine, causing acute diarrhoea, vomiting, and dehydration with high morbidity and mortality among newborn piglets. However, current PEDV vaccines are not effective to protect the pigs from field epidemic strains because of poor mucosal immune response and strain variation. Therefore, it is indispensable to develop a novel oral vaccine based on epidemic strains. Bacillus subtilis spores are attractive delivery vehicles for oral vaccination on account of the safety, high stability, and low cost. In this study, a chimeric gene CotC-Linker-COE (CLE), comprising of the B. subtilis spore coat gene cotC fused to the core neutralizing epitope CO-26 K equivalent (COE) of the epidemic strain PEDV-AJ1102 spike protein gene, was constructed. Then recombinant B. subtilis displaying the CLE on the spore surface was developed by homologous recombination. Mice were immunized by oral route with B. subtilis 168-CLE, B. subtilis 168, or phosphate-buffered saline (PBS) as control. Results showed that the IgG antibodies and cytokine (IL-4, IFN-γ) levels in the B. subtilis 168-CLE group were significantly higher than the control groups. This study demonstrates that B. subtilis 168-CLE can generate specific systemic immune and mucosal immune responses and is a potential vaccine candidate against PEDV infection.


Subject(s)
Antibodies, Viral , Bacillus subtilis , Porcine epidemic diarrhea virus , Spores, Bacterial , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Animals , Bacillus subtilis/genetics , Bacillus subtilis/immunology , Spores, Bacterial/genetics , Spores, Bacterial/immunology , Mice , Antibodies, Viral/blood , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Administration, Oral , Cytokines/metabolism , Immunoglobulin G/blood , Mice, Inbred BALB C , Female , Cell Surface Display Techniques , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
Front Immunol ; 15: 1384193, 2024.
Article in English | MEDLINE | ID: mdl-38694504

ABSTRACT

The common bed bug, Cimex lectularius, is an urban pest of global health significance, severely affecting the physical and mental health of humans. In contrast to most other blood-feeding arthropods, bed bugs are not major vectors of pathogens, but the underlying mechanisms for this phenomenon are largely unexplored. Here, we present the first transcriptomics study of bed bugs in response to immune challenges. To study transcriptional variations in bed bugs following ingestion of bacteria, we extracted and processed mRNA from body tissues of adult male bed bugs after ingestion of sterile blood or blood containing the Gram-positive (Gr+) bacterium Bacillus subtilis or the Gram-negative (Gr-) bacterium Escherichia coli. We analyzed mRNA from the bed bugs' midgut (the primary tissue involved in blood ingestion) and from the rest of their bodies (RoB; body minus head and midgut tissues). We show that the midgut exhibits a stronger immune response to ingestion of bacteria than the RoB, as indicated by the expression of genes encoding antimicrobial peptides (AMPs). Both the Toll and Imd signaling pathways, associated with immune responses, were highly activated by the ingestion of bacteria. Bacterial infection in bed bugs further provides evidence for metabolic reconfiguration and resource allocation in the bed bugs' midgut and RoB to promote production of AMPs. Our data suggest that infection with particular pathogens in bed bugs may be associated with altered metabolic pathways within the midgut and RoB that favors immune responses. We further show that multiple established cellular immune responses are preserved and are activated by the presence of specific pathogens. Our study provides a greater understanding of nuances in the immune responses of bed bugs towards pathogens that ultimately might contribute to novel bed bug control tactics.


Subject(s)
Bedbugs , Gene Expression Profiling , Transcriptome , Animals , Bedbugs/immunology , Bedbugs/genetics , Male , Escherichia coli/immunology , Bacillus subtilis/immunology , Bacillus subtilis/genetics , Signal Transduction/immunology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/immunology
3.
Front Immunol ; 15: 1394501, 2024.
Article in English | MEDLINE | ID: mdl-38774883

ABSTRACT

Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules. Among EVs, outer membrane vesicles (OMVs), specifically produced by Gram-negative bacteria, have been extensively characterized and their potential as vaccines, adjuvants or immunotherapeutic agents, broadly explored in mammals. Nonetheless, Gram-positive bacteria can also produce bilayered spherical structures from 20 to 400 nm involved in pathogenesis, antibiotic resistance, nutrient uptake and nucleic acid transfer. However, information regarding their immunomodulatory potential is very scarce, both in mammals and fish. In the current study, we have produced EVs from the Gram-positive probiotic Bacillus subtilis and evaluated their immunomodulatory capacities using a rainbow trout intestinal epithelial cell line (RTgutGC) and splenic leukocytes. B. subtilis EVs significantly up-regulated the transcription of several pro-inflammatory and antimicrobial genes in both RTgutGC cells and splenocytes, while also up-regulating many genes associated with B cell differentiation in the later. In concordance, B. subtilis EVs increased the number of IgM-secreting cells in splenocyte cultures, while at the same time increased the MHC II surface levels and antigen-processing capacities of splenic IgM+ B cells. Interestingly, some of these experiments were repeated comparing the effects of B. subtilis EVs to EVs obtained from another Bacillus species, Bacillus megaterium, identifying important differences. The data presented provides evidence of the immunomodulatory capacities of Gram-positive EVs, pointing to the potential of B. subtilis EVs as adjuvants or immunostimulants for aquaculture.


Subject(s)
Bacillus subtilis , Extracellular Vesicles , Leukocytes , Oncorhynchus mykiss , Spleen , Animals , Bacillus subtilis/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Oncorhynchus mykiss/immunology , Oncorhynchus mykiss/microbiology , Spleen/immunology , Spleen/cytology , Leukocytes/immunology , Leukocytes/metabolism , Probiotics/pharmacology , Cell Line , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Immunomodulation , Intestines/immunology
4.
Nat Commun ; 15(1): 3954, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729958

ABSTRACT

Defense-associated sirtuin 2 (DSR2) systems are widely distributed across prokaryotic genomes, providing robust protection against phage infection. DSR2 recognizes phage tail tube proteins and induces abortive infection by depleting intracellular NAD+, a process that is counteracted by another phage-encoded protein, DSR Anti Defense 1 (DSAD1). Here, we present cryo-EM structures of Bacillus subtilis DSR2 in its apo, Tube-bound, and DSAD1-bound states. DSR2 assembles into an elongated tetramer, with four NADase catalytic modules clustered in the center and the regulatory-sensing modules distributed at four distal corners. Interestingly, monomeric Tube protein, rather than its oligomeric states, docks at each corner of the DSR2 tetramer to form a 4:4 DSR2-Tube assembly, which is essential for DSR2 NADase activity. DSAD1 competes with Tube for binding to DSR2 by occupying an overlapping region, thereby inhibiting DSR2 immunity. Thus, our results provide important insights into the assembly, activation and inhibition of the DSR2 anti-phage defense system.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacteriophages , Cryoelectron Microscopy , Bacillus subtilis/immunology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Immune Evasion , Sirtuins/metabolism , Sirtuins/genetics , Viral Proteins/metabolism , Viral Proteins/immunology , Viral Proteins/chemistry , Viral Proteins/genetics , Protein Binding , Models, Molecular , NAD/metabolism
5.
Talanta ; 276: 126215, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38723474

ABSTRACT

Antibody detection is the critical first step for tracking the spread of many diseases including COVID-19. Lateral flow immunoassay (LFIA) is the most commonly used method for rapid antibody detection because it is easy-to-use and inexpensive. However, LFIA has limited sensitivity when gold nanoparticles (AuNPs) are used as the signals. In this study, the endospores of Bacillus subtilis were used in combination with AuNP in a LFIA to detect antibodies. The endospores serve as a signal amplifier. The detection limit was about 10-8 M for anti-beta galactosidase antibody detection whereas the detection limit of conventional LFIA is about 10-6 M. Furthermore, the proposed methods have no additional user steps compared with the traditional LFIA. This method, therefore, improved the sensitivity 100-fold without compromising any advantages of LFIA. We believe that the proposed method will be useful for detection of antibodies against HIV, Zika virus, SARS-CoV-2, and so on.


Subject(s)
Bacillus subtilis , Gold , Limit of Detection , Metal Nanoparticles , Bacillus subtilis/immunology , Immunoassay/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Spores, Bacterial/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Zika Virus/immunology
6.
PeerJ ; 11: e15337, 2023.
Article in English | MEDLINE | ID: mdl-37483985

ABSTRACT

To assess the immune potential of spiders, in the present study juvenile and adult females of Parasteatoda tepidariorum were exposed to Bacillus subtilis infection, injury by a nylon monofilament and a combination of both. The expression level of selected immune-related genes: defensin 1 (PtDEF1), lysozyme 1 (PtLYS1), lysozyme C (PtLYSC), lysozyme M1 (PtLYSM1), autophagy-related protein 101 (PtATG101), dynamin (PtDYN) and heat shock proteins (HSP70) (PtHSPB, PtHSPB2A, PtHSPB2B), production of lysozyme and HSP70 proteins, and hemocytes viability were measured. The obtained results indicated expression of the lysozyme, autophagy-related protein and HSP70 genes in both ontogenetic stages of P. tepidariorum. It has been also shown that the simultaneous action of mechanical and biological factors causes higher level of lysozyme and HSP70, cell apoptosis intensity and lower level of hemocytes viability than in the case of exposure to a single immunostimulant. Moreover, mature females showed stronger early immune responses compared to juveniles.


Subject(s)
Bacillus subtilis , Foreign Bodies , Spiders , Animals , Female , Bacillus subtilis/immunology , Foreign Bodies/immunology , Spiders/genetics , Spiders/immunology , Spiders/microbiology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Age Factors , Gene Expression Regulation/immunology , Apoptosis/immunology , Hemocytes/immunology
7.
J Food Biochem ; 46(2): e14046, 2022 02.
Article in English | MEDLINE | ID: mdl-34997586

ABSTRACT

Bacillus subtilis BN strain (BN strain) was isolated from natto, a traditional Japanese fermented soybean food product. The present study investigated the Th1 responses of the BN strain on a mouse macrophage cell line, J774.1. In cell cultures, the BN strain (spore cell cultured in Schaeffer's sporulation media) significantly increased the production of interleukin (IL-)12 protein. The BN strain induced the mRNA expression of M1 polarization genes, such as inducible nitric oxide synthase and IL-12p40 mRNA, and suppressed the mRNA expression of intracellular marker genes of M2 polarization, such as arginase 1 mRNA. The BN strain downregulated the mRNA expression of Toll-like receptor 4 (TLR4), while it upregulated the mRNA expression of TLR2, MyD88, and nuclear factor kappa B (NF-κB). The production of IL-12 protein induced by the BN strain was decreased by inhibitors of MyD88, NF-κB, and IκB kinase. Moreover, the production of IL-12 was strongly suppressed by neutralizing antibody against TLR2. These results suggest that the BN strain promotes Th1 response via TLR2 signal in mouse M1 macrophage. PRACTICAL APPLICATIONS: Bacillus subtilis is known to have beneficial effects for the host. B. subtilis BN stain (BN strain) was isolated from natto, a traditional Japanese fermented soybean food product. The effects of the BN strain on the Th1 response in macrophage cell cultures were investigated in this work. We found that the spore cells of BN strain promoted the production of Th1-type cytokine, and induced macrophage M1 polarization via Toll-like receptor 2. This study can serve as a significant reference for the development of functional food and feed with immunostimulatory effects. Over time, new food and feed products containing the BN strain may emerge, such as Juice, powder, and tablet.


Subject(s)
Bacillus subtilis , Macrophage Activation , Th1 Cells/immunology , Toll-Like Receptor 2 , Adjuvants, Immunologic , Animals , Bacillus subtilis/immunology , Cell Polarity , Fermented Foods/microbiology , Macrophages , Mice , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Soy Foods/microbiology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism
9.
Cells ; 10(9)2021 08 31.
Article in English | MEDLINE | ID: mdl-34571913

ABSTRACT

Immunological memory is a cardinal feature of the immune system. The intestinal mucosa is the primary exposure and entry site of infectious organisms. For an effective and long-lasting safeguard, a robust immune memory system is required, especially by the mucosal immunity. It is well known that tissue-resident memory T cells (Trms) provide a first response against infections reencountered at mucosal tissues surfaces, where they accelerate pathogen clearance. However, their function in intestinal immunization remains to be investigated. Here, we report enhanced local mucosal and systemic immune responses through oral administration of H9N2 influenza whole inactivated virus (H9N2 WIV) plus Bacillus subtilis spores. Subsequently, H9N2 WIV plus spores led to the generation of CD103+ CD69+ Trms, which were independent of circulating T cells during the immune period. Meanwhile, we also found that Bacillus subtilis spores could stimulate Acrp30 expression in 3T3-L1 adipocytes. Moreover, spore-stimulated adipocyte supernatant also upregulated the expression of intercellular adhesion molecule-1 (ICAM1) in dendritic cells (DCs). Furthermore, the proportion of HA-tetramer+ cells was severely curtailed upon suppressed ICAM1 expression, which also depended on HA-loaded DCs. Taken together, our data demonstrated that spore-promoted H9N2 WIV induced an immune response by enhancing Trms populations, which were associated with the activation of ICAM1 in DCs.


Subject(s)
Bacillus subtilis/immunology , Dendritic Cells/immunology , Immunologic Memory/immunology , Intercellular Adhesion Molecule-1/metabolism , Intestinal Mucosa/immunology , Spores, Bacterial/immunology , T-Lymphocytes/immunology , Adjuvants, Immunologic , Animals , Antibodies, Viral/immunology , Immunization , Influenza A Virus, H9N2 Subtype/immunology , Intercellular Adhesion Molecule-1/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
10.
J Immunol ; 206(9): 2101-2108, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33846225

ABSTRACT

Acute graft-versus-host disease (aGvHD) is a severe, often lethal, complication of hematopoietic stem cell transplantation, and although prophylactic regimens are given as standard pretransplantation therapy, up to 60% of these patients develop aGvHD, and require additional immunosuppressive intervention. We treated mice with a purified probiotic molecule, exopolysaccharide (EPS) from Bacillus subtilis, shortly before and after induction of aGvHD and found that, whereas only 10% of control mice survived to day 80, 70% of EPS-treated mice survived to 80 d. EPS treatment of donor-only mice resulted in ∼60% survival. Using a biosensor mouse model to assess inflammation in live mice during aGvHD, we found that EPS prevented the activation of alloreactive donor T cells. In vitro, EPS did not affect T cells directly but, instead, induced bone marrow-derived dendritic cells (BMDCs) that displayed characteristics of inhibitory dendritic cells (DCs). Development of these BMDCs required TLR4 signaling through both MyD88 and TRIF pathways. Using BMDCs derived from IDO knockout mice, we showed that T cell inhibition by EPS-treated BMDCs was mediated through the suppressive effects of IDO. These studies describe a bacterial molecule that modulates immune responses by inducing inhibitory DCs in a TLR4-dependent manner, and these cells have the capacity to inhibit T cell activation through IDO. We suggest that EPS or EPS-treated DCs can serve as novel agents for preventing aGvHD.


Subject(s)
Bacillus subtilis/chemistry , Graft vs Host Disease/immunology , Polysaccharides, Bacterial/immunology , Animals , Bacillus subtilis/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
11.
Dev Comp Immunol ; 119: 104037, 2021 06.
Article in English | MEDLINE | ID: mdl-33545212

ABSTRACT

Bacillus subtilis subsp. subtilis G7 was isolated from a deep-sea hydrothermal vent and is pathogenic to pathogenic to fish (Japanese flounder) and mice. G7 is able to survive in host sera and phagocytes. In this study, we investigated the underlying mechanism of G7 serum resistance. We found that (i) the remaining complement activity was very low in G7-incubated flounder serum but high in G7-incubated mouse serum; (ii) cleaved C3 and C5 components were detected on flounder serum-incubated G7 but not on mouse serum-incubated G7; (iii) abundant uncleaved C5 was localized in G7-incubated mouse, but not flounder, serum; (iv) G7-incubated flounder, but not mouse, serum exhibited strong chemotactic activity; (v) pre-treatment with low-dose lysozyme abolished the serum resistance of G7. Hence, G7 activates flounder complement but is protected from complement-mediated destruction by its cell wall structure, while G7 prevents the activation of mouse complement. These results indicate that G7 employs different mechanisms to avoid the complement killing of different hosts.


Subject(s)
Bacillaceae Infections/immunology , Bacillus subtilis/immunology , Complement System Proteins/immunology , Fish Diseases/immunology , Flounder/immunology , Immune Evasion/immunology , Animals , Bacillaceae Infections/blood , Bacillaceae Infections/microbiology , Bacillus subtilis/isolation & purification , Bacillus subtilis/pathogenicity , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Fish Diseases/microbiology , Flounder/blood , Flounder/microbiology , Host-Pathogen Interactions/immunology , Hydrothermal Vents/microbiology , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Virulence/immunology
12.
Sci Rep ; 11(1): 64, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420211

ABSTRACT

Mammalian peptidoglycan recognition proteins (PGRPs or PGLYRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. Tn-seq screening of Bacillus subtilis transposon insertion library revealed that mutants in the shikimate pathway of chorismate synthesis had high survival following PGLYRP4 treatment. Deletion mutants for these genes had decreased amounts of menaquinone (MK), increased resistance to killing, and attenuated depletion of thiols following PGLYRP4 treatment. These effects were reversed by MK or reproduced by inhibiting MK synthesis. Deletion of cytochrome aa3-600 or NADH dehydrogenase (NDH) genes also increased B. subtilis resistance to PGLYRP4-induced killing and attenuated thiol depletion. PGLYRP4 treatment also inhibited B. subtilis respiration. Similarly in Escherichia coli, deletion of ubiquinone (UQ) synthesis, formate dehydrogenases (FDH), NDH-1, or cytochrome bd-I genes attenuated PGLYRP4-induced thiol depletion. PGLYRP4-induced low level of cytoplasmic membrane depolarization in B. subtilis and E. coli was likely not responsible for thiol depletion. Thus, our results show that the respiratory electron transport chain components, cytochrome aa3-600, MK, and NDH in B. subtilis, and cytochrome bd-I, UQ, FDH-O, and NDH-1 in E. coli, are required for both PGLYRP4-induced killing and thiol depletion and indicate conservation of the PGLYRP4-induced thiol depletion and killing mechanisms in Gram-positive and Gram-negative bacteria.


Subject(s)
Bacillus subtilis/metabolism , Carrier Proteins/metabolism , Electron Transport , Escherichia coli/metabolism , Sulfhydryl Compounds/metabolism , Bacillus subtilis/immunology , Electron Transport/physiology , Escherichia coli/immunology , Immunity, Innate , Metabolic Networks and Pathways , Oxygen Consumption , Shikimic Acid/metabolism , Transcriptome
13.
Int J Mol Sci ; 21(18)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933117

ABSTRACT

Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the intestine and produce toxins that enhance an immune response that perpetuate the disease. Therefore, spores are major players of the infection and ideal targets for new therapies. In this context, spore surface proteins of C. difficile, are potential antigens for the development of vaccines targeting C. difficile spores. Here, we report that the C-terminal domain of the spore surface protein BclA3, BclA3CTD, was identified as an antigenic epitope, over-produced in Escherichia coli and tested as an immunogen in mice. To increase antigen stability and efficiency, BclA3CTD was also exposed on the surface of B. subtilis spores, a mucosal vaccine delivery system. In the experimental conditions used in this study, free BclA3CTD induced antibody production in mice and attenuated some C. difficile infection symptoms after a challenge with the pathogen, while the spore-displayed antigen resulted less effective. Although dose regimen and immunization routes need to be optimized, our results suggest BclA3CTD as a potentially effective antigen to develop a new vaccination strategy targeting C. difficile spores.


Subject(s)
Bacterial Proteins/immunology , Clostridioides difficile/immunology , Enterocolitis, Pseudomembranous/immunology , Immunoglobulin G/immunology , Nasal Mucosa/immunology , Spores, Bacterial/immunology , Animals , Antigens/immunology , Bacillus subtilis/immunology , Enterocolitis, Pseudomembranous/microbiology , Epitopes/immunology , Female , Immunization/methods , Male , Mice , Mice, Inbred C57BL , Nasal Mucosa/microbiology , Vaccination/methods
14.
BMC Vet Res ; 16(1): 259, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32723323

ABSTRACT

BACKGROUND: Bacillus anthracis is the causative agent of anthrax, a disease of both humans and various animal species, and can be used as a bioterror agent. Effective vaccines are available, but those could benefit from improvements, including increasing the immunity duration, reducing the shot frequency and adverse reactions. In addition, more sophisticated antigen delivery and potentiation systems are urgently required. The protective antigen (PA), one of three major virulence factors associated with anthrax was displayed on the surface of Bacillus subtilis spores, which is a vaccine production host and delivery vector with several advantages such as a low production cost, straightforward administration as it is safe for human consumption and the particulate adjuvanticity. Mice were immunized orally (PO), intranasally (IN), sublingually (SL) or intraperitoneally (IP) with the PA displaying probiotic spore vaccine. Clinical observation, serological analysis and challenge experiment were conducted to investigate the safety and efficacy of the vaccine. RESULTS: A/J mice immunized with the PA spore vaccine via PO, IN, SL, and IP were observed to have increased levels of active antibody titer, isotype profiles and toxin neutralizing antibody in sera, and IgA in saliva. The immunized mice were demonstrated to raise protective immunity against the challenge with lethal B. anthracis spores. CONCLUSIONS: In this study, we developed a B. subtilis spore vaccine that displays the PA on its surface and showed that the PA-displaying spore vaccine was able to confer active immunity to a murine model based on the results of antibody isotype titration, mucosal antibody identification, and a lethal challenge experiment.


Subject(s)
Anthrax Vaccines/pharmacology , Antigens, Bacterial/immunology , Bacillus subtilis/immunology , Bacterial Toxins/immunology , Animals , Anthrax/prevention & control , Anthrax Vaccines/administration & dosage , Antibodies, Neutralizing/blood , Bacillus anthracis , Immunization , Immunoglobulin A , Male , Mice , Saliva/immunology , Spores, Bacterial/immunology , Vaccines, Synthetic
15.
Parasitology ; 147(10): 1080-1087, 2020 09.
Article in English | MEDLINE | ID: mdl-32404215

ABSTRACT

Clonorchis sinensis (C. sinensis) is one of the most serious food-borne parasites, which can lead to liver fibrosis or cholangiocarcinoma. Effective measures for clonorchiasis prevention are still urgently needed. Bacillus subtilis (B. subtilis) is an effective antigen delivery platform for oral vaccines. Chonorchis sinensis serpin (CsSerpin) was proved to be potential vaccine candidates. In this study, CsSerpin3 was displayed on the surface of B. subtilis spore and recombinant spores were orally administrated to BALB/C mice. CsSerpin3-specific IgA levels in faecal, bile and intestinal mucous increased at 4-8 weeks after the first administration compared with those in control groups. The mucus production and the number of goblet cells in intestinal mucosa elevated in B.s-CotC-CsSerpin3 (CotC, coat protein of B. subtilis spore) spores treated group compared to those in blank control. No significant difference in the activities of glutamic-pyruvic transaminase/ alanine aminotransferase and glutamic oxalacetic transaminase/aspartate aminotransferase were observed between groups. There was no side effect inflammation and observable pathological damage in the liver tissue of mice after administration. Moreover, collagen deposition and Ishak score were statistically reduced in B.s-CotC-CsSerpin3 spores treated mice. In conclusion, B. subtilis spores displaying CsSerpin3 could be investigated further as an oral vaccine against clonorchiasis.


Subject(s)
Bacillus subtilis/immunology , Clonorchiasis/prevention & control , Clonorchis sinensis/immunology , Foodborne Diseases/prevention & control , Helminth Proteins/immunology , Serpins/immunology , Vaccines/pharmacology , Animals , Humans , Mice , Mice, Inbred BALB C , Microorganisms, Genetically-Modified , Spores, Bacterial/immunology
16.
Microb Cell Fact ; 19(1): 42, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32075660

ABSTRACT

BACKGROUND: Spore-forming bacteria of the Bacillus genus are widely used probiotics known to exert their beneficial effects also through the stimulation of the host immune response. The oral delivery of B. toyonensis spores has been shown to improve the immune response to a parenterally administered viral antigen in mice, suggesting that probiotics may increase the efficiency of systemic vaccines. We used the C fragment of the tetanus toxin (TTFC) as a model antigen to evaluate whether a treatment with B. toyonensis spores affected the immune response to a mucosal antigen. RESULTS: Purified TTFC was given to mice by the nasal route either as a free protein or adsorbed to B. subtilis spores, a mucosal vaccine delivery system proved effective with several antigens, including TTFC. Spore adsorption was extremely efficient and TTFC was shown to be exposed on the spore surface. Spore-adsorbed TTFC was more efficient than the free antigen in inducing an immune response and the probiotic treatment improved the response, increasing the production of TTFC-specific secretory immunoglobin A (sIgA) and causing a faster production of serum IgG. The analysis of the induced cytokines indicated that also the cellular immune response was increased by the probiotic treatment. A 16S RNA-based analysis of the gut microbial composition did not show dramatic differences due to the probiotic treatment. However, the abundance of members of the Ruminiclostridium 6 genus was found to correlate with the increased immune response of animals immunized with the spore-adsorbed antigen and treated with the probiotic. CONCLUSION: Our results indicate that B. toyonensis spores significantly contribute to the humoral and cellular responses elicited by a mucosal immunization with spore-adsorbed TTFC, pointing to the probiotic treatment as an alternative to the use of adjuvants for mucosal vaccinations.


Subject(s)
Bacillus/immunology , Immunity, Mucosal , Probiotics/therapeutic use , Spores, Bacterial/immunology , Tetanus Toxin/administration & dosage , Administration, Intranasal , Animals , Bacillus subtilis/immunology , Immunization , Male , Mice , Mice, Inbred C57BL
17.
Appl Environ Microbiol ; 86(8)2020 04 01.
Article in English | MEDLINE | ID: mdl-32060024

ABSTRACT

There is a growing need for a highly stable system to allow the production of biologics for diagnoses and therapeutic interventions on demand that could be used in extreme environments. Among the variety of biologics, nanobodies (Nbs) derived from single-chain variable antibody fragments from camelids have attracted great attention in recent years due to their small size and great stability with translational potentials in whole-body imaging and the development of new drugs. Intracellular expression using the bacterium Escherichia coli has been the predominant system to produce Nbs, and this requires lengthy steps for releasing intracellular proteins for purification as well as removal of endotoxins. Lyophilized, translationally competent cell extracts have also been explored as offering portability and long shelf life, but such extracts may be difficult to scale up and suffer from batch-to-batch variability. To address these problems, we present a new system to do the following: (i) engineer the spore-forming bacterium Bacillus subtilis to secrete Nbs that can target small molecules or protein antigens on mammalian cells, (ii) immobilize Nbs containing a cellulose-binding domain on a cellulose matrix for long-term storage and small-molecule capturing, (iii) directly use Nb-containing bacterial supernatant fluid to perform protein detection on cell surfaces, and (iv) convert engineered B. subtilis to spores that are resistant to most environmental extremes. In summary, our work may open a new paradigm for using B. subtilis as an extremely stable microbial factory to produce Nbs with applications in extreme environments on demand.IMPORTANCE It is highly desirable to produce biologics for diagnoses and therapeutic interventions on demand that could be used in a variety of settings. Among the many biologics, Nbs have attracted attention due to their small size, thermal stability, and broad utility in diagnoses, therapies, and fundamental research. Nbs originate from antibodies found in camelids, and >10 companies have invested in Nbs as potential drugs. Here, we present a system using cells of the bacterium Bacillus subtilis as a versatile platform for production of Nbs and then antigen detection via customized affinity columns. Importantly, B. subtilis carrying engineered genes for Nbs can form spores, which survive for years in a desiccated state. However, upon rehydration and exposure to nutrients, spores rapidly transition to growing cells which secrete encoded Nbs, thus allowing their manufacture and purification.


Subject(s)
Bacillus subtilis/immunology , Bioengineering , Single-Domain Antibodies/biosynthesis
18.
J Immunol ; 204(5): 1263-1273, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31932496

ABSTRACT

The poly-γ-glutamic acid (PGA) capsule produced by Bacillus anthracis is composed entirely of d-isomer glutamic acid, whereas nonpathogenic Bacillus species produce mixed d-, l-isomer PGAs. To determine if B. anthracis PGA confers a pathogenic advantage over other PGAs, we compared the responses of human innate immune cells to B. anthracis PGA and PGAs from nonpathogenic B. subtilis subsp. chungkookjang and B. licheniformis Monocytes and immature dendritic cells (iDCs) responded differentially to the PGAs, with B. anthracis PGA being least stimulatory and B. licheniformis PGA most stimulatory. All three elicited IL-8 and IL-6 from monocytes, but B. subtilis PGA also elicited IL-10 and TNF-α, whereas B. licheniformis PGA elicited all those plus IL-1ß. Similarly, all three PGAs elicited IL-8 from iDCs, but B. subtilis PGA also elicited IL-6, and B. licheniformis PGA elicited those plus IL-12p70, IL-10, IL-1ß, and TNF-α. Only B. licheniformis PGA induced dendritic cell maturation. TLR assays also yielded differential results. B. subtilis PGA and B. licheniformis PGA both elicited more TLR2 signal than B. anthracis PGA, but only responses to B. subtilis PGA were affected by a TLR6 neutralizing Ab. B. licheniformis PGA elicited more TLR4 signal than B. anthracis PGA, whereas B. subtilis PGA elicited none. B. anthracis PGA persisted longer in high m.w. form in monocyte and iDC cultures than the other PGAs. Reducing the m.w. of B. anthracis PGA reduced monocytes' cytokine responses. We conclude that B. anthracis PGA is recognized less effectively by innate immune cells than PGAs from nonpathogenic Bacillus species, resulting in failure to induce a robust host response, which may contribute to anthrax pathogenesis.


Subject(s)
Bacillus anthracis/immunology , Bacillus licheniformis/immunology , Bacillus subtilis/immunology , Dendritic Cells/immunology , Immunity, Innate , Macrophages/immunology , Monocytes/immunology , Polyglutamic Acid/immunology , Cytokines/immunology , Female , Humans , Male
19.
J Mol Model ; 25(11): 337, 2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31705312

ABSTRACT

Nattokinase is an enzyme produced by Bacillus subtilis subsp. natto that contains strong fibrinolytic activity. It has potential to treat cardiovascular diseases. In silico analysis revealed that nattokinase is considered as an antigen, thus hindering its application for injectable therapeutic protein. Various web servers were used to predict B-cell epitopes of nattokinase both continuously and discontinuously to determine which amino acid residues had been responsible for the immunogenicity. With the exclusion of the predicted conserved amino acids, four amino acids such as S18, Q19, T242, and Q245 were allowed for mutation. Substitution mutation was done to lower the immunogenicity of native nattokinase. Through the stability of the mutated protein with the help of Gibbs free energy difference, the proposed mutein was S18D, Q19I, T242Y, and Q245W. The 3D model of the mutated nattokinase was modeled and validated with various tools. Physicochemical properties and stability analysis of the protein indicated that the mutation brought higher stability without causing any changes in the catalytic site of nattokinase. Molecular dynamics simulation implied that the mutation indicated similar stability, conformation, and behavior compared to the native nattokinase. These results are highly likely to contribute to the wet lab experiment to develop safer nattokinase.


Subject(s)
Antibody Formation/immunology , Bacillus subtilis/immunology , Bacterial Proteins/immunology , Mutagenesis/immunology , Subtilisins/immunology , Catalytic Domain/immunology , Molecular Dynamics Simulation , Mutation/immunology
20.
Biosci Rep ; 39(10)2019 10 30.
Article in English | MEDLINE | ID: mdl-31492763

ABSTRACT

Mycoplasma hyopneumoniae (M. hyopneumoniae) is the pathogen of swine enzootic pneumonia, a chronic respiratory disease affecting pigs of all ages. The ciliated epithelial cells of the respiratory tract are the main target invaded and colonized by M. hyopneumoniae. Therefore, the ideal vaccine would be mucosally administered and able to stimulate suitable mucosal immunity and prevent the adherence of pathogens to mucosal cell surfaces. Currently, Bacillus subtilis as a recombinant vaccine carrier has been used for antigen delivery and proved to be effectively enhancing the innate immunity of nasal mucosa. Here, our study attempts to construct recombinant Bacillus subtilis (B.S-P97R1, B.S-P46), which can express the P97R1 or P46 antigen of M. hyopneumoniae, and to evaluate the immune responses in BALB/c mice. Initially, we respectively successfully constructed recombinant B.S-P97R1, B.S-P46 and validated the expression of antigen proteins by Western analysis. Then, recombinant B.S-P97R1 or B.S-P46 were respectively intranasally (i.n.) immunized in mice. Both strong P97R1-specific and P46-specific immunoglobulin G (IgG), secretory immunoglobulin A (SIgA) antibodies were induced in sera, bronchoalveolar lavage fluids (BALs) by ELISA analysis. Moreover, the levels of specific IL-4, IFN-γ in the immunized mice were elevated, and the proliferation of lymphocytes was also enhanced. In general, intranasal inoculation of recombinant B.S-P97R1 or B.S-P46 resulted in strong mucosal immunity, cell-mediated and humoral immunity, which was a mixed Th1/Th2-type response. In addition, our results provided a potential novel strategy that may be applied to the development of vaccines against M. hyopneumoniae.


Subject(s)
Adhesins, Bacterial/immunology , Bacillus subtilis/immunology , Bacterial Proteins/immunology , Immunity, Mucosal/immunology , Immunity/immunology , Immunization/methods , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Administration, Intranasal , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice, Inbred BALB C , Mycoplasma hyopneumoniae/genetics , Mycoplasma hyopneumoniae/immunology , Mycoplasma hyopneumoniae/metabolism , Pneumonia of Swine, Mycoplasmal/immunology , Pneumonia of Swine, Mycoplasmal/microbiology , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...