Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 183: 1346-1351, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34004200

ABSTRACT

Anti-idiotypic antibody technique is a new approach for the rapid development of insecticidal protein. In this study, anti-Cry1A polyclonal antibodies were used as antigen to screen the anti-idiotypic antibody that can simulate Cry1A toxins from a phage display human domain antibody (DAB) library. After four rounds of panning, five positive clones that have binding activities with anti-Cry1A polyclonal antibodies were obtained. Indirect competitive ELISA (IC-ELISA) results showed that the positive clone D6 showed significant inhibition for the binding of Cry1A toxins with anti-Cry1A polyclonal antibodies, and the inhibition ratio increased with the increase of D6 content. While, B3, F4, G5, C7 and the controls showed no obvious inhibition to Cry1A toxins. The results suggest that D6 is the "ß" subtype anti-idiotypic antibody, which can simulate Cry1A toxins and competitive binding with anti-Cry1A polyclonal antibodies. Meanwhile, D6 had certain binding activity with the brush border membrane vesicles (BBMV) of p. xylostella, which was the receptor of Cry1A toxins. The results of bioassay showed that D6 had certain insecticidal activity, and the lethal concentration of 50% (LC50) was 976 ng/cm2. This study provides basic materials and experience for the development of Cry toxin simulants.


Subject(s)
Bacillus thuringiensis Toxins/immunology , Endotoxins/immunology , Hemolysin Proteins/immunology , Peptide Library , Bacterial Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Humans
2.
Anal Biochem ; 625: 114222, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33932355

ABSTRACT

The anti-idiotypic antibody is widely used in the field of immunology to simulate structural features or even induce the biological activity of antigens. In this study, we obtained seven anti-idiotypic single-chain variable fragments (scFv) antibodies of Cry2Aa toxin from a phage-displayed mutant library constructed using error-prone PCR technique. A mutant designated 2-12B showed the best binding ability amongst all anti-idiotypic scFv isolates to Plutella xylostella brush border membrane vesicles (BBMVs). 2-12B and Cry2Aa toxin shared a potential receptor of polycalin in P. xylostella BBMVs. Homology modeling and molecular docking demonstrated that 2-12B and Cry2Aa toxin have seven common binding amino acid residues in polycalin. Insect bioassay results suggested that 2-12 had insecticidal efficacy against P. xylostella larvae. These results indicated that the Cry2Aa anti-idiotypic scFv antibody 2-12B partially mimicked the structure and function of Cry2Aa toxin. The anti-idiotypic scFv antibody provides the basic material for the future study of surrogate molecules or new insecticidal materials.


Subject(s)
Antibodies, Anti-Idiotypic/chemistry , Antibodies, Monoclonal/chemistry , Bacillus thuringiensis Toxins/chemistry , Endotoxins/chemistry , Hemolysin Proteins/chemistry , Immunoglobulin Variable Region/chemistry , Single-Chain Antibodies/chemistry , Animals , Antibodies, Anti-Idiotypic/genetics , Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/metabolism , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Bacillus thuringiensis Toxins/immunology , Bacillus thuringiensis Toxins/metabolism , Cell Membrane/metabolism , Endotoxins/immunology , Endotoxins/metabolism , Hemolysin Proteins/immunology , Hemolysin Proteins/metabolism , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Molecular Docking Simulation , Moths , Mutation , Peptide Library , Protein Conformation , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism
3.
Dev Comp Immunol ; 121: 104071, 2021 08.
Article in English | MEDLINE | ID: mdl-33766585

ABSTRACT

The insecticidal Bacillus thuringiensis protein Cry1Ac is produced as a protoxin and becomes activated to a toxin when ingested by larvae. Both proteins are immunogenic and able to activate macrophages. The proposed mechanism of immunostimulation by Cry1Ac protoxin has been related to its capacity to activate antigen-presenting cells (APC), but its ability to activate dendritic cells (DC) has not been explored. Here we evaluated, in the popliteal lymph nodes (PLN), spleen and peritoneum, the activation of DC CD11c+ MHC-II+ following injection with single doses (50 µg) of Cry1Ac toxin or protoxin via the intradermal (i.d.) and intraperitoneal (i.p.) routes in C57BL/6 mice. In vivo stimulation with both Cry1Ac proteins induced activation of DC via upregulation of CD86, primarily in PLN 24 h after i. d. injection. Moreover, this activation was detected in DC, displaying CD103+, a typical marker of migratory DC, while upregulation of CD80 was uniquely induced by toxin. Tracking experiments showed that Cy5-labeled Cry1Ac proteins could rapidly reach the PLN and localize near DC, but some label remained in the footpad. When the capacity of Cry1Ac-activated DC to induce antigen presentation was examined, significant proliferation of naïve T lymphocytes was induced exclusively by the protoxin. The protoxin elicited a Th17-biased cytokine profile. Moreover, only the Cry1Ac toxin induced a pronounced proliferation of B cells from both untreated and Cry1Ac-injected mice, suggesting that it acts as a polyclonal activator. In conclusion, Cry1Ac protoxin and toxin show a distinctive capacity to activate APCs.


Subject(s)
B-Lymphocytes/immunology , Bacillus thuringiensis Toxins/immunology , Bacillus thuringiensis/immunology , Dendritic Cells/immunology , Endotoxins/immunology , Hemolysin Proteins/immunology , Animals , Antigen Presentation , B-Lymphocytes/metabolism , Bacillus thuringiensis Toxins/administration & dosage , Dendritic Cells/metabolism , Endotoxins/administration & dosage , Female , Hemolysin Proteins/administration & dosage , Lymphocyte Activation , Mice , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...