Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
Methods Mol Biol ; 2793: 131-141, 2024.
Article in English | MEDLINE | ID: mdl-38526728

ABSTRACT

Phage-nanomaterial conjugates are functional bio-nanofibers with various applications. While phage display can select for phages with desired genetically encoded functions and properties, nanomaterials can endow the phages with additional features at nanoscale dimensions. Therefore, combining phages with nanotechnology can construct bioconjugates with unique characteristics. One strategy for filamentous phages is to adsorb nanoparticles onto the side wall, composed of pVIII subunits, through electrostatic interactions. However, a noncovalent approach may cause offloading if the environment changes, potentially causing side effects especially for in vivo applications. Therefore, building stable phage-bioconjugates is an important need. We previously reported the construction of chimeric M13 phage conjugated with gold nanorods, named "phanorods," without weakening the binding affinity to the bacterial host cells. Herein, we give a detailed protocol for preparing the chimeric M13 phage and covalently conjugating gold nanorods to the phage.


Subject(s)
Inovirus , Nanotubes , Bacteriophage M13/metabolism , Gold/chemistry , Cell Surface Display Techniques/methods
2.
Commun Biol ; 7(1): 134, 2024 01 27.
Article in English | MEDLINE | ID: mdl-38280942

ABSTRACT

Oligomeric clusters of amyloid-ß (Aß) are one of the major biomarkers for Alzheimer's disease (AD). However, proficient methods to detect Aß-oligomers in brain tissue are lacking. Here we show that synthetic M13 bacteriophages displaying Aß-derived peptides on their surface preferentially interact with Aß-oligomers. When exposed to brain tissue isolated from APP/PS1-transgenic mice, these bacteriophages detect small-sized Aß-aggregates in hippocampus at an early age, prior to the occurrence of Aß-plaques. Similarly, the bacteriophages reveal the presence of such small Aß-aggregates in post-mortem hippocampus tissue of AD-patients. These results advocate bacteriophages displaying Aß-peptides as a convenient and low-cost tool to identify Aß-oligomers in post-mortem brain tissue of AD-model mice and AD-patients.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Mice , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Bacteriophage M13/metabolism , Mice, Transgenic , Brain/metabolism
3.
Chemistry ; 29(63): e202302261, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37638672

ABSTRACT

Although phage display selection using a library of M13 bacteriophage has become a powerful tool for finding peptides that bind to target materials on demand, a remaining concern of this method is the interference by the M13 main body, which is a huge filament >103  times larger than the displayed peptide, and therefore would nonspecifically adhere to the target or sterically inhibit the binding of the displayed peptide. Meanwhile, filamentous phages are known to be orientable by an external magnetic field. If M13 filaments are magnetically oriented during the library selection, their angular arrangement relative to the target surface would be changed, being expected to control the interference by the M13 main body. This study reports that the magnetic orientation of M13 filaments vertical to the target surface significantly affects the selection. When the target surface was affinitive to the M13 main body, this orientation notably suppressed the nonspecific adhesion. Furthermore, when the target surface was less affinitive to the M13 main body and intrinsically free from the nonspecific adhesion, this orientation drastically changed the population of M13 clones obtained through library selection. The method of using no chemicals but only a physical stimulus is simple, clean, and expected to expand the scope of phage display selection.


Subject(s)
Cell Surface Display Techniques , Peptide Library , Peptides/metabolism , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , Magnetic Phenomena
4.
Macromol Rapid Commun ; 44(16): e2200896, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36703485

ABSTRACT

Using the M13 phage display, a series of 7- and 12-mer peptides which interact with new sulfobetaine hydrogels are identified. Two peptides each from the 7- and 12-mer peptide libraries bind to the new sulfobetaine hydrogels with high affinity compared to the wild-type phage lacking a dedicated hydrogel binding peptide. This is the first report of peptides binding to zwitterionic sulfobetaine hydrogels and the study therefore opens up the pathway toward new phage or peptide/hydrogel hybrids with high application potential.


Subject(s)
Hydrogels , Peptides , Hydrogels/metabolism , Peptides/metabolism , Peptide Library , Bacteriophage M13/genetics , Bacteriophage M13/metabolism
5.
J Am Chem Soc ; 145(1): 300-310, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36542094

ABSTRACT

F-specific filamentous phages, elongated particles with circular single-stranded DNA encased in a symmetric protein capsid, undergo an intermediate step, where thousands of homodimers of a non-structural protein, gVp, bind to newly synthesized strands of DNA, preventing further DNA replication and preparing the circular genome in an elongated conformation for assembly of a new virion structure at the membrane. While the structure of the free homodimer is known, the ssDNA-bound conformation has yet to be determined. We report an atomic-resolution structure of the gVp monomer bound to ssDNA of fd phage in the nucleoprotein complex elucidated via magic-angle spinning solid-state NMR. The model presents significant conformational changes with respect to the free form. These modifications facilitate the binding mechanism and possibly promote cooperative binding in the assembly of the gVp-ssDNA complex.


Subject(s)
Bacteriophage M13 , DNA, Single-Stranded , Bacteriophage M13/chemistry , Bacteriophage M13/metabolism , DNA, Single-Stranded/metabolism , Nuclear Magnetic Resonance, Biomolecular , Magnetic Resonance Spectroscopy , Capsid Proteins/genetics , Capsid Proteins/metabolism , DNA, Viral/genetics
6.
Small ; 18(51): e2203962, 2022 12.
Article in English | MEDLINE | ID: mdl-36328708

ABSTRACT

The M13 bacteriophage (M13 phage) has emerged as an attractive bionanomaterial due to its chemistry/gene modifiable feature and unique structures. Herein, a dynamic deformable nanointerface is fabricated taking advantage of the unique feature of the M13 phage for ultrasensitive detection of pathogens. PIII proteins at the tip of the M13 phage are genetically modified to display 6His peptide for site-specific anchoring onto Ni-NTA microbeads, whereas pVIII proteins along the side of the M13 phage are orderly arranged with thousands of aptamers and their complementary strands (c-apt). The flexible M13 nanofibers with rich recognition sites act as octopus tentacles, resulting in a 19-fold improvement in the capture affinity toward the target. The competitive binding of the target pathogen releases c-apts and initiates rolling circle amplification (RCA). The sway motion of M13 nanofibers accelerates the diffusion of c-apts, thus promoting RCA efficiency. Benefiting from the strengthened capture ability toward the target and the accelerated RCA process, three-orders of magnitude improvement in the sensitivity is achieved, with a detection limit of 8 cfu mL-1 for Staphylococcus aureus. The promoted capture ability and assay performance highlights the essential role of the deformable feature of the engineered interface. This may provide inspiration for the construction of more efficient reaction interfaces.


Subject(s)
Nanofibers , Peptides , Peptides/metabolism , Bacteriophage M13/metabolism , Nanofibers/chemistry
7.
Toxins (Basel) ; 14(10)2022 10 04.
Article in English | MEDLINE | ID: mdl-36287952

ABSTRACT

With the outbreak and spread of COVID-19, a deep investigation of SARS-CoV-2 is urgent. Direct usage of this virus for scientific research could provide reliable results and authenticity. However, it is strictly constrained and unrealistic due to its high pathogenicity and infectiousness. Considering its biosafety, different systems and technologies have been employed in immunology and biomedical studies. In this study, phage display technology was used to construct a nonpathogenic model for COVID-19 research. The nucleocapsid protein of SARS-CoV-2 was fused with the M13 phage capsid p3 protein and expressed on the M13 phages. After validation of its successful expression, its potential as the standard for qPCR quantification and affinity with antibodies were confirmed, which may show the possibility of using this nonpathogenic bacteriophage to replace the pathogenic virus in scientific research concerning SARS-CoV-2. In addition, the model was used to develop a system for the classification and identification of different samples using ATR-FTIR, which may provide an idea for the development and evaluation of virus monitoring equipment in the future.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2/genetics , Cell Surface Display Techniques , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism
8.
Biomol NMR Assign ; 16(2): 181-185, 2022 10.
Article in English | MEDLINE | ID: mdl-35460051

ABSTRACT

The non-structural gene V protein (pV, gVp) from fd virus is a non-specific single-stranded DNA binding protein. The role of gVp is to sequester the single-stranded DNA thus reducing the generation of the replicative DNA form and leading to the formation of progeny phage. In this study, we assigned the 13C and 15N resonances of the crystalline unbound protein by magic-angle spinning solid-state NMR. The secondary structure predicted by the NMR shifts is in excellent agreement with the X-ray structure of the same 87-residue protein.


Subject(s)
Bacteriophage M13 , DNA, Single-Stranded , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , DNA/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular
9.
Int Immunopharmacol ; 107: 108654, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35421683

ABSTRACT

Bacteriophages are one of the viral components of the human microbiome. M13 phages have recently been considered for immunotherapy because they can be detected by immune cells and stimulated immune responses. Macrophages are essential innate immune cells that respond to stimuli and direct subsequent immune responses. Therefore, it is crucial to evaluate the immunomodulatory effect of phage on macrophage function. For this purpose, peritoneal macrophages from BALB/c and C57BL/6 mice were cultured on the M13 phage, M13 phage-RGD, gelatin-coated, and un-coated wells. Then macrophages were examined for morphological characteristics, L. arginine metabolism, redox potential, inflammatory cytokine production, and phagocytic activity after two and seven days of culture. We observed that M13 phage-coated surfaces induced anti-inflammatory cytokines production and reduced inflammatory cytokines level of BALB/c and C57BL/6 macrophages at the steady-state and post LPS stimulation. In addition, L. arginine metabolism and phagocytic activity of macrophages were directed to the M2 phenotype by induction of arginase-1 and efferocytosis in the M13 phage-containing groups, respectively. The present study confirms the M13 phage's ability to polarize macrophages toward the M2 phenotype. However, using M13 phage in treating inflammatory diseases in animal models could determine their immunotherapy capacity in the future.


Subject(s)
Bacteriophage M13 , Macrophages, Peritoneal , Animals , Anti-Inflammatory Agents/metabolism , Arginine , Bacteriophage M13/metabolism , Cytokines/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nitric Oxide/metabolism
10.
ACS Chem Biol ; 17(11): 3024-3035, 2022 11 18.
Article in English | MEDLINE | ID: mdl-34928124

ABSTRACT

Phage display links the phenotype of displayed polypeptides with the DNA sequence in the phage genome and offers a universal method for the discovery of proteins with novel properties. However, the display of large multisubunit proteins on phages remains a challenge. A majority of protein display systems are based on monovalent phagemid constructs, but methods for the robust display of multiple copies of large proteins are scarce. Here, we describe a DNA-encoded display of a ∼ 200 kDa tetrameric l-asparaginase protein on M13 and fd phages produced by ligation of SpyCatcher-Asparaginase fusion (ScA) and PEGylated-ScA (PEG-ScA) to barcoded phage clones displaying SpyTag peptide. Starting from the SpyTag display on p3 or p8 coat proteins yielded constructs with five copies of ScA displayed on p3 (ScA-p3), ∼100 copies of ScA on p8 protein (ScA-p8) and ∼300 copies of PEG-ScA on p8 protein (PEG-ScA-p8). Display constructs of different valencies and chemical modifications on protein (e.g., PEGylation) can be injected into mice and analyzed by deep sequencing of the DNA barcodes associated with phage clones. In these multiplexed studies, we observed a density and protein-dependent clearance rate in vivo. Our observations link the absence of PEGylation and increase in density of the displayed protein with the increased rate of the endocytosis by cells in vivo. In conclusion, we demonstrate that a multivalent display of l-asparaginase on phages could be used to study the circulation life of this protein in vivo, and such an approach opens the possibility to use DNA sequencing to investigate multiplexed libraries of other multisubunit proteins in vivo.


Subject(s)
Bacteriophages , Mice , Animals , Bacteriophages/genetics , Asparaginase/genetics , Proteins/metabolism , Cell Surface Display Techniques , DNA/metabolism , Peptide Library , Bacteriophage M13/genetics , Bacteriophage M13/metabolism
12.
Nucleic Acids Res ; 49(11): 6596-6603, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34110422

ABSTRACT

DNA origami requires long scaffold DNA to be aligned with the guidance of short staple DNA strands. Scaffold DNA is produced in Escherichia coli as a form of the M13 bacteriophage by rolling circle amplification (RCA). This study shows that RCA can be reconfigured by reducing phage protein V (pV) expression, improving the production throughput of scaffold DNA by at least 5.66-fold. The change in pV expression was executed by modifying the untranslated region sequence and monitored using a reporter green fluorescence protein fused to pV. In a separate experiment, pV expression was controlled by an inducer. In both experiments, reduced pV expression was correlated with improved M13 bacteriophage production. High-cell-density cultivation was attempted for mass scaffold DNA production, and the produced scaffold DNA was successfully folded into a barrel shape without compromising structural quality. This result suggested that scaffold DNA production throughput can be significantly improved by reprogramming the RCA in E. coli.


Subject(s)
Bacteriophage M13/physiology , DNA, Single-Stranded/biosynthesis , DNA-Binding Proteins/genetics , Viral Proteins/genetics , 5' Untranslated Regions , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , DNA, Single-Stranded/ultrastructure , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Mutation , Viral Proteins/metabolism , Virus Replication
13.
Nat Chem Biol ; 17(7): 806-816, 2021 07.
Article in English | MEDLINE | ID: mdl-33958792

ABSTRACT

The central dogma of biology does not allow for the study of glycans using DNA sequencing. We report a liquid glycan array (LiGA) platform comprising a library of DNA 'barcoded' M13 virions that display 30-1,500 copies of glycans per phage. A LiGA is synthesized by acylation of the phage pVIII protein with a dibenzocyclooctyne, followed by ligation of azido-modified glycans. Pulldown of the LiGA with lectins followed by deep sequencing of the barcodes in the bound phage decodes the optimal structure and density of the recognized glycans. The LiGA is target agnostic and can measure the glycan-binding profile of lectins, such as CD22, on cells in vitro and immune cells in a live mouse. From a mixture of multivalent glycan probes, LiGAs identify the glycoconjugates with optimal avidity necessary for binding to lectins on living cells in vitro and in vivo.


Subject(s)
Bacteriophage M13/chemistry , Microarray Analysis , Polysaccharides/chemistry , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , Mice , Polysaccharides/genetics , Polysaccharides/metabolism
14.
Curr Microbiol ; 78(4): 1124-1134, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33687511

ABSTRACT

Phage display is one of the important and effective molecular biology techniques and has remained indispensable for research community since its discovery in the year 1985. As a large number of nucleotide fragments may be cloned into the phage genome, a phage library may harbour millions or sometimes billions of unique and distinctive displayed peptide ligands. The ligand-receptor interactions forming the basis of phage display have been well utilized in epitope mapping and antigen presentation on the surface of bacteriophages for screening novel vaccine candidates by using affinity selection-based strategy called biopanning. This versatile technique has been modified tremendously over last three decades, leading to generation of different platforms for combinatorial peptide display. The translation of new diagnostic tools thus developed has been used in situations arising due to pathogenic microbes, including bacteria and deadly viruses, such as Zika, Ebola, Hendra, Nipah, Hanta, MERS and SARS. In the current situation of pandemic of Coronavirus disease (COVID-19), a search for neutralizing antibodies is motivating the researchers to find therapeutic candidates against novel SARS-CoV-2. As phage display is an important technique for antibody selection, this review presents a concise summary of the very recent applications of phage display technique with a special reference to progress in diagnostics and therapeutics for coronavirus diseases. Hopefully, this technique can complement studies on host-pathogen interactions and assist novel strategies of drug discovery for coronaviruses.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , Cell Surface Display Techniques/methods , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , Bacteriophage T4/genetics , Bacteriophage T4/metabolism , Bacteriophage T7/genetics , Bacteriophage T7/metabolism , Escherichia coli/genetics , Escherichia coli/virology , Humans
15.
J Pept Sci ; 27(3): e3292, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33200451

ABSTRACT

To investigate whether peptide sequences with specific translocation across the gastrointestinal barrier can be identified as drug delivery vehicles, in vivo phage display was conducted. For this purpose, a random library of 12-mer peptides displayed on M13 bacteriophage was orally administered to mice followed by recovery of the phage particles from the blood samples after three consecutive biopanning rounds. The obtained peptide sequences were analyzed using bioinformatics tools and software. The results demonstrated that M13 bacteriophage bearing peptides translocate nonspecifically across the mice intestinal mucosal barrier deduced from random distribution of amino acids in different positions of the identified peptide sequences. The most probable reason for entering the phage particles into systemic circulation after oral administration of the peptide library can be related to the nanoscale nature of their structures which provides a satisfying platform for the purpose of designing nanocarriers in pharmaceutical applications.


Subject(s)
Bacteriophage M13/metabolism , Intestinal Mucosa/metabolism , Peptides/metabolism , Administration, Oral , Animals , Drug Delivery Systems , Intestinal Mucosa/virology , Male , Mice , Peptide Library , Peptides/administration & dosage
16.
Acc Chem Res ; 53(10): 2384-2394, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33001632

ABSTRACT

The 2018 Nobel Prize in Chemistry recognized in vitro evolution, including the development by George Smith and Gregory Winter of phage display, a technology for engineering the functional capabilities of antibodies into viruses. Such bacteriophages solve inherent problems with antibodies, including their high cost, thermal lability, and propensity to aggregate. While phage display accelerated the discovery of peptide and protein motifs for recognition and binding to proteins in a variety of applications, the development of biosensors using intact phage particles was largely unexplored in the early 2000s. Virus particles, 16.5 MDa in size and assembled from thousands of proteins, could not simply be substituted for antibodies in any existing biosensor architectures.Incorporating viruses into biosensors required us to answer several questions: What process will allow the incorporation of viruses into a functional bioaffinity layer? How can the binding of a protein disease marker to a virus particle be electrically transduced to produce a signal? Will the variable salt concentration of a bodily fluid interfere with electrical transduction? A completely new biosensor architecture and a new scheme for electrical transduction of the binding of molecules to viruses were required.This Account describes the highlights of a research program launched in 2006 that answered these questions. These efforts culminated in 2018 in the invention of a biosensor specifically designed to interface with virus particles: the Virus BioResistor (VBR). The VBR is a resistor consisting of a conductive polymer matrix in which M13 virus particles are entrained. The electrical impedance of this resistor, measured across 4 orders of magnitude in frequency, simultaneously measures the concentration of a target protein and the ionic conductivity of the medium in which the resistor is immersed. Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise ratio (S/N > 100) and excellent sensor-to-sensor reproducibility. Using this new device, we have measured the urinary bladder cancer biomarker nucleic acid deglycase (DJ-1) in urine samples. This optimized VBR is characterized by extremely low sensor-to-sensor coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a limit of quantitation of 30 pM, encompassing 4 orders of magnitude in concentration.


Subject(s)
Bacteriophage M13/isolation & purification , Biosensing Techniques/methods , Antibodies/immunology , Bacteriophage M13/chemistry , Bacteriophage M13/immunology , Bacteriophage M13/metabolism , Biomarkers, Tumor/urine , Biosensing Techniques/instrumentation , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electrodes , Humans , Limit of Detection , Nanowires/chemistry , Neoplasms/diagnosis , Peptide Library , Polymers/chemistry , Protein Deglycase DJ-1/urine , Quartz Crystal Microbalance Techniques , Reproducibility of Results , Signal-To-Noise Ratio
17.
Adv Mater ; 32(29): e2001260, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32495365

ABSTRACT

Antiangiogenesis is a promising approach to cancer therapy but is limited by the lack of tumor-homing capability of the current antiangiogenic agents. Angiogenin, a protein overexpressed and secreted by tumors to trigger angiogenesis for their growth, has never been explored as an antiangiogenic target in cancer therapy. Here it is shown that filamentous fd phage, as a biomolecular biocompatible nanofiber, can be engineered to become capable of first homing to orthotopic breast tumors and then capturing angiogenin to prevent tumor angiogenesis, resulting in targeted cancer therapy without side effects. The phage is genetically engineered to display many copies of an identified angiogenin-binding peptide on its side wall and multiple copies of a breast-tumor-homing peptide at its tip. Since the tumor-homing peptide can be discovered and customized virtually toward any specific cancer by phage display, the angiogenin-binding phages are thus universal "plug-and-play" tumor-homing cancer therapeutics.


Subject(s)
Bacteriophage M13/genetics , Breast Neoplasms/therapy , Genetic Engineering , Neovascularization, Pathologic/genetics , Bacteriophage M13/metabolism , Breast Neoplasms/blood supply , Breast Neoplasms/genetics , Cell Line, Tumor , Humans , Molecular Targeted Therapy , Neovascularization, Pathologic/metabolism , Peptide Library , Ribonuclease, Pancreatic/metabolism
18.
Methods Mol Biol ; 2136: 255-268, 2020.
Article in English | MEDLINE | ID: mdl-32430827

ABSTRACT

High-affinity monoclonal antibodies are valuable tools for studying the humoral immune response to Group A Streptococcus (GAS) antigens. This protocol describes a method for the selection of monoclonal antibody fragments that bind to GAS antigens using either naïve or immune repertoires displayed on the surface of M13 bacteriophage. Clones that specifically bind to GAS antigens are enriched for during the biopanning process, in which antibody-phage clones bind to an immobilized GAS antigen and are then washed, eluted, and amplified for subsequent rounds of selection. After the final round of biopanning, individual clones are screened by phage enzyme-linked immunosorbent assay (ELISA), and unique clones are identified by DNA fingerprinting and sequencing. The isolated monoclonal antibodies can be used to explore antibody-antigen interactions in molecular detail and provide insight into the protective mechanisms from GAS infection.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Cell Surface Display Techniques/methods , Streptococcus pyogenes/immunology , Antibodies, Monoclonal/immunology , Antigens , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Immunity, Humoral/immunology , Immunoglobulin Fragments/immunology , Peptide Library
19.
Adv Mater ; 31(52): e1905577, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31736175

ABSTRACT

Hierarchically assembled nanomaterials can find a variety of applications in medicine, energy, and electronics. Here, an automatically controlled dip-pulling method is developed and optimized to generate an unprecedented ordered nano-to-micro hierarchical nanoridge-in-microridge (NiM) structure from a bacteria-specific human-safe virus, the filamentous phage with or without genetically displaying a foreign peptide. The NiM structure is pictured as a window blind with each lath (the microridge) made of parallel phage bundles (the nanoridges). It is independent of the substrate materials supporting it. Surprisingly, it can induce the bidirectional differentiation of stem cells into neurons and astrocytes within a short timeframe (only 8 d) not seen before, which is highly desired because both neurons and astrocytes are needed simultaneously in treating neurodegenerative diseases. Since phages can direct tissue regeneration, template materials formation, sense molecules, and build electrodes, the NiM structures displaying different peptides and on varying materials hold promise in many technologically important fields.


Subject(s)
Bacteriophage M13/metabolism , Nanostructures/chemistry , Astrocytes/cytology , Astrocytes/metabolism , Bacteriophage M13/chemistry , Bacteriophage M13/genetics , Cell Differentiation , Cell Line , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Microscopy, Atomic Force , Nestin/genetics , Nestin/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Polylysine/chemistry
20.
Nat Commun ; 10(1): 4635, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604928

ABSTRACT

The filamentous bacteriophage fd bind a cell target with exquisite specificity through its few copies of display peptides, whereas nanoparticles functionalized with hundreds to thousands of synthetically generated phage display peptides exhibit variable and often-weak target binding. We hypothesise that some phage peptides in a hierarchical structure rather than in monomeric form recognise and bind their target. Here we show hierarchial forms of a brain-specific phage-derived peptide (herein as NanoLigand Carriers, NLCs) target cerebral endothelial cells through transferrin receptor and the receptor for advanced glycation-end products, cross the blood-brain-barrier and reach neurons and microglial cells. Through intravenous delivery of NLC-ß-secretase 1 (BACE1) siRNA complexes we show effective BACE1 down-regulation in the brain without toxicity and inflammation. Therefore, NLCs act as safe multifunctional nanocarriers, overcome efficacy and specificity limitations in active targeting with nanoparticles bearing phage display peptides or cell-penetrating peptides and expand the receptor repertoire of the display peptide.


Subject(s)
Bacteriophage M13/metabolism , Blood-Brain Barrier/metabolism , Drug Delivery Systems , Animals , Bacteriophage M13/chemistry , Drug Carriers , Ligands , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Nanoparticles , Peptide Library
SELECTION OF CITATIONS
SEARCH DETAIL
...