Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 607
Filter
1.
Virology ; 597: 110169, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996611

ABSTRACT

Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied. In this work, we disrupted the ibpA and ibpB genes and measured the effects on ϕX174 replication. We found that in contrast to other E. coli heat shock proteins, they are not necessary for ϕX174 replication; moreover, their absence has no discernible effect on ϕX174 fecundity. These results suggest IbpA/B upregulation is a response to ϕX174 protein expression but does not play a role in phage replication, and they are not Microviridae host factors.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Virus Replication , Escherichia coli/virology , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacteriophage phi X 174/genetics , Bacteriophage phi X 174/physiology , Bacteriophage phi X 174/metabolism , Heat-Shock Proteins, Small/metabolism , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins
2.
Curr Microbiol ; 81(7): 215, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849666

ABSTRACT

Non-tailed icosahedral phages belonging to families Fiersviridae (phages MS2 and Qbeta), Tectiviridae (PRD1) and Microviridae (phiX174) have not been considered in detail so far as potential antibacterial agents. The aim of the study was to examine various aspects of the applicability of these phages as antibacterial agents. Antibacterial potential of four phages was investigated via bacterial growth and biofilm formation inhibition, lytic spectra determination, and phage safety examination. The phage phiX174 was combined with different classes of antibiotics to evaluate potential synergistic interactions. In addition, the incidence of phiX174-insensitive mutants was analyzed. The results showed that only phiX174 out of four phages tested against their corresponding hosts inhibited bacterial growth for > 90% at different multiplicity of infection and that only this phage considerably prevented biofilm formation. Although all phages show the absence of potentially undesirable genes, they also have extremely narrow lytic spectra. The synergism was determined between phage phiX174 and ceftazidime, ceftriaxone, ciprofloxacin, macrolides, and chloramphenicol. It was shown that the simultaneous application of agents is more effective than successive treatment, where one agent is applied first. The analysis of the appearance of phiX174 bacteriophage-insensitive mutants showed that mutations occur with a frequency of 10-3. The examined non-tailed phages have a limited potential for use as antibacterial agents, primarily due to a very narrow lytic spectrum and the high frequency of resistant mutants appearance, but Microviridae can be considered in the future as biocontrol agents against susceptible strains of E. coli in combinations with conventional antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Biofilms , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Bacteriophages/genetics , Bacteriophages/physiology , Escherichia coli/virology , Escherichia coli/drug effects , Bacteriophage phi X 174/drug effects , Bacteriophage phi X 174/genetics , Bacteria/drug effects , Bacteria/virology , Mutation
3.
J Virol ; 98(3): e0182723, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38305183

ABSTRACT

Most icosahedral DNA viruses package and condense their genomes into pre-formed, volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded (ss) DNA micro- and parvoviruses. Before packaging, ~120 copies of the øX174 DNA-binding protein J interact with double-stranded DNA. 60 J proteins enter the procapsid with the ssDNA genome, guiding it between 60 icosahedrally ordered DNA-binding pockets formed by the capsid proteins. Although J proteins are small, 28-37 residues in length, they have two domains. The basic, positively charged N-terminus guides the genome between binding pockets, whereas the C-terminus acts as an anchor to the capsid's inner surface. Three C-terminal aromatic residues, W30, Y31, and F37, interact most extensively with the coat protein. Their corresponding codons were mutated, and the resulting strains were biochemically and genetically characterized. Depending on the mutation, the substitutions produced unstable packaging complexes, unstable virions, infectious progeny, or particles packaged with smaller genomes, the latter being a novel phenomenon. The smaller genomes contained internal deletions. The juncture sequences suggest that the unessential A* (A star) protein mediates deletion formation.IMPORTANCEUnessential but strongly conserved gene products are understudied, especially when mutations do not confer discernable phenotypes or the protein's contribution to fitness is too small to reliably determine in laboratory-based assays. Consequently, their functions and evolutionary impact remain obscure. The data presented herein suggest that microvirus A* proteins, discovered over 40 years ago, may hasten the termination of non-productive packaging events. Thus, performing a salvage function by liberating the reusable components of the failed packaging complexes, such as DNA templates and replication enzymes.


Subject(s)
Bacteriophage phi X 174 , Capsid Proteins , DNA, Single-Stranded , DNA, Viral , DNA-Binding Proteins , Evolution, Molecular , Viral Genome Packaging , Bacteriophage phi X 174/chemistry , Bacteriophage phi X 174/genetics , Bacteriophage phi X 174/growth & development , Bacteriophage phi X 174/metabolism , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Conserved Sequence , DNA, Single-Stranded/metabolism , DNA, Viral/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genetic Fitness , Mutation , Phenotype , Templates, Genetic , Virion/chemistry , Virion/genetics , Virion/growth & development , Virion/metabolism
4.
Science ; 381(6654): eadg9091, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37440661

ABSTRACT

The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.


Subject(s)
Anti-Bacterial Agents , Bacteriolysis , Bacteriophage phi X 174 , Escherichia coli Proteins , Escherichia coli , Viral Proteins , Anti-Bacterial Agents/metabolism , Bacteriophage phi X 174/genetics , Bacteriophage phi X 174/metabolism , Escherichia coli/metabolism , Escherichia coli/virology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Peptidylprolyl Isomerase/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Single Molecule Imaging , Cryoelectron Microscopy
5.
J Virol ; 95(18): e0088321, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34232738

ABSTRACT

Most icosahedral viruses condense their genomes into volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded DNA (ssDNA) viruses. ssDNA genome packaging combines elements found in both double-stranded DNA (dsDNA) and ssRNA systems. Similar to dsDNA viruses, the genome is packaged into a preformed capsid. Like ssRNA viruses, there are numerous capsid-genome associations. In ssDNA microviruses, the DNA-binding protein J guides the genome between 60 icosahedrally ordered DNA binding pockets. It also partially neutralizes the DNA's negative phosphate backbone. ϕX174-related microviruses, such as G4 and α3, have J proteins that differ in length and charge organization. This suggests that interchanging J proteins could alter the path used to guide DNA in the capsid. Previously, a ϕXG4J chimera, in which the ϕX174 J gene was replaced with the G4 gene, was characterized. It displayed lethal packaging defects, which resulted in procapsids being removed from productive assembly. Here, we report the characterization of another inviable chimera, ϕXα3J. Unlike ϕXG4J, ϕXα3J efficiently packaged DNA but produced noninfectious particles. These particles displayed a reduced ability to attach to host cells, suggesting that internal DNA organization could distort the capsid's outer surface. Mutations that restored viability altered J-coat protein contact sites. These results provide evidence that the organization of ssDNA can affect both packaging and postpackaging phenomena. IMPORTANCE ssDNA viruses utilize icosahedrally ordered protein-nucleic acids interactions to guide and organize their genomes into preformed shells. As previously demonstrated, chaotic genome-capsid associations can inhibit ϕX174 packaging by destabilizing packaging complexes. However, the consequences of poorly organized genomes may extend beyond the packaging reaction. As demonstrated herein, it can lead to uninfectious packaged particles. Thus, ssDNA genomes should be considered an integral and structural virion component, affecting the properties of the entire particle, which includes the capsid's outer surface.


Subject(s)
Bacteriophage phi X 174/genetics , Capsid Proteins/genetics , Capsid/metabolism , DNA, Single-Stranded/genetics , DNA, Viral/genetics , Genome, Viral , Virus Assembly , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/metabolism , DNA Packaging , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/virology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virion
6.
Sci Rep ; 11(1): 13183, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162895

ABSTRACT

Recent advances in DNA sequencing open prospects to make whole-genome analysis rapid and reliable, which is promising for various applications including personalized medicine. However, existing techniques for de novo genome assembly, which is used for the analysis of genomic rearrangements, chromosome phasing, and reconstructing genomes without a reference, require solving tasks of high computational complexity. Here we demonstrate a method for solving genome assembly tasks with the use of quantum and quantum-inspired optimization techniques. Within this method, we present experimental results on genome assembly using quantum annealers both for simulated data and the [Formula: see text]X 174 bacteriophage. Our results pave a way for a significant increase in the efficiency of solving bioinformatics problems with the use of quantum computing technologies and, in particular, quantum annealing might be an effective method. We expect that the new generation of quantum annealing devices would outperform existing techniques for de novo genome assembly. To the best of our knowledge, this is the first experimental study of de novo genome assembly problems both for real and synthetic data on quantum annealing devices and quantum-inspired techniques.


Subject(s)
Computational Biology/methods , Genomics/methods , Sequence Analysis, DNA/methods , Algorithms , Bacteriophage phi X 174/genetics , Computer Simulation , DNA, Viral/genetics , Datasets as Topic , Genome, Viral , Humans , Mathematics , Quantum Theory
7.
FEBS J ; 288(10): 3300-3316, 2021 05.
Article in English | MEDLINE | ID: mdl-33244868

ABSTRACT

The bacteriophage ΦX174 causes large pore formation in Escherichia coli and related bacteria. Lysis is mediated by the small membrane-bound toxin ΦX174-E, which is composed of a transmembrane domain and a soluble domain. The toxin requires activation by the bacterial chaperone SlyD and inhibits the cell wall precursor forming enzyme MraY. Bacterial cell wall biosynthesis is an important target for antibiotics; therefore, knowledge of molecular details in the ΦX174-E lysis pathway could help to identify new mechanisms and sites of action. In this study, cell-free expression and nanoparticle technology were combined to avoid toxic effects upon ΦX174-E synthesis, resulting in the efficient production of a functional full-length toxin and engineered derivatives. Pre-assembled nanodiscs were used to study ΦX174-E function in defined lipid environments and to analyze its membrane insertion mechanisms. The conformation of the soluble domain of ΦX174-E was identified as a central trigger for membrane insertion, as well as for the oligomeric assembly of the toxin. Stable complex formation of the soluble domain with SlyD is essential to keep nascent ΦX174-E in a conformation competent for membrane insertion. Once inserted into the membrane, ΦX174-E assembles into high-order complexes via its transmembrane domain and oligomerization depends on the presence of an essential proline residue at position 21. The data presented here support a model where an initial contact of the nascent ΦX174-E transmembrane domain with the peptidyl-prolyl isomerase domain of SlyD is essential to allow a subsequent stable interaction of SlyD with the ΦX174-E soluble domain for the generation of a membrane insertion competent toxin.


Subject(s)
Antibiosis/genetics , Bacteriophage phi X 174/genetics , Escherichia coli Proteins/genetics , Escherichia coli/virology , Lysogeny/genetics , Peptidylprolyl Isomerase/genetics , Toxins, Biological/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophage phi X 174/metabolism , Bacteriophage phi X 174/pathogenicity , Binding Sites , Cell Wall/genetics , Cell Wall/metabolism , Cell Wall/virology , Dimyristoylphosphatidylcholine/chemistry , Dimyristoylphosphatidylcholine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Gene Expression , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Nanoparticles/chemistry , Peptidylprolyl Isomerase/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Protein Binding , Protein Conformation , Protein Engineering/methods , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Solubility , Toxins, Biological/genetics , Toxins, Biological/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
8.
Genome Biol Evol ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33045052

ABSTRACT

Natural selection acting on synonymous mutations in protein-coding genes influences genome composition and evolution. In viruses, introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage ΦX174 with codons rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon usage and fitness does not hold for optimization, suggesting that wild-type ΦX174 is at a fitness optimum. This work highlights the need to better understand how selection acts on patterns of synonymous codon usage across the genome and provides a convenient system to investigate the genetic determinants of virulence.


Subject(s)
Bacteriophage phi X 174/genetics , Codon , Genome, Viral , Epistasis, Genetic , Genes, Viral , Genetic Fitness , Models, Genetic , Selection, Genetic , Viral Vaccines
9.
Virology ; 547: 47-56, 2020 08.
Article in English | MEDLINE | ID: mdl-32560904

ABSTRACT

Bacteriophage ϕX174 is a model virus for studies across the fields of structural biology, genetics, gut microbiomics, and synthetic biology, but did not have a high-resolution transcriptome until this work. In this study we used next-generation sequencing to measure the RNA produced from ϕX174 while infecting its host E. coli C. We broadly confirm the past transcriptome model while revealing several interesting deviations from previous knowledge. Additionally, we measure the strength of canonical ϕX174 promoters and terminators and discover both a putative new promoter that may be activated by heat shock sigma factors, as well as rediscover a controversial Rho-dependent terminator. We also provide evidence for the first antisense transcription observed in the Microviridae, identify two promoters that may be involved in generating this transcriptional activity, and discuss possible reasons why this RNA may be produced.


Subject(s)
Bacteriophage phi X 174/genetics , Transcription, Genetic , Bacteriophage phi X 174/metabolism , Base Sequence , Escherichia coli/virology , Gene Expression Regulation, Viral , Promoter Regions, Genetic , RNA, Viral/genetics , RNA, Viral/metabolism
10.
Viruses ; 12(6)2020 06 22.
Article in English | MEDLINE | ID: mdl-32580341

ABSTRACT

Bacteriophage ϕX174 uses a decamer of DNA piloting proteins to penetrate its host. These proteins oligomerize into a cell wall-spanning tube, wide enough for genome passage. While the inner surface of the tube is primarily lined with inward-facing amino acid side chains containing amide and guanidinium groups, there is a 28 Å-long section near the tube's C-terminus that does not exhibit this motif. The majority of the inward-facing residues in this region are conserved across the three ϕX174-like clades, suggesting that they play an important role during genome delivery. To test this hypothesis, and explore the general function of the tube's inner surface, non-glutamine residues within this region were mutated to glutamine, while existing glutamine residues were changed to serine. Four of the resulting mutants had temperature-dependent phenotypes. Virion assembly, host attachment, and virion eclipse, defined as the cell's ability to inactivate the virus, were not affected. Genome delivery, however, was inhibited. The results support a model in which a balance of forces governs genome delivery: potential energy provided by the densely packaged viral genome and/or an osmotic gradient move the genome into the cell, while the tube's inward facing glutamine residues exert a frictional force, or drag, that controls genome release.


Subject(s)
Bacteriophage phi X 174/genetics , Capsid Proteins/genetics , DNA, Viral/metabolism , Viral Tail Proteins/genetics , Virus Internalization , Amino Acid Sequence , Biological Transport/physiology , Crystallography, X-Ray , DNA, Viral/genetics , Genome, Viral/genetics , Mutagenesis , Viral Tail Proteins/metabolism
11.
Analyst ; 145(7): 2554-2561, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32072995

ABSTRACT

Nucleic acid amplification techniques such as real-time PCR are essential instruments for the identification and quantification of viruses. They are fast, very sensitive and highly specific, but often require elaborate and labor intensive sample preparation to achieve successful amplification of the target sequence. In this work we demonstrate the complete microfluidic preparation of amplifiable virus DNA from dilute specimens. Our approach combines free-flow electrophoretic preconcentration of viral particles with thermal lysis and gel-electrophoretic nucleic acid extraction on a single device. The on-chip preconcentration achieves a capture efficiency of >99% for dilute suspensions of bacteriophage PhiX174. Following preconcentration, phages are thermally lysed and released DNA is recovered after 40 s of on-chip gel-electrophoresis with a recovery rate of ∼73%. Furthermore we demonstrate a detection limit of ∼1 PFU ml-1 (∼0.02 DNA copies per µl) for the detection of bacteriophage PhiX174 by PCR. To simplify operation of the device, we describe the development of a custom-made chip holder as well as a compact peristaltic pump and power supply, which enable user-friendly operation with low risk of cross-contamination and high potential for automation in the field of point-of-care diagnostics.


Subject(s)
Bacteriophage phi X 174/genetics , DNA, Viral/metabolism , Electrophoresis/methods , DNA, Viral/isolation & purification , Lab-On-A-Chip Devices , Limit of Detection , Real-Time Polymerase Chain Reaction
12.
ACS Synth Biol ; 9(1): 125-131, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31825605

ABSTRACT

Here we present a novel protocol for the construction of saturation single-site-and massive multisite-mutant libraries of a bacteriophage. We segmented the ΦX174 genome into 14 nontoxic and nonreplicative fragments compatible with Golden Gate assembly. We next used nicking mutagenesis with oligonucleotides prepared from unamplified oligo pools with individual segments as templates to prepare near-comprehensive single-site mutagenesis libraries of genes encoding the F capsid protein (421 amino acids scanned) and G spike protein (172 amino acids scanned). Libraries possessed greater than 99% of all 11 860 programmed mutations. Golden Gate cloning was then used to assemble the complete ΦX174 mutant genome and generate libraries of infective viruses. This protocol will enable reverse genetics experiments for studying viral evolution and, with some modifications, can be applied for engineering therapeutically relevant bacteriophages with larger genomes.


Subject(s)
Bacteriophage phi X 174/genetics , Genetic Engineering/methods , Genome, Viral , Mutagenesis , Base Sequence , Capsid Proteins/genetics , DNA Breaks, Single-Stranded , DNA, Single-Stranded/genetics , Escherichia coli/genetics , Genetic Vectors , Mutation , Plasmids/genetics
13.
Fish Shellfish Immunol ; 86: 327-334, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30041051

ABSTRACT

Aeromonas veronii is a conditional pathogen causing high mortality in many freshwater fish species worldwide. Bacterial ghosts are nonliving Gram-negative bacteria devoid of cytoplasmic contents, which induce protective immunity against microbial pathogens. The aims of this study were: a) to produce A. veronii ghost (AVG) constructed by PhiX174 gene E; b) to evaluate the specific, non-specific immune effects and protective immunity of AVG against A. veronii in koi. The lysis plasmid pBBR-E was constructed by cloning PhiX174 gene E into the broad-host-range vector pBBR1MCS2, and then transformed into A. veronii 7231. AVG was generated by increasing the incubation temperature up to 42 °C. Lysis of A. veronii occurred 3 h after temperature induction and completed in 12 h. The efficiency of ghost induction was 99.9998 ±â€¯0.0002%. Koi were immunized intraperitoneally with AVG, formalin-killed bacteria (FKC) or phosphate buffered saline (PBS) respectively, and then respiratory burst (RB), myeloperoxidase (MPO), lysozyme (LZM), malondialdehyde (MDA), complement 3 (C3) and antibody activities were examined in serum. Compared with negative control of PBS, the RB, MPO, LZM activities were significantly higher in koi immunized with AVG (P < 0.05). Nevertheless, the MDA activities of AVG treatment were significantly lower than those of PBS treatment (P < 0.05). The serum agglutination titers and IgM antibody titers in AVG group were significantly higher than those in FKC or PBS groups. After challenged with the parent strain A. veronii 7231, the average mortality of AVG group was significantly lower than that of FKC and PBS groups (P < 0.05) and the relative percent survival (RPS) of AVG group (73.92%) was higher than that of FKC group (43.48%). Therefore, AVG have the potential to induce protective immunity and they may be ideal vaccine candidates against A. veronii in koi.


Subject(s)
Aeromonas veronii/immunology , Carps/immunology , Gram-Negative Bacterial Infections/veterinary , Aeromonas veronii/genetics , Animals , Bacterial Vaccines/immunology , Bacteriophage phi X 174/genetics , Biotechnology/methods , Carps/microbiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/prevention & control , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Immunoglobulin M , Vaccines, Inactivated/immunology
14.
Sci Rep ; 8(1): 8350, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844443

ABSTRACT

Viruses rely upon their hosts for biosynthesis of viral RNA, DNA and protein. This dependency frequently engenders strong selection for virus genome compatibility with potential hosts, appropriate gene regulation and expression necessary for a successful infection. While bioinformatic studies have shown strong correlations between codon usage in viral and host genomes, the selective factors by which this compatibility evolves remain a matter of conjecture. Engineered to include codons with a lesser usage and/or tRNA abundance within the host, three different attenuated strains of the bacterial virus ФX174 were created and propagated via serial transfers. Molecular sequence data indicate that biosynthetic compatibility was recovered rapidly. Extensive computational simulations were performed to assess the role of mutational biases as well as selection for translational efficiency in the engineered phage. Using bacteriophage as a model system, we can begin to unravel the evolutionary processes shaping codon compatibility between viruses and their host.


Subject(s)
Bacteriophage phi X 174/genetics , Genome, Viral/genetics , Bacteriophage phi X 174/metabolism , Bacteriophages/genetics , Codon/genetics , Computational Biology/methods , Evolution, Molecular , RNA, Transfer/genetics , RNA, Viral/genetics , Viruses/genetics
15.
Anal Biochem ; 546: 58-64, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29412142

ABSTRACT

Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines.


Subject(s)
Drinking Water/microbiology , Hygiene , Nucleic Acid Amplification Techniques , Recombinases/metabolism , Bacteriophage phi X 174/genetics , Bacteriophage phi X 174/isolation & purification , Water Microbiology
16.
Water Res ; 129: 460-469, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29182907

ABSTRACT

Here, we evaluated the removal of three representative human enteric viruses - adenovirus (AdV) type 40, coxsackievirus (CV) B5, and hepatitis A virus (HAV) IB - and one surrogate of human caliciviruses - murine norovirus (MNV) type 1 - by coagulation-rapid sand filtration, using water samples from eight water sources for drinking water treatment plants in Japan. The removal ratios of a plant virus (pepper mild mottle virus; PMMoV) and two bacteriophages (MS2 and φX174) were compared with the removal ratios of human enteric viruses to assess the suitability of PMMoV, MS2, and φX174 as surrogates for human enteric viruses. The removal ratios of AdV, CV, HAV, and MNV, evaluated via the real-time polymerase chain reaction (PCR) method, were 0.8-2.5-log10 when commercially available polyaluminum chloride (PACl, basicity 1.5) and virgin silica sand were used as the coagulant and filter medium, respectively. The type of coagulant affected the virus removal efficiency, but the age of silica sand used in the rapid sand filtration did not. Coagulation-rapid sand filtration with non-sulfated, high-basicity PACls (basicity 2.1 or 2.5) removed viruses more efficiently than the other aluminum-based coagulants. The removal ratios of MS2 were sometimes higher than those of the three human enteric viruses and MNV, whereas the removal ratios of φX174 tended to be smaller than those of the three human enteric viruses and MNV. In contrast, the removal ratios of PMMoV were similar to and strongly correlated with those of the three human enteric viruses and MNV. Thus, PMMoV appears to be a suitable surrogate for human enteric viruses for the assessment of the efficacy of coagulation-rapid sand filtration to remove viruses.


Subject(s)
Drinking Water/virology , Water Purification/methods , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Aluminum Hydroxide , Bacteriophage phi X 174/genetics , Bacteriophage phi X 174/isolation & purification , Enterovirus B, Human/genetics , Enterovirus B, Human/isolation & purification , Filtration/methods , Hepatitis A virus/genetics , Hepatitis A virus/isolation & purification , Humans , Japan , Levivirus/genetics , Levivirus/isolation & purification , Norovirus/genetics , Norovirus/isolation & purification , Real-Time Polymerase Chain Reaction , Silicon Dioxide , Tobamovirus/genetics , Tobamovirus/isolation & purification
17.
J Virol ; 91(24)2017 12 15.
Article in English | MEDLINE | ID: mdl-28978706

ABSTRACT

Two scaffolding proteins orchestrate ϕX174 morphogenesis. The internal scaffolding protein B mediates the formation of pentameric assembly intermediates, whereas the external scaffolding protein D organizes 12 of these intermediates into procapsids. Aromatic amino acid side chains mediate most coat-internal scaffolding protein interactions. One residue in the internal scaffolding protein and three in the coat protein constitute the core of the B protein binding cleft. The three coat gene codons were randomized separately to ascertain the chemical requirements of the encoded amino acids and the morphogenetic consequences of mutation. The resulting mutants exhibited a wide range of recessive phenotypes, which could generally be explained within a structural context. Mutants with phenylalanine, tyrosine, and methionine substitutions were phenotypically indistinguishable from the wild type. However, tryptophan substitutions were detrimental at two sites. Charged residues were poorly tolerated, conferring extreme temperature-sensitive and lethal phenotypes. Eighteen lethal and conditional lethal mutants were genetically and biochemically characterized. The primary defect associated with the missense substitutions ranged from inefficient internal scaffolding protein B binding to faulty procapsid elongation reactions mediated by external scaffolding protein D. Elevating B protein concentrations above wild-type levels via exogenous, cloned-gene expression compensated for inefficient B protein binding, as did suppressing mutations within gene B. Similarly, elevating D protein concentrations above wild-type levels or compensatory mutations within gene D suppressed faulty elongation. Some of the parental mutations were pleiotropic, affecting multiple morphogenetic reactions. This progressively reduced the flux of intermediates through the pathway. Accordingly, multiple mechanisms, which may be unrelated, could restore viability.IMPORTANCE Genetic analyses have been instrumental in deciphering the temporal events of many biochemical pathways. However, pleiotropic effects can complicate analyses. Vis-à-vis virion morphogenesis, an improper protein-protein interaction within an early assembly intermediate can influence the efficiency of all subsequent reactions. Consequently, the flux of assembly intermediates cumulatively decreases as the pathway progresses. During morphogenesis, ϕX174 coat protein participates in at least four well-defined reactions, each one characterized by an interaction with a scaffolding or structural protein. In this study, genetic analyses, biochemical characterizations, and physiological assays, i.e., elevating the protein levels with which the coat protein interacts, were used to elucidate pleiotropic effects that may alter the flux of intermediates through a morphogenetic pathway.


Subject(s)
Bacteriophage phi X 174/physiology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Mutation , Virus Assembly , Amino Acid Substitution , Bacteriophage phi X 174/genetics , Capsid Proteins/chemistry , Models, Molecular , Mutation, Missense , Phenotype , Protein Binding , Protein Conformation , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
18.
Food Res Int ; 91: 115-123, 2017 01.
Article in English | MEDLINE | ID: mdl-28290315

ABSTRACT

In order to assure the microbial safety of drinking water, UVC-LED treatment has emerged as a possible technology to replace the use of conventional low pressure (LP) mercury vapor UV lamps. In this investigation, inactivation of Human Enteric Virus (HuEV) surrogates with UVC-LEDs was investigated in a water disinfection system, and kinetic model equations were applied to depict the surviving infectivities of the viruses. MS2, Qß, and ΦX 174 bacteriophages were inoculated into sterile distilled water (DW) and irradiated with UVC-LED printed circuit boards (PCBs) (266nm and 279nm) or conventional LP lamps. Infectivities of bacteriophages were effectively reduced by up to 7-log after 9mJ/cm2 treatment for MS2 and Qß, and 1mJ/cm2 for ΦX 174. UVC-LEDs showed a superior viral inactivation effect compared to conventional LP lamps at the same dose (1mJ/cm2). Non-log linear plot patterns were observed, so that Weibull, Biphasic, Log linear-tail, and Weibull-tail model equations were used to fit the virus survival curves. For MS2 and Qß, Weibull and Biphasic models fit well with R2 values approximately equal to 0.97-0.99, and the Weibull-tail equation accurately described survival of ΦX 174. The level of UV-susceptibility among coliphages measured by the inactivation rate constant, k, was statistically different (ΦX 174 (ssDNA)>MS2, Qß (ssRNA)), and indicated that sensitivity to UV was attributed to viral genetic material.


Subject(s)
Allolevivirus/radiation effects , Bacteriophage phi X 174/radiation effects , Disinfection/methods , Drinking Water/virology , Levivirus/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , Water Purification/methods , Water Supply , Allolevivirus/genetics , Allolevivirus/growth & development , Bacteriophage phi X 174/genetics , Bacteriophage phi X 174/growth & development , Disinfection/instrumentation , Equipment Design , Kinetics , Levivirus/genetics , Levivirus/growth & development , Models, Biological , Water Purification/instrumentation , Water Quality
19.
J R Soc Interface ; 14(126)2017 01.
Article in English | MEDLINE | ID: mdl-28053111

ABSTRACT

Viral capsids are structurally constrained by interactions among the amino acids (AAs) of their constituent proteins. Therefore, epistasis is expected to evolve among physically interacting sites and to influence the rates of substitution. To study the evolution of epistasis, we focused on the major structural protein of the ϕX174 phage family by first reconstructing the ancestral protein sequences of 18 species using a Bayesian statistical framework. The inferred ancestral reconstruction differed at eight AAs, for a total of 256 possible ancestral haplotypes. For each ancestral haplotype and the extant species, we estimated, in silico, the distribution of free energies and epistasis of the capsid structure. We found that free energy has not significantly increased but epistasis has. We decomposed epistasis up to fifth order and found that higher-order epistasis sometimes compensates pairwise interactions making the free energy seem additive. The dN/dS ratio is low, suggesting strong purifying selection, and that structure is under stabilizing selection. We synthesized phages carrying ancestral haplotypes of the coat protein gene and measured their fitness experimentally. Our findings indicate that stabilizing mutations can have higher fitness, and that fitness optima do not necessarily coincide with energy minima.


Subject(s)
Bacteriophage phi X 174 , Capsid Proteins/genetics , Evolution, Molecular , Selection, Genetic , Bacteriophage phi X 174/classification , Bacteriophage phi X 174/genetics
20.
Virology ; 501: 25-34, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27855283

ABSTRACT

In an earlier study, protein-based barriers to horizontal gene transfer were investigated by placing the bacteriophage G4 G gene, encoding the major spike protein, into the φX174 genome. The foreign G protein promoted off-pathway assembly reactions, resulting in a lethal phenotype. After three targeted genetic selections, one of two foreign spike proteins was productively integrated into the φX174 system: the complete G4 or a recombinant G4/φX174 protein (94% G4:6% φX174). However, strain fitness was very low. In this study, the chimeras were characterized and experimentally evolved. Inefficient assembly was the primary contributor to low fitness: accordingly, mutations affecting assembly restored fitness. The spike protein preference of the ancestral and evolved strains was determined in competition experiments between the foreign and φX174G proteins. Before adaptation, both G proteins were incorporated into virions; afterwards, the foreign proteins were strongly preferred. Thus, a previously inhibitory protein became the preferred substrate during assembly.


Subject(s)
Bacteriophage phi X 174/genetics , Gene Transfer, Horizontal , Bacteriophage phi X 174/physiology , Mutation , Viral Fusion Proteins/genetics , Virus Assembly
SELECTION OF CITATIONS
SEARCH DETAIL