Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 6618, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103350

ABSTRACT

A mechanistic understanding of host-microbe interactions in the gut microbiome is hindered by poorly annotated bacterial genomes. While functional genomics can generate large gene-to-phenotype datasets to accelerate functional discovery, their applications to study gut anaerobes have been limited. For instance, most gain-of-function screens of gut-derived genes have been performed in Escherichia coli and assayed in a small number of conditions. To address these challenges, we develop Barcoded Overexpression BActerial shotgun library sequencing (Boba-seq). We demonstrate the power of this approach by assaying genes from diverse gut Bacteroidales overexpressed in Bacteroides thetaiotaomicron. From hundreds of experiments, we identify new functions and phenotypes for 29 genes important for carbohydrate metabolism or tolerance to antibiotics or bile salts. Highlights include the discovery of a D-glucosamine kinase, a raffinose transporter, and several routes that increase tolerance to ceftriaxone and bile salts through lipid biosynthesis. This approach can be readily applied to develop screens in other strains and additional phenotypic assays.


Subject(s)
Bile Acids and Salts , Carbon , Gastrointestinal Microbiome , Carbon/metabolism , Gastrointestinal Microbiome/genetics , Bile Acids and Salts/metabolism , Anti-Bacterial Agents/pharmacology , Stress, Physiological/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/metabolism , Gene Expression Regulation, Bacterial , Bacteroidetes/genetics , Bacteroidetes/metabolism , Carbohydrate Metabolism/genetics , Humans , Genes, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genome, Bacterial
2.
Methods Mol Biol ; 2843: 57-71, 2024.
Article in English | MEDLINE | ID: mdl-39141294

ABSTRACT

Bacteroides spp. are prominent gut commensals that are believed to modulate the intestinal environment, in part, by producing outer membrane vesicles (OMVs). Bacteroides OMVs have been ascribed many functions in vitro, but the genetic underpinnings behind OMV biogenesis and regulation are unclear. Understanding the mechanism of OMV biogenesis is required to determine the importance of Bacteroides OMVs in vivo. Here, we describe our methodology for screening Bacteroides thetaiotaomicron VPI-5482 to identify genes required for OMV biogenesis and regulation in a high-throughput format. This protocol is easily adaptable and can potentially be employed to further our knowledge of OMV biogenesis in other bacteria.


Subject(s)
Bacteroides thetaiotaomicron , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism
3.
Gut Microbes ; 16(1): 2390133, 2024.
Article in English | MEDLINE | ID: mdl-39132815

ABSTRACT

Vancomycin (VAN) treatment in Clostridioides difficile infection (CDI) suffers from a relatively high rate of recurrence, with a variety of reasons behind this, including biofilm-induced recurrent infections. C. difficile can form monophyletic or symbiotic biofilms with other microbes in the gut, and these biofilms protect C. difficile from being killed by antibiotics. In this study, we analyzed the ecological relationship between Bacteroides thetaiotaomicron and C. difficile and their formation of symbiotic biofilm in the VAN environment. The production of symbiotic biofilm formed by C. difficile and B. thetaiotaomicron was higher than that of C. difficile and B. thetaiotaomicron alone in the VAN environment. In symbiotic biofilms, C. difficile was characterized by increased production of the toxin protein TcdA and TcdB, up-regulation of the expression levels of the virulence genes tcdA and tcdB, enhanced bacterial cell swimming motility and c-di-GMP content, and increased adhesion to Caco-2 cells. The scanning electron microscope (SEM) combined with confocal laser scanning microscopy (CLSM) results indicated that the symbiotic biofilm was elevated in thickness, dense, and had an increased amount of mixed bacteria, while the fluorescence in situ hybridization (FISH) probe and plate colony counting results further indicated that the symbiotic biofilm had a significant increase in the amount of C. difficile cells, and was able to better tolerate the killing of the simulated intestinal fluid. Taken together, C. difficile and B. thetaiotaomicron become collaborative in the VAN environment, and targeted deletion or attenuation of host gut B. thetaiotaomicron content may improve the actual efficacy of VAN in CDI treatment.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Bacteroides thetaiotaomicron , Biofilms , Clostridioides difficile , Symbiosis , Vancomycin , Biofilms/drug effects , Biofilms/growth & development , Clostridioides difficile/drug effects , Clostridioides difficile/physiology , Clostridioides difficile/genetics , Humans , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Caco-2 Cells , Bacteroides thetaiotaomicron/drug effects , Bacteroides thetaiotaomicron/metabolism , Bacteroides thetaiotaomicron/physiology , Bacteroides thetaiotaomicron/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Enterotoxins/metabolism , Enterotoxins/genetics , Bacterial Adhesion/drug effects
4.
Methods Mol Biol ; 2839: 113-130, 2024.
Article in English | MEDLINE | ID: mdl-39008251

ABSTRACT

Traditional studies of cellular metabolism have relied on the use of radioisotopes. These have clear disadvantages associated with safety and waste generation. Furthermore, detection of the labeled species by scintillation counting provides only a quantification of its presence or absence. The use of stable isotopes, by contrast, allows the application of powerful, orthogonal spectroscopic approaches such as nuclear magnetic resonance spectroscopy (NMR) and various mass spectrometric methods. Using stable isotope labeling to study heme metabolism requires integrating methods for (a) generating the heme in labeled forms, (b) cultivating and quantifying the organism of choice in chemically defined media, to which labeled compounds can be added, (c) recovering cellular components and/or spent growth media, and (d) analyzing these materials for the labeled species using spectroscopic and mass spectrometric methods. These methods are summarized here in the context of Bacteroides thetaiotaomicron, a generally nonpathogenic anaerobe and heme auxotroph.


Subject(s)
Bacteroides thetaiotaomicron , Heme , Mass Spectrometry , Heme/metabolism , Mass Spectrometry/methods , Bacteroides thetaiotaomicron/metabolism , Bacteroides thetaiotaomicron/growth & development , Magnetic Resonance Spectroscopy/methods , Isotope Labeling/methods , Culture Media/chemistry
5.
PLoS One ; 19(7): e0300666, 2024.
Article in English | MEDLINE | ID: mdl-39052651

ABSTRACT

Mechanistic investigation of host-microbe interactions in the human gut are hindered by difficulty of co-culturing microbes with intestinal epithelial cells. On one hand the gut bacteria are a mix of facultative, aerotolerant or obligate anaerobes, while the intestinal epithelium requires oxygen for growth and function. Thus, a coculture system that can recreate these contrasting oxygen requirements is critical step towards our understanding microbial-host interactions in the human gut. Here, we demonstrate Intestinal Organoid Physoxic Coculture (IOPC) system, a simple and cost-effective method for coculturing anaerobic intestinal bacteria with human intestinal organoids (HIOs). Using commensal anaerobes with varying degrees of oxygen tolerance, such as nano-aerobe Bacteroides thetaiotaomicron and strict anaerobe Blautia sp., we demonstrate that IOPC can successfully support 24-48 hours HIO-microbe coculture. The IOPC recapitulates the contrasting oxygen conditions across the intestinal epithelium seen in vivo. The IOPC cultured HIOs showed increased barrier integrity, and induced expression of immunomodulatory genes. A transcriptomic analysis suggests that HIOs from different donors show differences in the magnitude of their response to coculture with anaerobic bacteria. Thus, the IOPC system provides a robust coculture setup for investigating host-microbe interactions in complex, patient-derived intestinal tissues, that can facilitate the study of mechanisms underlying the role of the microbiome in health and disease.


Subject(s)
Coculture Techniques , Intestinal Mucosa , Organoids , Oxygen , Humans , Organoids/microbiology , Organoids/metabolism , Oxygen/metabolism , Coculture Techniques/methods , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Gastrointestinal Microbiome , Host Microbial Interactions , Bacteria, Anaerobic/growth & development , Bacteria, Anaerobic/metabolism , Intestines/microbiology , Intestines/cytology , Bacteroides thetaiotaomicron/metabolism
6.
mBio ; 15(8): e0003924, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38975756

ABSTRACT

Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and ß1,4-galactosidase activities. There was a lack of detectable sulfatase and weak ß1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.


Subject(s)
Bacteroides thetaiotaomicron , Gastrointestinal Microbiome , Mucins , Oligosaccharides , Ruminococcus , Oligosaccharides/metabolism , Mucins/metabolism , Bacteroides thetaiotaomicron/metabolism , Ruminococcus/metabolism , Humans , Glycoproteins/metabolism , Symbiosis
7.
mBio ; 15(7): e0122024, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38842315

ABSTRACT

Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE: Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Phosphorylation , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Binding , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Bacteroides/genetics , Bacteroides/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Histidine Kinase/metabolism , Histidine Kinase/genetics , Histidine Kinase/chemistry , Protein Domains , Signal Transduction
8.
Nat Commun ; 15(1): 5123, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879612

ABSTRACT

Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-ß-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.


Subject(s)
Bacterial Proteins , Bacteroides thetaiotaomicron , Gastrointestinal Microbiome , Polysaccharides , Polysaccharides/metabolism , Humans , Bacteroides thetaiotaomicron/metabolism , Bacteroides thetaiotaomicron/enzymology , Bacteroides thetaiotaomicron/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Substrate Specificity , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Mannose/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/genetics , Multigene Family
9.
Biotechnol Bioeng ; 121(9): 2691-2705, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38715197

ABSTRACT

The human microbiota impacts a variety of diseases and responses to therapeutics. Due to a lack of robust in vitro models, detailed mechanistic explanations of host-microbiota interactions cannot often be recapitulated. We describe the design and development of a novel, versatile and modular in vitro system that enables indirect coculture of human epithelial cells with anaerobic bacteria for the characterization of host-microbe secreted metabolite interactions. This system was designed to compartmentalize anaerobes and human cells in separate chambers conducive to each organism's requisite cell growth conditions. Using perfusion, fluidic mixing, and automated sample collection, the cells continuously received fresh media, while in contact with their corresponding compartments conditioned supernatant. Supernatants from each chamber were collected in a cell-free time-resolved fashion. The system sustained low oxygen conditions in the anaerobic chamber, while also supporting the growth of a representative anaerobe (Bacteroides thetaiotaomicron) and a human colonic epithelial cell line (Caco-2) in the aerobic chamber. Caco-2 global gene expression changes in response to coculture with B. thetaiotaomicron was characterized using RNA sequencing. Extensive, targeted metabolomics analysis of over 150 central carbon metabolites was performed on the serially collected supernatants. We observed broad metabolite changes in host-microbe coculture, compared to respective mono-culture controls. These effects were dependent both on sampling time and the compartment probed (apical vs. basolateral). Coculturing resulted in the depletion of several important metabolites, including guanine, uridine 5'-monophosphate, asparagine, and thiamine. Additionally, while Caco-2 cells cultured alone predominantly affected the basolateral metabolite milieu, increased abundance of 2,3-dihydroxyisovalerate and thymine on the basolateral side, occurred when the cells were cocultured with B. thetaiotaomicron. Thus, our system can capture the dynamic, competitive and cooperative processes between host cells and gut microbes.


Subject(s)
Bioreactors , Coculture Techniques , Epithelial Cells , Humans , Bioreactors/microbiology , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Caco-2 Cells , Gastrointestinal Microbiome/physiology , Bacteroides thetaiotaomicron/metabolism
10.
Cell Host Microbe ; 32(6): 1025-1036.e5, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38795710

ABSTRACT

The extent to which bacterial lipids produced by the gut microbiota penetrate host tissues is unclear. Here, we combined mass spectrometry approaches to identify lipids produced by the human gut symbiont Bacteroides thetaiotaomicron (B. theta) and spatially track these bacterial lipids in the mouse colon. We characterize 130 B. theta lipids by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using wild-type and mutant B. theta strains to confidently identify lipid structures and their interconnected pathways in vitro. Of these, 103 B. theta lipids can be detected and spatially mapped in a single MALDI mass spectrometry imaging run. We map unlabeled bacterial lipids across colon sections of germ-free and specific-pathogen-free (SPF) mice and mice mono-colonized with wild-type or sphingolipid-deficient (BTMUT) B. theta. We observe co-localization of bacterially derived phosphatidic acid with host tissues in BTMUT mice, consistent with lipid penetration into host tissues. These results indicate limited and selective transfer of bacterial lipids to the host.


Subject(s)
Bacteroides thetaiotaomicron , Colon , Gastrointestinal Microbiome , Lipidomics , Animals , Mice , Bacteroides thetaiotaomicron/metabolism , Gastrointestinal Microbiome/physiology , Colon/microbiology , Colon/metabolism , Lipids/analysis , Tandem Mass Spectrometry , Chromatography, Liquid , Lipid Metabolism , Germ-Free Life , Specific Pathogen-Free Organisms , Phosphatidic Acids/metabolism , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sphingolipids/metabolism , Mice, Inbred C57BL , Female
11.
mBio ; 15(5): e0348823, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38534200

ABSTRACT

Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.


Subject(s)
Bacterial Proteins , Bacteroides thetaiotaomicron , Bile , Biofilms , Magnesium , Biofilms/growth & development , Bacteroides thetaiotaomicron/physiology , Bacteroides thetaiotaomicron/metabolism , Magnesium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bile/metabolism , Humans , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Gastrointestinal Microbiome/physiology , Gene Expression Regulation, Bacterial
12.
mBio ; 15(3): e0259923, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38376161

ABSTRACT

The human colon hosts hundreds of commensal bacterial species, many of which ferment complex dietary carbohydrates. To transform these fibers into metabolically accessible compounds, microbes often express a series of dedicated enzymes homologous to the starch utilization system (Sus) encoded in polysaccharide utilization loci (PULs). The genome of Bacteroides thetaiotaomicron (Bt), a common member of the human gut microbiota, encodes nearly 100 PULs, conferring a strong metabolic versatility. While the structures and functions of individual enzymes within the PULs have been investigated, little is known about how polysaccharide complexity impacts the function of Sus-like systems. We here show that the activity of Sus-like systems depends on polysaccharide size, ultimately impacting bacterial growth. We demonstrate the effect of size-dependent metabolism in the context of dextran metabolism driven by the specific utilization system PUL48. We find that as the molecular weight of dextran increases, Bt growth rate decreases and lag time increases. At the enzymatic level, the dextranase BT3087, a glycoside hydrolase (GH) belonging to the GH family 66, is the main GH for dextran utilization, and BT3087 and BT3088 contribute to Bt dextran metabolism in a size-dependent manner. Finally, we show that the polysaccharide size-dependent metabolism of Bt impacts its metabolic output in a way that modulates the composition of a producer-consumer community it forms with Bacteroides fragilis. Altogether, our results expose an overlooked aspect of Bt metabolism that can impact the composition and diversity of microbiota. IMPORTANCE: Polysaccharides are complex molecules that are commonly found in our diet. While humans lack the ability to degrade many polysaccharides, their intestinal microbiota contain bacterial commensals that are versatile polysaccharide utilizers. The gut commensal Bacteroides thetaiotaomicron dedicates roughly 20% of their genomes to the expression of polysaccharide utilization loci for the broad range utilization of polysaccharides. Although it is known that different polysaccharide utilization loci are dedicated to the degradation of specific polysaccharides with unique glycosidic linkages and monosaccharide compositions, it is often overlooked that specific polysaccharides may also exist in various molecular weights. These different physical attributes may impact their processability by starch utilization system-like systems, leading to differing growth rates and nutrient-sharing properties at the community level. Therefore, understanding how molecular weight impacts utilization by gut microbe may lead to the potential design of novel precision prebiotics.


Subject(s)
Bacteroides thetaiotaomicron , Humans , Bacteroides thetaiotaomicron/metabolism , Molecular Weight , Bacteroides/metabolism , Dextrans/metabolism , Gastrointestinal Tract/microbiology , Polysaccharides/metabolism , Starch
13.
ACS Synth Biol ; 13(2): 648-657, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38224571

ABSTRACT

The genus Bacteroides, a predominant group in the human gut microbiome, presents significant potential for microbiome engineering and the development of live biotherapeutics aimed at treating gut diseases. Despite its promising capabilities, tools for effectively engineering Bacteroides species have been limited. In our study, we have made a breakthrough by identifying novel signal peptides in Bacteroides thetaiotaomicron and Akkermansia muciniphila. These peptides facilitate efficient protein transport across cellular membranes in Bacteroides, a critical step for therapeutic applications. Additionally, we have developed an advanced episomal plasmid system. This system demonstrates superior protein secretion capabilities compared to traditional chromosomal integration plasmids, making it a vital tool for enhancing the delivery of therapeutic proteins in Bacteroides species. Initially, the stability of this episomal plasmid posed a challenge; however, we have overcome this by incorporating an essential gene-based selection system. This novel strategy not only ensures plasmid stability but also aligns with the growing need for antibiotic-free selection methods in clinical settings. Our work, therefore, not only provides a more robust secretion system for Bacteroides but also sets a new standard for the development of live biotherapeutics.


Subject(s)
Bacteroides thetaiotaomicron , Bacteroides , Humans , Bacteroides/genetics , Bacteroides/metabolism , Protein Sorting Signals/genetics , Plasmids/genetics , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/metabolism , Protein Transport
14.
J Bacteriol ; 205(11): e0021823, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37874167

ABSTRACT

IMPORTANCE: The human gut microbiota, including Bacteroides, is required for the degradation of otherwise undigestible polysaccharides. The gut microbiota uses polysaccharides as an energy source, and fermentation products such as short-chain fatty acids are beneficial to the human host. This use of polysaccharides is dependent on the proper pairing of a TonB protein with polysaccharide-specific TonB-dependent transporters; however, the formation of these protein complexes is poorly understood. In this study, we examine the role of 11 predicted TonB homologs in polysaccharide uptake. We show that two proteins, TonB4 and TonB6, may be functionally redundant. This may allow for the development of drugs targeting Bacteroides species containing only a TonB4 homolog with limited impact on species encoding the redundant TonB6.


Subject(s)
Bacteroides thetaiotaomicron , Humans , Bacteroides thetaiotaomicron/metabolism , Polysaccharides/metabolism , Bacteroides/genetics
15.
Int J Biol Macromol ; 248: 125785, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37451376

ABSTRACT

Achyranthes bidentata (A. bidentata) is a famous traditional Chinese medicine (TGM) for treatment osteoporosis. Polysaccharides, a major factor for shaping the gut microbiota, are the primary ingredients of A. bidentata. However, bioactivity of A. bidentata polysaccharide on human gut microbiota (HGM) remains unknown. Here, a homogeneous pectic polysaccharide A23-1 with average molecular weight of 93.085 kDa was extracted and purified from A. bidentata. And A23-1 was compsed of rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 7.26: 0.76: 5.12: 2.54: 23.51: 60.81. GC-MS, partial acid hydrolysis and NMR results indicated the backbone of A23-1 was composed of 1, 2, 4-Rhap and 1, 4-GlapA, while the branches were composed of galactose, arabinose, glucose and glucuronic acid. Further, A23-1 was found to be degraded into monosaccharides and fragments. Taking Bacteroides thetaiotaomicron (BT) as a model, we suggested three polysaccharide utilization loci (PULs) might be involved in the A23-1 degradation. Degraded products generated by BO might not support the growth of probiotics. Besides, acetate and propionate as the main end products were generated by Bacteroides spp. and probiotics utilizing A23-1. These findings suggested A23-1 was possible one of food sources of human gut Bacteroides spp.


Subject(s)
Achyranthes , Bacteroides thetaiotaomicron , Humans , Pectins , Achyranthes/chemistry , Galactose , Arabinose/metabolism , Polysaccharides/chemistry , Bacteroides thetaiotaomicron/metabolism , Glucose , Glucuronic Acid
16.
Proc Natl Acad Sci U S A ; 120(27): e2306314120, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37364113

ABSTRACT

Extracellular vesicles are produced in all three domains of life, and their biogenesis has common ancient origins in eukaryotes and archaea. Although bacterial vesicles were discovered several decades ago and multiple roles have been attributed to them, no mechanism has been established for vesicles biogenesis in bacteria. For this reason, there is a significant level of skepticism about the biological relevance of bacterial vesicles. Bacteroides thetaiotaomicron (Bt), a prominent member of the human intestinal microbiota, produces significant amounts of outer membrane vesicles (OMVs) which have been proposed to play key physiological roles. Here, we employed a dual marker system, consisting of outer membrane- and OMV-specific markers fused to fluorescent proteins to visualize OMV biogenesis by time-lapse microscopy. Furthermore, we performed comparative proteomic analyses to show that, in Bt, the OMV cargo is adapted for the optimal utilization of different polysaccharides. We also show that a negatively charged N-terminal motif acts as a signal for protein sorting into OMVs irrespective of the nutrient availability. Our results demonstrate that OMV production is the result of a highly regulated process in Bt.


Subject(s)
Bacteroides thetaiotaomicron , Extracellular Vesicles , Humans , Proteomics , Extracellular Vesicles/metabolism , Bacteroides thetaiotaomicron/metabolism , Diet , Polysaccharides/metabolism , Bacterial Outer Membrane Proteins/metabolism
17.
Nature ; 618(7965): 583-589, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286596

ABSTRACT

Bacteroidetes are abundant members of the human microbiota, utilizing a myriad of diet- and host-derived glycans in the distal gut1. Glycan uptake across the bacterial outer membrane of these bacteria is mediated by SusCD protein complexes, comprising a membrane-embedded barrel and a lipoprotein lid, which is thought to open and close to facilitate substrate binding and transport. However, surface-exposed glycan-binding proteins and glycoside hydrolases also play critical roles in the capture, processing and transport of large glycan chains. The interactions between these components in the outer membrane are poorly understood, despite being crucial for nutrient acquisition by our colonic microbiota. Here we show that for both the levan and dextran utilization systems of Bacteroides thetaiotaomicron, the additional outer membrane components assemble on the core SusCD transporter, forming stable glycan-utilizing machines that we term utilisomes. Single-particle cryogenic electron microscopy structures in the absence and presence of substrate reveal concerted conformational changes that demonstrate the mechanism of substrate capture, and rationalize the role of each component in the utilisome.


Subject(s)
Bacterial Outer Membrane Proteins , Bacterial Outer Membrane , Bacteroides thetaiotaomicron , Gastrointestinal Tract , Polysaccharides , Humans , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacteroides thetaiotaomicron/enzymology , Bacteroides thetaiotaomicron/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Glycoside Hydrolases/metabolism , Polysaccharides/metabolism
18.
Chem Biol Drug Des ; 102(3): 486-499, 2023 09.
Article in English | MEDLINE | ID: mdl-37062591

ABSTRACT

The α-amylase, SusG, is a principal component of the Bacteroides thetaiotaomicron (Bt) starch utilization system (Sus) used to metabolize complex starch molecules in the human gastrointestinal (GI) tract. We previously reported the non-microbicidal growth inhibition of Bt by the acarbose-mediated arrest of the Sus as a potential therapeutic strategy. Herein, we report a computational approach using density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulation to explore the interactive mechanism between acarbose and SusG at the atomic level in an effort to understand how acarbose shuts down the Bt Sus. The docking analysis reveals that acarbose binds orthosterically to SusG with a binding affinity of -8.3 kcal/mol. The MD simulation provides evidence of conformational variability of acarbose at the active site of SusG and also suggests that acarbose interacts with the main catalytic residues via a general acid-base double-displacement catalytic mechanism. These results suggest that small molecule competitive inhibition against the SusG protein could impact the entire Bt Sus and eliminate or reduce the system's ability to metabolize starch. This computational strategy could serve as a potential avenue for structure-based drug design to discover other small molecules capable of inhibiting the Sus of Bt with high potency, thus providing a holistic approach for selective modulation of the GI microbiota.


Subject(s)
Bacteroides thetaiotaomicron , Starch , Humans , Starch/metabolism , Bacteroides thetaiotaomicron/metabolism , Amylases/metabolism , Acarbose/pharmacology , Molecular Docking Simulation
19.
J Mol Evol ; 91(4): 482-491, 2023 08.
Article in English | MEDLINE | ID: mdl-37022443

ABSTRACT

TenA thiamin-degrading enzymes are commonly found in prokaryotes, plants, fungi and algae and are involved in the thiamin salvage pathway. The gut symbiont Bacteroides thetaiotaomicron (Bt) produces a TenA protein (BtTenA) which is packaged into its extracellular vesicles. An alignment of BtTenA protein sequence with proteins from different databases using the basic local alignment search tool (BLAST) and the generation of a phylogenetic tree revealed that BtTenA is related to TenA-like proteins not only found in a small number of intestinal bacterial species but also in some aquatic bacteria, aquatic invertebrates, and freshwater fish. This is, to our knowledge, the first report describing the presence of TenA-encoding genes in the genome of members of the animal kingdom. By searching metagenomic databases of diverse host-associated microbial communities, we found that BtTenA homologues were mostly represented in biofilms present on the surface of macroalgae found in Australian coral reefs. We also confirmed the ability of a recombinant BtTenA to degrade thiamin. Our study shows that BttenA-like genes which encode a novel sub-class of TenA proteins are sparingly distributed across two kingdoms of life, a feature of accessory genes known for their ability to spread between species through horizontal gene transfer.


Subject(s)
Bacteroides thetaiotaomicron , Humans , Animals , Bacteroides thetaiotaomicron/metabolism , Phylogeny , Australia , Thiamine/metabolism
20.
Food Chem ; 403: 134436, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36358099

ABSTRACT

Glutamate decarboxylase catalyzes the conversion of glutamate to γ-aminobutyric acid, which plays a vital role in the gut-brain axis. Herein, a novel glutamate decarboxylase from Bacteroides thetaiotaomicron (BTGAD) was heterologously expressed. BTGAD possessed high catalytic efficiency at 60℃ and pH 3.6. As pH response, N-terminal sequence (NTS), C-terminal sequence (CTS), and ß-hairpin in BTGAD coordinately regulated its activity under different pH. NTS folded into a loop under acidic pH, and the truncation of NTS severely reduced its activity to 4.2%. While CTS occupied the active site under neutral pH and became disordered to release the inhibition effect under acidic conditions. The ß-hairpin, located near the active site, swung and formed open and closed conformations, which acted as an activity switch. This study provides the molecular basis for the coordinated regulation mechanism of BTGAD and lays a theoretical foundation for understanding the metabolism of dietary glutamate and its interaction relationships with the gut-brain axis.


Subject(s)
Bacteroides thetaiotaomicron , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/metabolism , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Catalytic Domain , Hydrogen-Ion Concentration , Glutamates
SELECTION OF CITATIONS
SEARCH DETAIL