Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 661
Filter
1.
PLoS One ; 19(2): e0297280, 2024.
Article in English | MEDLINE | ID: mdl-38346057

ABSTRACT

Bartonellosis refers to disease caused by the Bartonella genus of bacteria. The breadth of disease manifestations associated with Bartonella is currently expanding and includes regional lymphadenopathy, rheumatic, ocular, and neurological disorders. The dearth of knowledge regarding diagnosis, treatment and pathogenesis of this disease can be partially attributed to the lack of a reliable small animal model for the disease. For this study, Bartonella henselae, the most common species associated with human disease, was injected into Swiss Webster (SW) mice. When the outcome indicated that productive infection did not occur, SCID/Beige (immune compromised) mice were inoculated. While SW mice may potentially harbor an acute infection, less than 10 days in length, the SCID/Beige model provided a sustained infection lasting up to 30-days. These data indicate that SCID/Beige mice can provide a model to study Bartonella infection, therapeutics, and vector dynamics in the future.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Cat-Scratch Disease , Humans , Mice , Animals , Cat-Scratch Disease/diagnosis , Mice, SCID , Bartonella Infections/diagnosis , Bartonella Infections/microbiology
2.
Zoonoses Public Health ; 71(4): 416-428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38419369

ABSTRACT

AIMS: Rat-associated zoonotic pathogen transmission at the human-wildlife interface is a public health concern in urban environments where Norway rats (Rattus norvegicus) thrive on abundant anthropogenic resources and live in close contact with humans and other animal species. To identify potential factors influencing zoonotic pathogen occurrence in rats, we investigated associations between environmental and sociodemographic factors and Leptospira interrogans and Bartonella spp. infections in rats from Windsor, Ontario, Canada, while controlling for the potential confounding effects of animal characteristics (i.e., sexual maturity and body condition). METHODS AND RESULTS: Between November 2018 and June 2021, 252 rats were submitted by collaborating pest control professionals. Kidney and spleen samples were collected for L. interrogans and Bartonella spp. PCR and sequencing, respectively. Of the rats tested by PCR, 12.7% (32/252) were positive for L. interrogans and 16.3% (37/227) were positive for Bartonella species. Associations between infection status and environmental and sociodemographic variables of interest were assessed via mixed multivariable logistic regression models with a random intercept for social group and fixed effects to control for sexual maturity and body condition in each model. The odds of L. interrogans infection were significantly higher in rats from areas with high building density (odds ratio [OR]: 3.76; 95% CI: 1.31-10.79; p = 0.014), high human population density (OR: 3.31; 95% CI: 1.20-9.11; p = 0.021), high proportion of buildings built in 1960 or before (OR: 11.21; 95% CI: 2.06-60.89; p = 0.005), and a moderate number of reports of uncollected garbage compared to a low number of reports (OR: 4.88; 95% CI: 1.01-23.63; p = 0.049). A negative association was observed between median household income and Bartonella spp. infection in rats (OR: 0.26; 95% CI: 0.08-0.89; p = 0.031). CONCLUSIONS: Due to the complexity of the ecology of rat-associated zoonoses, consideration of environmental and sociodemographic factors is of critical importance to better understand the nuances of host-pathogen systems and inform how urban rat surveillance and intervention efforts should be distributed within cities.


Subject(s)
Bartonella Infections , Bartonella , Rodent Diseases , Zoonoses , Animals , Rats , Ontario/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella/isolation & purification , Bartonella/genetics , Rodent Diseases/microbiology , Rodent Diseases/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Leptospirosis/microbiology , Humans , Leptospira interrogans/isolation & purification , Male , Sociodemographic Factors , Female , Environment
3.
Parasit Vectors ; 17(1): 48, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303085

ABSTRACT

BACKGROUND: Cats are the primary reservoirs of the bacterium Bartonella henselae, the main cause of cat-scratch disease in humans. The main vector of the bacterium is the cat flea, Ctenocephalides felis. In southeastern Europe, data are lacking on the prevalence of B. henselae infection in cats, the strains of B. henselae involved and the risk factors associated with the infection. METHODS: Blood samples collected in ethylenediaminetetraacetic acid-containing tubes from 189 domestic cats (156 pet cats and 33 stray cats) from Zagreb, the capital city of Croatia, and 10 counties throughout Croatia were cultured for Bartonella spp. Following culture, bacterial isolates were genotyped at eight loci after using PCR to amplify 16S ribosomal RNA (rRNA) and the internal transcribed spacer region between the 16S and 23S rRNA sequences. Univariate and multivariate logistic regression were used to identify risk factors for B. henselae infection in cats. RESULTS: Bartonella spp. was detected in 31 cats (16.4%), and subsequent genotyping at the eight loci revealed B. henselae in all cases. Thirty complete multilocus sequence typing profiles were obtained, and the strains were identified as four sequence types that had been previously reported, namely ST5 (56.7%), ST6 (23.3%), ST1 (13.3%) and ST24 (3.3%), as well as a novel sequence type, ST33 (3.3%). The univariate analysis revealed a significantly higher risk of B. henselae infection in cats residing in coastal areas of Croatia (odds ratio [OR] 2.592, 95% confidence interval [CI] 1.150-5.838; P = 0.0191) and in cats with intestinal parasites (OR 3.207, 95% CI 1.088-9.457; P = 0.0279); a significantly lower risk was identified in cats aged > 1 year (OR 0.356, 95% CI 0.161-0.787; P = 0.0247) and in cats sampled between April and September (OR 0.325, 95% CI 0.147-0.715; P = 0.005). The multivariate analysis that controlled for age showed a positive association with the presence of intestinal parasites (OR 4.241, 95% CI 1.243-14.470; P = 0.0119) and coastal residence (OR 2.567, 95% CI 1.114-5.915; P = 0.0216) implying increased risk of infection, and a negative association with sampling between April and September (OR 0.379, 95% CI 0.169-0.848; P = 0.018) implying a decreased risk of infection. After controlling for the season, an increased risk of infection remained for the coastal region (OR 2.725, 95% CI 1.200-6.186; P = 0.012). CONCLUSIONS: Bartonella henselae is prevalent throughout Croatia and is a public health threat. Environmental and host factors can significantly affect the risk of infection, and these should be explored in more detail. The presence of intestinal parasites highlights the need to eliminate the flea vector, Ctenocephalides felis, as the most effective approach to control infections in cats and humans.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Cat Diseases , Cat-Scratch Disease , Ctenocephalides , Animals , Cats , Humans , Cat-Scratch Disease/epidemiology , Cat-Scratch Disease/microbiology , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Croatia/epidemiology , Bartonella henselae/genetics , Risk Factors , Ctenocephalides/microbiology , Cat Diseases/epidemiology
4.
Prev Vet Med ; 225: 106135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394962

ABSTRACT

The aim of this scoping review was to describe the zoonotic bacterial pathogens already reported and their frequency in different bat species. Six databases were searched, without restriction on the year or location where the studies were carried out. Based on the inclusion and exclusion criteria, 146 studies that were published between 1964 and 2020 (most after 2005) were selected. In these studies, 102 zoonotic bacterial genera were described in different samples of fourteen bat families in 55 countries, suggesting the possible role of bats as hosts for these pathogens. The pathogens mainly identified in bats were Bartonella spp., Leptospira spp. and Staphylococcus spp. In conclusion, the information provided by this scoping review expands the knowledge about zoonotic bacterial pathogens already identified in bats, which can guide epidemiological surveillance policies for these pathogens in different countries.


Subject(s)
Bartonella Infections , Bartonella , Chiroptera , Humans , Animals , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Phylogeny , Bacteria
5.
Braz J Infect Dis ; 27(6): 103701, 2023.
Article in English | MEDLINE | ID: mdl-37980941

ABSTRACT

Leprosy reactions are an acute inflammatory phenomenon that can arise before diagnosis, during treatment, or after cure of leprosy. These reactions are considered one of the main diseases that cause physical disabilities. Immunosuppressive treatment for these immune responses makes these patients susceptible to coinfections, which can trigger new leprosy reactions. The main objective of this study was to evaluate the occurrence of infection by Bartonella sp. in blood samples from 47 patients who had untreatable episodes of type 2 leprosy reactions for more than six months, comparing them with a control group. Cultures and molecular methods (PCR) were used. Amplicons from species-specific reactions and sequencing showed a higher prevalence of Bartonella henselae infection in patients, 19/47 (40.4 %), compared to control, 9/50 (18.0 %), p = 0.0149. Five patients accepted treatment for coinfection, and all showed improvement in leprosy reactions with treatment for B. henselae infection. We conclude that these bacteria can trigger chronic reactions of type 2 leprosy and should be investigated in these patients. SUMMARY LINE: Patients who have chronic type 2 leprosy reactions are more susceptible to Bartonella henselae infection than controls: 19/47 (40.4 %) compared 9/50 (18.0 %), p = 0.0149.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Cat-Scratch Disease , Coinfection , Leprosy , Humans , Bartonella henselae/genetics , Cat-Scratch Disease/diagnosis , Cat-Scratch Disease/microbiology , Bartonella/genetics , Polymerase Chain Reaction/methods , Bartonella Infections/diagnosis , Bartonella Infections/epidemiology , Bartonella Infections/microbiology
6.
BMJ Case Rep ; 16(11)2023 11 21.
Article in English | MEDLINE | ID: mdl-37989328

ABSTRACT

Perimyocarditis involves inflammation of the heart muscle and surrounding tissue, causing reduced left ventricular ejection fraction. Typically viral, but occasionally bacterial, this condition can arise from Bartonella henselae, a rare yet potentially serious pathogen that can lead to cardiac inflammation and subsequent heart failure. Since this bacterium is mainly associated with cat scratch disease-which is self-limiting and has a mild disease course-B. henselae's potential role in cardiac disease is underestimated. We present a mid-30s man, immunocompetent, who presented to the emergency department with acute heart failure due to B. henselae-associated perimyocarditis. Despite not recalling any scratches or bites from cats, the patient had been living with cats, which likely exposed him. This case highlights the varied clinical presentations of B. henselae-associated heart disease and underscores the importance of considering this pathogen as a potential cause of perimyocarditis, particularly in individuals with exposure to cats.


Subject(s)
Bartonella Infections , Bartonella henselae , Cat-Scratch Disease , Heart Diseases , Heart Failure , Humans , Male , Bartonella Infections/microbiology , Cat-Scratch Disease/complications , Cat-Scratch Disease/diagnosis , Cat-Scratch Disease/drug therapy , Inflammation , Stroke Volume , Ventricular Function, Left , Adult
7.
PLoS Negl Trop Dis ; 17(10): e0011615, 2023 10.
Article in English | MEDLINE | ID: mdl-37815991

ABSTRACT

Bartonella bacilliformis is a Gram-negative, aerobic bacterium and the known causal agent of Carrion's disease, still considered a neglected disease. There is limited information about the nucleotide sequences of this bacterium in international databases, and few studies have addressed the genetic diversity of B. bacilliformis. We analyzed a total of 20 isolates of B. bacilliformis from the Peruvian regions of Ancash and Cajamarca. Three genes (ialB, gltA, and rpoB) were sequenced in each isolate and nucleotide sequences retrieved from GenBank (16 B. bacilliformis genomes) were also included in the study. All this information was merged in order to obtain clearer evidence of the phylogenetic relationships of B. bacilliformis. In the phylogenetic analysis conducted with the concatenated markers, four isolates (B.b-1, B. b-3, B. b- 7, B.b-8) from the Ancash region were observed to form a subgroup different from B. bacilliformis type strain KC583, showing dissimilarity levels of 5.96% (ialB), 3.69% (gltA) and 3.04% (rpoB). Our results suggest that B. bacilliformis consists of two different subgroups. Future investigations are needed to establish the taxonomic status of these subgroups.


Subject(s)
Bartonella Infections , Bartonella bacilliformis , Bartonella , Humans , Peru/epidemiology , Phylogeny , Polymorphism, Single Nucleotide , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella/genetics
8.
Microb Ecol ; 86(4): 2910-2922, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37656196

ABSTRACT

Bats harbor diverse intracellular Bartonella bacteria, but there is limited understanding of the factors that influence transmission over time. Investigation of Bartonella dynamics in bats could reveal general factors that control transmission of multiple bat-borne pathogens, including viruses. We used molecular methods to detect Bartonella DNA in paired bat (Pteropus medius) blood and bat flies in the family Nycteribiidae collected from a roost in Faridpur, Bangladesh between September 2020 and January 2021. We detected high prevalence of Bartonella DNA in bat blood (35/55, 64%) and bat flies (59/60, 98%), with sequences grouping into three phylogenetic clades. Prevalence in bat blood increased over the study period (33% to 90%), reflecting an influx of juvenile bats in the population and an increase in the prevalence of bat flies. Discordance between infection status and the clade/genotype of detected Bartonella was also observed in pairs of bats and their flies, providing evidence that bat flies take blood meals from multiple bat hosts. This evidence of bat fly transfer between hosts and the changes in Bartonella prevalence during a period of increasing nycteribiid density support the role of bat flies as vectors of bartonellae. The study provides novel information on comparative prevalence and genetic diversity of Bartonella in pteropodid bats and their ectoparasites, as well as demographic factors that affect Bartonella transmission and potentially other bat-borne pathogens.


Subject(s)
Bartonella Infections , Bartonella , Chiroptera , Animals , Phylogeny , Bangladesh/epidemiology , Genetic Variation , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Bartonella/genetics , DNA
9.
Microbiol Spectr ; 11(3): e0512622, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37227273

ABSTRACT

Bacteria of the genus Bartonella, a member of the Alphaproteobacteria, are fastidious, Gram-negative, aerobic bacilli that comprise numerous species, subspecies, and genotypes. Bartonella henselae, with a worldwide distribution, infects cats, dogs, horses, humans, and other mammals. Diagnostically, direct detection of Bartonella henselae in patient blood specimens by culture or molecular methods is required to confirm infection with this bacterium. Enrichment blood culture combined with quantitative PCR (qPCR) or ddPCR enhances the sensitivity of direct detection. The addition of sheep blood to liquid culture media increased the Bartonella henselae DNA concentration compared to controls, additionally improving PCR direct detection sensitivity. IMPORTANCE This study aims to improve diagnostic detection of Bartonella henselae. Patient samples are combined with enriched bacterial cultures aimed at growing Bartonella henselae for the best possible chance at detection. However, current Bartonella growth methods could be improved. The DNA extraction method used by most laboratories should also be optimized. Sheep blood was added to increase the growth of Bartonella henselae and multiple DNA extraction methods were to be compared to each other.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Humans , Animals , Horses/genetics , Dogs , Sheep , Bartonella henselae/genetics , DNA, Bacterial/genetics , DNA, Bacterial/analysis , Bartonella Infections/diagnosis , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Bartonella/genetics , Dietary Supplements , Mammals
10.
J Med Case Rep ; 17(1): 143, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37072873

ABSTRACT

BACKGROUND: Blood culture-negative infective endocarditis is a potentially severe disease that can be associated with infectious agents such as Bartonella spp., Coxiella burnetti, Tropheryma whipplei, and some fungi. CASE PRESENTATION: Reported here are two cases of blood culture-negative infective endocarditis in patients with severe aortic and mitral regurgitation in Brazil; the first case is a 47-year-old white man and the second is a 62-year-old white woman. Bartonella henselae deoxyribonucleic acid was detectable in the blood samples and cardiac valve with vegetation paraffin-fixed tissue samples. Additionally, an investigation was carried out on patients' pets, within the context of One Health, and serum samples collected from cats and dogs were reactive by indirect immunofluorescence assay. CONCLUSIONS: Even though the frequency of bartonellosis in Brazil is unknown, physicians should be aware of the possibility of blood culture-negative infective endocarditis caused by Bartonella, particularly in patients with weight loss, kidney changes, and epidemiological history for domestic animals.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Endocarditis, Bacterial , Endocarditis , Humans , Animals , Cats , Dogs , Endocarditis, Bacterial/microbiology , Bartonella Infections/complications , Bartonella Infections/diagnosis , Bartonella Infections/microbiology , Endocarditis/complications
11.
Emerg Infect Dis ; 29(3): 467-476, 2023 03.
Article in English | MEDLINE | ID: mdl-36823096

ABSTRACT

Molecular methods can enable rapid identification of Bartonella spp. infections, which are difficult to diagnose by using culture or serology. We analyzed clinical test results of PCR that targeted bacterial 16S rRNA hypervariable V1-V2 regions only or in parallel with PCR of Bartonella-specific ribC gene. We identified 430 clinical specimens infected with Bartonella spp. from 420 patients in the United States. Median patient age was 37 (range 1-79) years; 62% were male. We identified B. henselae in 77%, B. quintana in 13%, B. clarridgeiae in 1%, B. vinsonii in 1%, and B. washoensis in 1% of specimens. B. quintana was detected in 83% of cardiac specimens; B. henselae was detected in 34% of lymph node specimens. We detected novel or uncommon Bartonella spp. in 9 patients. Molecular diagnostic testing can identify Bartonella spp. infections, including uncommon and undescribed species, and might be particularly useful for patients who have culture-negative endocarditis or lymphadenitis.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Humans , Male , United States , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Female , RNA, Ribosomal, 16S/genetics , Bartonella Infections/microbiology , Polymerase Chain Reaction/methods , Nucleic Acid Amplification Techniques , Bartonella henselae/genetics
12.
Vector Borne Zoonotic Dis ; 23(1): 9-17, 2023 01.
Article in English | MEDLINE | ID: mdl-36633562

ABSTRACT

Background: Bartonella species are fastidious gram-negative vector-borne bacteria with a wide range of mammalian reservoirs. While it is understood that some species of Bartonella are human pathogens, the extent of human exposure to Bartonella species (both pathogenic and nonpathogenic) is yet to be fully understood. Materials and Methods: To this end, residual sera from participants enrolled in undifferentiated fever studies in Cambodia, Ghana, Laos, and Peru were screened for the presence of IgG antibodies against Bartonella quintana and Bartonella henselae, using the FOCUS diagnostics Dual Spot- Bartonella IgG Immunofluorescence assay. Forty-eight patients with suspected or confirmed Bartonella bacilliformis exposure or infection in Peru were screened to assess cross-reactivity of the FOCUS assay for IgG against other Bartonella species. Results: Ten of 13 patients with confirmed B. bacilliformis infection were Bartonella-specific IgG positive, and overall, 36/48 of the samples were positive. In addition, 79/206, 44/200, 101/180, and 57/100 of the samples from Peru, Laos, Cambodia, and Ghana, respectively, were Bartonella-specific IgG positive. Furthermore, ectoparasite pools from Cambodia, Laos, and Peru were tested using quantitative real-time PCR (qPCR) for the presence of Bartonella DNA. Of the sand fly pools collected in Peru, 0/196 were qPCR positive; 15/140 flea pools collected in Cambodia were qPCR positive; while 0/105 ticks, 0/22 fleas, and 0/3 louse pools collected in Laos tested positive for Bartonella DNA. Conclusion: Evidence of Bartonella in fleas from Cambodia supports the possibility that humans are exposed to Bartonella through this traditional vector. However, Bartonella species were not found in fleas, ticks, or lice from Laos, or sand flies from Peru. This could account for the lower positive serology among the population in Laos and the strictly localized nature of B. bacilliformis infections in Peru. Human exposure to the Bartonella species and Bartonella as a human pathogen warrants further investigation.


Subject(s)
Bartonella Infections , Bartonella , Flea Infestations , Siphonaptera , Ticks , Humans , Animals , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Peru/epidemiology , Laos/epidemiology , Cambodia/epidemiology , Ghana , Flea Infestations/microbiology , Flea Infestations/veterinary , Siphonaptera/microbiology , Ticks/microbiology , Mammals
13.
Microb Ecol ; 85(1): 298-306, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34981145

ABSTRACT

We investigated the prevalence of Bartonella in 123 northern bats (Eptesicus nilssonii) and their ectoparasites from Hokkaido, Japan. A total of 174 bat fleas (Ischnopsyllus needhami) and two bat bugs (Cimex japonicus) were collected from the bats. Bartonella bacteria were isolated from 32 (26.0%) of 123 bats. Though Bartonella DNA was detected in 79 (45.4%) of the bat fleas, the bacterium was isolated from only one bat flea (0.6%). The gltA sequences of the isolates were categorized into genotypes I, II, and III, which were found in both bats and their fleas. The gltA sequences of genotypes I and II showed 97.6% similarity with Bartonella strains from a Finnish E. nilssonii and a bat flea from a E. serotinus in the Netherlands. The rpoB sequences of the genotypes showed 98.9% similarity with Bartonella strain 44722 from E. serotinus in Republic of Georgia. The gltA and rpoB sequences of genotype III showed 95.9% and 96.7% similarity with Bartonella strains detected in shrews in Kenya and France, respectively. Phylogenetic analysis revealed that Bartonella isolates of genotypes I and II clustered with Bartonella strains from Eptesicus bats in Republic of Georgia and Finland, Myotis bats in Romania and the UK, and a bat flea from an Eptesicus bat in Finland. In contrast, genotype III formed a clade with B. florencae, B. acomydis, and B. birtlesii. These data suggest that northern bats in Japan harbor two Bartonella species and the bat flea serves as a potential vector of Bartonella transmission among the bats.


Subject(s)
Bartonella Infections , Bartonella , Chiroptera , Animals , Chiroptera/microbiology , Phylogeny , Prevalence , Japan/epidemiology , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Genetic Variation
14.
Transbound Emerg Dis ; 69(6): 3881-3895, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36404584

ABSTRACT

Wild rats can host various zoonotic pathogens. Detection of these pathogens is commonly performed using molecular techniques targeting one or a few specific pathogens. However, this specific way of surveillance could lead to (emerging) zoonotic pathogens staying unnoticed. This problem may be overcome by using broader microbiome-profiling techniques, which enable broad screening of a sample's bacterial or viral composition. In this study, we investigated if 16S rRNA gene amplicon sequencing would be a suitable tool for the detection of zoonotic bacteria in wild rats. Moreover, we used virome-enriched (VirCapSeq) sequencing to detect zoonotic viruses. DNA from kidney samples of 147 wild brown rats (Rattus norvegicus) and 42 black rats (Rattus rattus) was used for 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable region. Blocking primers were developed to reduce the amplification of rat host DNA. The kidney bacterial composition was studied using alpha- and beta-diversity metrics and statistically assessed using PERMANOVA and SIMPER analyses. From the sequencing data, 14 potentially zoonotic bacterial genera were identified from which the presence of zoonotic Leptospira spp. and Bartonella tribocorum was confirmed by (q)PCR or Sanger sequencing. In addition, more than 65% of all samples were dominated (>50% reads) by one of three bacterial taxa: Streptococcus (n = 59), Mycoplasma (n = 39) and Leptospira (n = 25). These taxa also showed the highest contribution to the observed differences in beta diversity. VirCapSeq sequencing in rat liver samples detected the potentially zoonotic rat hepatitis E virus in three rats. Although 16S rRNA gene amplicon sequencing was limited in its capacity for species level identifications and can be more difficult to interpret due to the influence of contaminating sequences in these low microbial biomass samples, we believe it has potential to be a suitable pre-screening method in the future to get a better overview of potentially zoonotic bacteria that are circulating in wildlife.


Subject(s)
Bartonella Infections , Microbiota , Rodent Diseases , Animals , Rats , RNA, Ribosomal, 16S/genetics , Animals, Wild , Bacteria/genetics , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Microbiota/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology
15.
Transbound Emerg Dis ; 69(6): 3906-3916, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36355627

ABSTRACT

Bartonella are vector-borne gram-negative facultative intracellular bacteria causing emerging infectious diseases worldwide, and two thirds of known Bartonella species are carried by rodents. We captured rodents, shrews and rodent ectoparasitic mites in rural areas of Qingdao City, Shandong Province, China from 2012 to 2021 and used the animal spleen tissues for the PCR amplification of Bartonella gltA and rpoB genes. PCR showed 9.4% (40/425) rodents, and 5.1% (12/235) shrews were positive for Bartonella. Seven Bartonella species including three novel species were identified in five rodent species and one shrew species, indicating the abundance and genetic diversity of Bartonella in rodents and shrews. The infection rate of each Bartonella species in the animal species was as below: novel Candidatus Bartonella crocidura in shrews Crocidura lasiura (5.1%, 12/235); novel Candidatus Bartonella cricetuli in hamsters Tscherskia triton (20%, 9/45); novel Candidatus Bartonella muris in striped field mice Apodemus agrarius (4.2%, 7/168) and house mice Mus musculus (1.5%, 2/135); Bartonella fuyuanensis in striped field mice (8.9%, 15/168) and house mice (0.7%, 1/135); Bartonella rattimassiliensis and Bartonella tribocorum in brown rats Rattus norvegicus (6.7%, 3/45 and 4.2%, 2/45, respectively); Bartonella queenslandensis in Chinese white-bellied rat Niviventer confucianus (12.5%, 1/8). These results suggest that Bartonella infected a variety of rodent and shrew species with high infection rate, but each Bartonella specie is restricted to infect only one or a few genetically closely related rodent species. In addition, Candidatus Bartonella cricetuli, Candidatus Bartonella muris and Bartonella coopersplainsensis were found in chigger Walchia micropelta (33.3%, 3/9), and B. fuyuanensis were found in chigger Leptotrombidium intermedium (4.1%, 1/24), indicating chiggers may be reservoirs of Bartonella. In conclusion, abundant genetic diversified Bartonella species are found to infect rodents, shrews and chiggers, but each Bartonella species has a strict rodent animal host specificity; and chigger mites may play a role in Bartonella transmission.


Subject(s)
Bartonella Infections , Bartonella , Rodent Diseases , Rats , Animals , Rodentia/microbiology , Shrews/microbiology , Host Specificity , Disease Reservoirs/microbiology , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Murinae , China/epidemiology , Genetic Variation , Rodent Diseases/epidemiology , Rodent Diseases/microbiology
16.
Parasit Vectors ; 15(1): 305, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36038877

ABSTRACT

BACKGROUND: Bartonella spp. are vector-borne pathogens that cause zoonotic infections in humans. One of the most well-known of these is cat-scratch disease caused by Bartonella henselae and Bartonella clarridgeiae, with cats being the major reservoir for these two bacteria. Izmir, Turkey is home to many stray cats, but their potential role as a reservoir for the transmission of Bartonella to humans has not been investigated yet. Therefore, the aim of this study was to investigate the prevalence of Bartonella species and their genetic diversity in stray cats living in Izmir. METHODS: Molecular prevalence of Bartonella spp. in stray cats (n = 1012) was investigated using a PCR method targeting the 16S-23S internal transcribed spacer gene (ITS), species identification was performed by sequencing and genetic diversity was evaluated by haplotype analysis. RESULTS: Analysis of the DNA extracted from 1012 blood samples collected from stray cats revealed that 122 samples were Bartonella-positive, which is a molecular prevalence of 12.05% (122/1012; 95% confidence interval [CI] 10.1-14.2%). Among the Bartonella-positive specimens, 100 (100/122; 81.96%) were successfully sequenced, and B. henselae (45/100; 45%), B. clarridgeiae (29/100; 29%) and Bartonella koehlerae (26/100; 26%) were identified by BLAST and phylogenetic analyses. High genetic diversity was detected in B. clarridgeiae with 19 haplotypes, followed by B. henselae (14 haplotypes) and B. koehlerae (8 haplotypes). CONCLUSIONS: This comprehensive study analyzing a large number of samples collected from stray cats showed that Bartonella species are an important source of infection to humans living in Izmir. In addition, high genetic diversity was detected within each Bartonella species.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Cat Diseases , Animals , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Bartonella henselae/genetics , Cat Diseases/epidemiology , Cats , Genetic Variation , Phylogeny , Prevalence , Turkey/epidemiology
17.
Emerg Infect Dis ; 28(8): 1659-1663, 2022 08.
Article in English | MEDLINE | ID: mdl-35876624

ABSTRACT

We investigated the effects of culling on Bartonella spp. bacteria carriage among urban rats in Canada. We found that the odds of Bartonella spp. carriage increased across city blocks except those in which culling occurred. Removing rats may have prevented an increase in Bartonella spp. prevalence, potentially lowering human health risks.


Subject(s)
Bartonella Infections , Bartonella , Rodent Diseases , Animals , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , British Columbia/epidemiology , Humans , Rats , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Zoonoses/microbiology
18.
Emerg Microbes Infect ; 11(1): 1764-1767, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35736664

ABSTRACT

Bartonella species are fastidious, aerobic bacteria that are transmitted by blood-sucking arthropods. Bartonella spp. are responsible for cat scratch disease, Carrion's disease, bacillary angiomatosis and trench fever. On the other hand, Bartonella vinsonii is rarely reported in the literature and there exist a few reports of systemic infection caused by Bartonella vinsonii in patients with acquired immunodeficiency syndrome. A 31-year-old male (diagnosed with AIDS six years ago) had persistent fever and ulceration in the right knee. The elevated levels of inflammatory markers suggested an infectious aetiology. Despite the negative findings of blood culture, metagenomic Next-Generation Sequencing of plasma detected Bartonella vinsonii. The polymerase chain reaction of whole blood and Sanger sequencing confirmed the mNGS findings. Immunohistochemical staining had later suggested bacillary angiomatosis, which was consistent with Bartonella infection. Following antibiotic treatment, the ulcers subsided significantly, but a high fever persisted. The patient died due to sudden respiratory failure.


Subject(s)
Angiomatosis, Bacillary , Bartonella Infections , Bartonella , HIV Infections , Angiomatosis, Bacillary/diagnosis , Angiomatosis, Bacillary/microbiology , Bartonella/genetics , Bartonella Infections/diagnosis , Bartonella Infections/microbiology , HIV Infections/complications , High-Throughput Nucleotide Sequencing , Humans , Male
19.
Proc Natl Acad Sci U S A ; 119(25): e2202059119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35714289

ABSTRACT

The bacterial genus Bartonella comprises numerous emerging pathogens that cause a broad spectrum of disease manifestations in humans. The targets and mechanisms of the anti-Bartonella immune defense are ill-defined and bacterial immune evasion strategies remain elusive. We found that experimentally infected mice resolved Bartonella infection by mounting antibody responses that neutralized the bacteria, preventing their attachment to erythrocytes and suppressing bacteremia independent of complement or Fc receptors. Bartonella-neutralizing antibody responses were rapidly induced and depended on CD40 signaling but not on affinity maturation. We cloned neutralizing monoclonal antibodies (mAbs) and by mass spectrometry identified the bacterial autotransporter CFA (CAMP-like factor autotransporter) as a neutralizing antibody target. Vaccination against CFA suppressed Bartonella bacteremia, validating CFA as a protective antigen. We mapped Bartonella-neutralizing mAb binding to a domain in CFA that we found is hypervariable in both human and mouse pathogenic strains, indicating mutational antibody evasion at the Bartonella subspecies level. These insights into Bartonella immunity and immune evasion provide a conceptual framework for vaccine development, identifying important challenges in this endeavor.


Subject(s)
Antibodies, Neutralizing , Antigens, Bacterial , Bacteremia , Bartonella Infections , Bartonella , Type V Secretion Systems , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacteremia/immunology , Bacteremia/microbiology , Bacteremia/prevention & control , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/therapeutic use , Bartonella/genetics , Bartonella/immunology , Bartonella Infections/immunology , Bartonella Infections/microbiology , Bartonella Infections/prevention & control , Cloning, Molecular , Immune Evasion , Mice , Type V Secretion Systems/immunology , Vaccination
20.
Acta Trop ; 232: 106496, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35508269

ABSTRACT

Bartonelloses are zoonoses widely dispersed throughout the world caused by bacteria of the genus Bartonella. Domestic cats play an important role in the epidemiology of bartonelloses, since these animals are considered natural hosts of B. henselae, B. koehlerae and B. clarridgeiae. This study aimed to determine the occurrence of Bartonella spp. in domestic cats' blood and claw samples in the southern region of Bahia, northeastern Brazil. Additionally, the main clinical and hematological changes in Bartonella-positive animals were investigated, as well as the risk factors associated with the infection. For this purpose, 188 indoor house domestic cats were clinically evaluated and submitted to claw and blood sample collection. Additionally, data regarding the clinical history of the animals were recorded. Out of 188 cats' blood samples, 20.7% (39/188) were positive in the qPCR for Bartonella spp. based on the nuoG gene. Out of 39 claw samples collected, 23.9% (9/39) were positive for Bartonella spp. The parameters of the blood and claw samples ranged from 1.42 to 395,000 and 4.32 - 108,000 copies/µL of a fragment of Bartonella nuoG gene, respectively. The amplified sequences shared identity ranging from 99% to 100% with the three main cat-related Bartonella species. Higher platelet values (p = 0.0082) were observed in animals positive for Bartonella spp. Young and unsterilized cats with outdoor access were more prone to infection by Bartonella spp. The data reported here demonstrated the occurrence of Bartonella spp. in blood and claw samples from cats in northeastern Brazil showing no significant clinical and hematological disorders.


Subject(s)
Bartonella Infections , Bartonella , Cat Diseases , Cat's Claw , Hoof and Claw , Animals , Bartonella/genetics , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Brazil/epidemiology , Cat Diseases/epidemiology , Cat's Claw/genetics , Cats , Real-Time Polymerase Chain Reaction , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...