Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Fish Shellfish Immunol ; 149: 109593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697374

ABSTRACT

A type of fermented bile acids (FBAs) has been produced through a biological method, and its effects on growth performance, metabolism, and intestinal microbiota in largemouth bass were investigated. The results demonstrated that incorporating 0.03 %-0.05 % FBAs diet could improve the final weight, weight gain and specific growth rate, and decrease the feed conversion ratio. Dietary FBAs did not significantly affect the levels of high-density lipoprotein, low-density lipoprotein, and triglycerides, but decreased the activities of α-amylase in most groups. Adding FBAs to the diet significantly increased the integrity of the microscopic structure of the intestine, thickened the muscular layer of the intestine, and notably enhanced its intestinal barrier function. The addition of FBAs to the diet increased the diversity of the gut microbiota in largemouth bass. At the phylum level, there was an increase in the abundance of Proteobacteria, Firmicutes, Tenericutes and Cyanobacteria and a significant decrease in Actinobacteria and Bacteroidetes. At the genus level, the relative abundance of beneficial bacteria Mycoplasma in the GN6 group and Coprococcus in the GN4 group significantly increased, while the pathogenic Enhydrobacter was inhibited. Meanwhile, the highest levels of AKP and ACP were observed in the groups treated with 0.03 % FBAs, while the highest levels of TNF-α and IL-10 were detected in the group treated with 0.04 % FBAs. Additionally, the highest levels of IL-1ß, IL-8T, GF-ß, IGF-1, and IFN-γ were noted in the group treated with 0.06 % FBAs. These results suggested that dietary FBAs improved growth performance and intestinal wall health by altering lipid metabolic profiles and intestinal microbiota in largemouth bass.


Subject(s)
Animal Feed , Bass , Bile Acids and Salts , Diet , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Bile Acids and Salts/metabolism , Animal Feed/analysis , Bass/growth & development , Bass/immunology , Diet/veterinary , Intestines/microbiology , Fermentation , Metabolome , Dietary Supplements/analysis , Random Allocation
2.
Fish Shellfish Immunol ; 149: 109551, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599363

ABSTRACT

The present study aimed to evaluate the effect of king oyster mushroom (Pleurotus eryngii) root waste and soybean meal co-fermented protein (CFP) on growth performance, feed utilization, immune status, hepatic and intestinal health of largemouth bass (Micropterus salmoides). Largemouth bass (12.33 ± 0.18 g) were divided into five groups, fed with diets containing 0 %, 5 %, 10 %, 15 % and 20 % CFP respectively for 7 weeks. The growth performance and dietary utilization were slightly improved by the supplementation of CFP. In addition, improved immunoglobulin M (IgM) content and lysozyme activity in treatments confirm the enhancement of immunity in fish by the addition of CFP, especially in fish fed 20 % CFP (P < 0.05). Furthermore, CFP significantly improved liver GSH (glutathione) content in groups D10 and D15 (P < 0.05), and slightly improved total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity while slightly reduced malondialdehyde (MDA) content. Simultaneously, the upregulation of lipolysis-related genes (PPARα, CPT1 and ACO) expression and downregulation of lipid synthesis-related genes (ACC and DGAT1) expression was recorded in the group D20 compared with the control (P < 0.05), which were consistent with the decreased liver lipid contents, suggests that lipid metabolism was improved by CFP. In terms of intestinal structural integrity, ameliorated intestinal morphology in treatments were consistent with the upregulated Occludin, Claudin-1 and ZO-1 genes expression. The intestinal pro-inflammatory cytokines (TNF-α and IL-8) expression were suppressed while the anti-inflammatory cytokines (IL-10 and TGF-ß) were activated in treatments. The expression of antimicrobial peptides (Hepcidin-1, Piscidin-2 and Piscidin-3) and intestinal immune effectors (IgM and LYZ) were slightly up-regulated in treatments. Additionally, the relative abundance of intestinal beneficial bacteria (Firmicutes) increased while the relative abundance of potential pathogenic bacteria (Fusobacterium and Proteobacteria) decreased, which indicated that the intestinal microbial community was well-reorganized by CFP. In conclusion, dietary CFP improves growth, immunity, hepatic and intestinal health of largemouth bass, these data provided a theoretical basis for the application of this novel functional protein ingredient in fish.


Subject(s)
Animal Feed , Bass , Diet , Dietary Supplements , Glycine max , Liver , Pleurotus , Animals , Bass/immunology , Bass/growth & development , Animal Feed/analysis , Diet/veterinary , Pleurotus/chemistry , Glycine max/chemistry , Liver/immunology , Liver/drug effects , Liver/metabolism , Dietary Supplements/analysis , Intestines/immunology , Intestines/drug effects , Fermentation , Immunity, Innate/drug effects , Random Allocation , Plant Roots/chemistry , Dose-Response Relationship, Drug
3.
Article in English | MEDLINE | ID: mdl-38609061

ABSTRACT

Natural and synthetic estrogens are contaminants present in aquatic ecosystems. They can have significant consequences on the estrogen-sensitive functions of organisms, including skeletal development and growth of vertebrate larvae. Synthetic polyphenols represent a group of environmental xenoestrogens capable of binding the receptors for the natural hormone estradiol-17ß (E2). To better understand how (xeno-)estrogens can affect the skeleton in fish species with high ecological and commercial interest, 16 days post-hatch larvae of the seabass were experimentally exposed for 7 days to E2 and Bisphenol A (BPA), both used at the regulatory concentration of surface water quality (E2: 0.4 ng.L-1, BPA: 1.6 µg.L-1) or at a concentration 100 times higher. Skeletal mineralization levels were evaluated using Alizarin red staining, and expression of several genes playing key roles in growth, skeletogenesis and estrogen signaling pathways was assessed by qPCR. Our results show that E2 exerts an overall negative effect on skeletal mineralization at the environmental concentration of 0.4 ng.L-1, correlated with an increase in the expression of genes associated only with osteoblast bone cells. Both BPA exposures inhibited mineralization with less severe effects and modified bone homeostasis by regulating the expression of gene encoding osteoblasts and osteoclasts markers. Our results demonstrate that environmental E2 exposure inhibits larval growth and has an additional inhibitory effect on skeleton mineralization while both BPA exposures have marginal inhibitory effect on skeletal mineralization. All exposures have significant effects on transcriptional levels of genes involved in the skeletal development of seabass larvae.


Subject(s)
Bass , Benzhydryl Compounds , Estradiol , Phenols , Water Pollutants, Chemical , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Estradiol/metabolism , Water Pollutants, Chemical/toxicity , Bass/growth & development , Bass/metabolism , Larva/drug effects , Larva/growth & development , Larva/metabolism , Calcification, Physiologic/drug effects , Endocrine Disruptors/toxicity , Gene Expression Regulation, Developmental/drug effects
4.
Front Immunol ; 14: 1110696, 2023.
Article in English | MEDLINE | ID: mdl-36936939

ABSTRACT

Introduction: In an effort to minimize the usage of fishmeal in aquaculture, novel protein diets, including Tenebrio molitor, cottonseed protein concentrate, Clostridium autoethanogenum, and Chlorella vulgaris were evaluated for their potential to replace fishmeal. Nevertheless, comprehensive examinations on the gut health of aquatic animals under an alternate feeding strategy when fed novel protein diets are vacant. Methods: Five isonitrogenous and isolipidic diets containing various proteins were manufactured, with a diet consisting of whole fishmeal serving as the control and diets containing novel proteins serving as the experimental diets. Largemouth bass (Micropterus salmoides) with an initial body weight of 4.73 ± 0.04g employed as an experimental animal and given these five diets for the first 29 days followed by a fishmeal diet for the next 29 days. Results: The results of this study demonstrated that the growth performance of novel protein diets in the second stage was better than in the first stage, even though only the C. vulgaris diet increased antioxidant capacity and the cottonseed protein concentrate diet decreased it. Concerning the intestinal barriers, the C. autoethanogenum diet lowered intestinal permeability and plasma IL-1ß/TNF-α. In addition, the contents of intestinal immunological factors, namely LYS and sIgA-like, were greater in C. vulgaris than in fishmeal. From the data analysis of microbiome and metabolome, the levels of short chain fatty acids (SCFAs), anaerobic bacteria, Lactococcus, and Firmicutes were significantly higher in the C. autoethanogenum diet than in the whole fishmeal diet, while the abundance of Pseudomonas, aerobic bacteria, Streptococcus, and Proteobacteria was lowest. However, no extremely large differences in microbiota or short chain fatty acids were observed between the other novel protein diets and the whole fishmeal diet. In addition, the microbiota were strongly connected with intestinal SCFAs, lipase activity, and tight junctions, as shown by the Mantel test and Pearson's correlation. Discussion: Taken together, according to Z-score, the ranking of advantageous functions among these protein diets was C. autoethanogenum diet > C. vulgaris diet > whole fishmeal diet > cottonseed protein concentrate > T. molitor diet. This study provides comprehensive data illustrating a mixed blessing effect of novel protein diets on the gut health of juvenile largemouth bass under an alternate feeding strategy.


Subject(s)
Animal Feed , Bass , Diet , Intestines , Bass/growth & development , Bass/immunology , Bass/physiology , Multiomics , Intestines/chemistry , Intestines/drug effects , Intestines/immunology , Intestines/physiology , Fish Proteins , Animals , Animal Feed/adverse effects , Oxidative Stress/drug effects , Permeability/drug effects , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Diet/adverse effects , Diet/methods , Diet/veterinary , Fatty Acids/analysis , Cottonseed Oil , Plant Proteins , Chlorella vulgaris , Tenebrio , Edible Insects
5.
Fish Physiol Biochem ; 48(1): 145-159, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35034221

ABSTRACT

Many metabolic diseases in fish are often associated with lowered mitochondrial fatty acid ß-oxidation (FAO). However, the physiological role of mitochondrial FAO in lipid metabolism has not been verified in many carnivorous fish species, for example in largemouth bass (Micropterus salmonids). In the present study, a specific mitochondrial FAO inhibitor, mildronate (MD), was used to investigate the effects of impaired mitochondrial FAO on growth performance, health status, and lipid metabolism of largemouth bass. The results showed that the dietary MD treatment significantly suppressed growth performance and caused heavy lipid accumulation, especially neutral lipid, in the liver. The MD-treated fish exhibited lower monounsaturated fatty acid and higher long-chain polyunsaturated fatty acids in the muscle. The MD treatment downregulated the gene expressions in lipolysis and lipogenesis, as well as the expressions of the genes and some key proteins in FAO without enhancing peroxisomal FAO. Additionally, the MD-treated fish had lower serum aspartate aminotransferase activity and lower pro-inflammation- and apoptosis-related genes in the liver. Taken together, MD treatment markedly induced lipid accumulation via depressing lipid catabolism. Our findings reveal the pivotal roles of mitochondrial FAO in maintaining health and lipid homeostasis in largemouth bass and could be hopeful in understanding metabolic diseases in farmed carnivorous fish.


Subject(s)
Bass , Lipid Metabolism , Methylhydrazines/adverse effects , Animals , Bass/growth & development , Bass/metabolism , Diet/veterinary , Lipid Metabolism/drug effects , Lipids , Liver/drug effects , Liver/metabolism , Mitochondria/drug effects , Mitochondria/metabolism
6.
Fish Shellfish Immunol ; 120: 497-506, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34942373

ABSTRACT

An 8-week feeding trial was conducted to investigate the influence of partial replacement of fishmeal (FM) by black soldier fly (BSF) (Hermetia illucens) on the growth, distal intestine morphology, intestinal flora, and intestinal immune response of pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Four diets were formulated, 0% (0 g kg-1), 10% (50 g kg-1), 20% (100 g kg-1) and 30% (150 g kg-1) fishmeal were replaced with BSF, named as FM, BSF10, BSF20, BSF30, severally. The study found that, with the increasing dietary BSF levels, growth and feed conversion ratio of fish decreased significantly (P < 0.05). Chitinase and trypsin activities were significantly increased with increasing dietary BSF levels (P < 0.05). With the increasing dietary BSF levels, distal intestinal muscularis thickness and mucosal fold length decreased significantly (P < 0.05), as well as total abundance of intestinal flora. The relative abundance of four phyla and six genera among the top 20 genera were significantly affected by dietary BSF levels (P < 0.05). With the increasing dietary BSF levels, the mRNA levels of nf-κbem1, r-cel and il-10 up-regulated significantly (P < 0.05). For fish fed BSF30 diet, the mRNA levels of myd88 and tlr22 were significantly higher than fish fed FM diet (P < 0.05). In conclusion, replacement fishmeal with BSF increased activity of digestive enzymes, but negatively affected growth performance and intestinal health of pearl gentian grouper.


Subject(s)
Bass , Diet/veterinary , Diptera , Gastrointestinal Microbiome , Animal Feed/analysis , Animals , Bass/growth & development , Bass/immunology , Immunity , Intestines , RNA, Messenger
7.
Fish Shellfish Immunol ; 120: 280-286, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34838703

ABSTRACT

The study explored on the effects of dietary 0.4% dandelion extract on the growth performance, serum biochemical parameters, liver histology and the expression levels of immune and apoptosis-related genes in the head kidney and spleen of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) at different feeding period. The results showed that the weight gain rate (WGR) of the hybrid grouper were significantly increased at the second and fourth weeks (P < 0.05), but there was no significant difference in WGR at the eighth week (P > 0.05). Compared with the control group, dietary dandelion extracts supplementation improve lipid metabolism, reduce lipid accumulation in liver and maintain normal liver histology at the second and fourth weeks. At the end of the second week, the relative expression levels of antioxidant related genes (MnSOD, GPX and GR) in the head kidney of hybrid grouper fed with dandelion extract increased significantly; at the end of week 4 and week 8, the relative expression levels of antioxidant related genes other than MnSOD did not change significantly. However, in the spleen of hybrid grouper, the expression of these antioxidant genes showed the opposite trend. At the end of the eighth week, dietary dandelion extract supplementation significantly increased the expression of inflammatory response related genes in head kidney of hybrid grouper, but showed the opposite trend in spleen. In conclusion, the short-term (2 or 4 weeks) application of 0.4% dandelion extract in feed had the effects of growth improvement, liver protection and immune stimulation on hybrid grouper due to its antioxidant and anti-inflammatory activities. The beneficial effect of dandelion extract on hybrid grouper was time-dependent, and its action time on different immune organs of hybrid grouper was not synchronous.


Subject(s)
Bass , Plant Extracts , Taraxacum , Animal Feed/analysis , Animals , Antioxidants/metabolism , Apoptosis , Bass/genetics , Bass/growth & development , Bass/immunology , Dietary Supplements , Hybridization, Genetic , Liver , Plant Extracts/pharmacology , Taraxacum/chemistry
8.
Fish Shellfish Immunol ; 120: 214-221, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34843945

ABSTRACT

This study aimed to evaluate the effects of partial replacement of fish meal (FM) with yellow mealworm (Tenebrio molitor, TM) on the growth performance, food utilization and intestinal immune response of juvenile largemouth bass (Micropterus salmoides). Seven diets containing increasing levels of TM (FM substitution) were designed (approximately 0% (0%), 4% (11.1%), 8.1% (22.2%), 12.2% (33.3%), 16.3% (44.4%), 20.4% (55.5%), and 24.5% (66.6%), designated TM0, TM11, TM22, TM33, TM44, TM55, and TM66, respectively). 420 fish were randomly selected and placed in 21 cages (1 m*1 m*1 m, 7 treatments for triplicate, 20 fish per cage). Fish (initial weight 6.25 ± 0.03 g) were fed seven isonitrogenous (47%) and isocaloric (19 MJ kg-1) diets to satiety twice daily for 8 weeks. Compared to the control group (TM0), TM11 showed no significant difference in the weight gain rate (WGR), specific growth rate (SGR) or feed conversion ratio (FCR), while all other TM inclusion groups presented different degrees of decline. There was no significant difference in the whole-body composition among all groups (P > 0.05). Plasma total protein (TP), triglyceride (TG) and albumin (ALB) contents were significantly decreased in TM55 and TM66 (P < 0.05). The highest plasma aspartate transaminase (AST) activity was observed in TM66 (P < 0.05). TM33, TM44 and TM55 showed the lowest activities of plasma alanine amiotransferase (ALT) and alkaline phosphatase (ALP) (P < 0.05). Moreover, increased mRNA levels of superoxide dismutase (SOD) and catalase (CAT) were measured in the TM11 to TM55 groups, while intestinal SOD activity peaked in TM11 (P < 0.05). With the exception of TM11, the other TM inclusion groups showed significant inhibition of the relative expression of RelA, C3 and TNF-α (P < 0.05). All experimental groups exhibited lower expression of IL-10 than TM0 (P < 0.05). The TM11 group showed significantly upregulated expression of IL-1ß and TGF-ß (P < 0.05). In addition, TLR2 expression was increased in TM11 and TM22 (P < 0.05). Considering enzyme activities and immune-related gene expression, TM supplementation levels should not exceed 4% (TM11).


Subject(s)
Animal Feed , Antioxidants/metabolism , Bass , Tenebrio , Animal Feed/analysis , Animals , Bass/growth & development , Bass/immunology , Diet/veterinary , Dietary Supplements
9.
Fish Physiol Biochem ; 47(4): 1243-1255, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34226986

ABSTRACT

The effects of stocking density on growth performance, serum biochemistry, digestive enzymes, immune response, and muscle quality of largemouth bass (Micropterus salmoides) reared in nine in-pond raceway systems (IPRS, 22.0 m × 5.0 m × 2.0 m) were studied. M. salmoides with initial an body weight of 8.25 ± 0.51 g and body length of 6.99 ± 0.44 cm were reared at an initial stocking density of 90.91 ind./m3 (low stocking density, LSD), 113.63 ind./m3 (middle stocking density, MSD), and 136.36 ind./m3 (high stocking density, HSD) with triplication. After 300 days of culture, MSD recorded the highest final body weight, weight gain, specific growth rate, and yield, but the food conversion ratio in MSD was the lowest. The viscerosomatic index in LSD was significantly higher than other groups. The fish serum reared at HSD showed significantly lower total protein, higher total cholesterol, triglyceride, total bilirubin, glucose content, alanine transaminase, and aspartate transaminase activity. Significantly lower intestinal amylase, lipase, trypsin activities, hepatic superoxide dismutase (SOD) and catalase (CAT) activities, and higher malondialdehyde content were detected in HSD compared to others. The content of crude lipid, saturated fatty acid decreased, and total essential amino acid, delicious amino acid, and polyunsaturated fatty acid increased in muscle with stocking density increase. No significant difference was observed in muscle texture. Profitability analysis indicated the benefit-to-cost ratio varied between 1.10 and 1.68, of which MSD was significantly higher than others. The optimal stocking density for M. salmoides should be 113.63 ind./m3 in an IPRS farm.


Subject(s)
Aquaculture/methods , Bass , Alanine Transaminase/blood , Amino Acids/metabolism , Amylases/metabolism , Animals , Aspartate Aminotransferases/blood , Bass/blood , Bass/growth & development , Bass/immunology , Bass/metabolism , Catalase/metabolism , Fatty Acids/metabolism , Fish Proteins/blood , Immunity , Intestines/enzymology , Lipase/metabolism , Liver/metabolism , Muscles/chemistry , Sterols/blood , Superoxide Dismutase/metabolism , Triglycerides/blood , Trypsin/metabolism
10.
Amino Acids ; 53(7): 1065-1077, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34085155

ABSTRACT

An 8-week feeding trial was conducted to evaluate optimum dietary methionine (Met) requirement of juvenile humpback grouper (Cromileptes altivelis) and the influence of dietary methionine (Met) supplementations on growth, gut micromorphology, protein and lipid metabolism. Seven isoproteic (48.91%) and isolipidic diets (10%) were made to contain 0.70, 0.88, 1.04, 1.27 1.46, 1.61 and 1.76% of dry matter Met levels. Results showed that lower survival, weight gain (WG%), protein efficiency ratio (PER), protein productive value (PPV) but higher daily feed intake (DFI) and feed conversion ratio (FCR) were observed in the Met deficient groups (0.70 and 0.88%). Optimum dietary Met requirement for humpback grouper was found to be 1.07% through the straight-broken line analysis of WG% against Met. Fish fed Met deficient diets (0.70, 0.88%) exhibited lower mRNA levels of growth hormone (GH), growth hormone receptor (GHR), insulin-like growth factor-I (IGF-1), target of rapamycin (TOR) as well as S6 kinase 1 (S6K1) than other dietary groups. Whereas, expression of genes related to general control nonderepressible (GCN2) kinase i.e., GCN2 and C/EBPß enhancer-binding protein ß was upregulated in fish fed low Met diets (P < 0.05). The mRNA expression of hepatic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1 (SREBP-1) were higher in fish fed 0.70 and 0.88% dietary Met group and the lipolytic genes, hepatic peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyl transferase-1 (CPT-1) showed an opposite variation tendency as FAS or SREBP1. Generally, the optimum Met requirement for humpback grouper was predicted to be 1.07% of dry matter.


Subject(s)
Animal Feed/analysis , Bass/anatomy & histology , Bass/growth & development , Fish Proteins/metabolism , Lipid Metabolism , Methionine/metabolism , Nutritional Requirements , Animals , Bass/metabolism , Diet , Fish Proteins/genetics , Liver/metabolism
11.
Probiotics Antimicrob Proteins ; 13(6): 1790-1797, 2021 12.
Article in English | MEDLINE | ID: mdl-34033064

ABSTRACT

The aim of this study was to evaluate the effects of lactoferrin (Lf) on growth and feeding performance, biochemical and immune parameters in Asian sea bass (Lates calcarifer). A basal diet was supplemented with 0 (control), 400 (400 Lf), or 800 (800 Lf) mg Lf kg-1 diet. The results indicate a significant increase in innate immune parameters when the diet was supplemented with 800 mg Lf kg-1. The highest serum albumin value and the lowest serum glucose concentration were observed in 800 Lf group. The liver catalase activity in the 400 Lf and 800 Lf groups was lower than the control value. Moreover, malondialdehyde concentration in the liver of Asian sea bass was increased with increasing the dietary Lf supplementation. The results of the study suggest that supplementing diet with 800 mg Lf kg-1 stimulates non-specific immune response in Asian sea bass. Nonetheless, selecting an appropriate dose can be difficult, especially since both the higher and the lower dose tested may result in adverse effects.


Subject(s)
Bass , Diet , Lactoferrin , Animal Nutritional Physiological Phenomena , Animals , Bass/growth & development , Bass/immunology , Cattle , Diet/veterinary
12.
Sci Rep ; 11(1): 10899, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035318

ABSTRACT

Nutritional Programming (NP) has been studied as a means of improving dietary plant protein (PP) utilization in different fish species. This study investigated the use of enriched live feed as a vehicle for NP in larval fish. The objective of this study was to determine the effect of NP induced during the larval stage via PP-enriched live feed on: (1) growth performance; (2) expression of genes associated with inflammation and any morphological changes in the intestine; and (3) muscle free amino acid composition in largemouth bass (Micropterus salmoides) during its later life stages. Two diets were used in this study, a fish meal (FM)-based diet, and a soybean mean (SBM)-based diet, serving as the PP diet. There were 4 groups in this study. The two control groups, ( +) Control and (-) Control, were not programmed and received the FM-diet and SBM-diet, respectively throughout the whole trial after the live feed stage (27-122 days post hatch (dph). The next group, programmed, was programmed with SBM-enriched Artemia nauplii during the live feed stage (4-26 dph) and challenged with the SBM-diet during the final stage of the study (79-122 dph). The final group, non-programmed, did not receive any programming and, was challenged with the SBM-diet during the final stage of the study. The programmed group experienced a significantly higher (%) weight gain during the PP-Challenge than the non-programmed group. In addition, the live feed programming resulted in significantly longer distal villi, and a higher villi length to width ratio, compared to the non-programmed group. No significant effects on free amino acid composition and gene expression were observed between the programmed and non-programmed group, except for an increased post-prandial concentration of free proline in the programmed group. The results of this study support use of live feed as a vehicle for nutritional programming and improving the growth performance of largemouth bass fed with a SBM-based diet.


Subject(s)
Bass/growth & development , Fish Proteins, Dietary/administration & dosage , Glycine max/metabolism , Plant Proteins, Dietary/administration & dosage , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Fish Proteins, Dietary/pharmacology , Gene Expression Regulation, Developmental/drug effects , Larva/growth & development , Plant Proteins, Dietary/pharmacology
13.
PLoS One ; 16(4): e0239791, 2021.
Article in English | MEDLINE | ID: mdl-33886551

ABSTRACT

The European sea bass (Dicentrarchus labrax) exhibits female-biased sexual size dimorphism (SSD) early in development. New tagging techniques provide the opportunity to monitor individual sex-related growth during the post-larval and juvenile stages. We produced an experimental population through artificial fertilization and followed a rearing-temperature protocol (~16°C from hatching to 112 days post-hatching, dph; ~20°C from 117 to 358 dph) targeting a roughly balanced sex ratio. The fish were tagged with microchips between 61 and 96 dph in five tagging trials of 50 fish each; individual standard length (SL) was recorded through repeated biometric measurements performed between 83 to 110 dph via image analyses. Body weight (BW) was modelled using the traits measured on the digital pictures (i.e. area, perimeter and volume). At 117 dph, the fish were tagged with microtags and regularly measured for SL and BW until 335 dph. The experiment ended at 358 dph with the sexing of the fish. The sex-ratio at the end of the experiment was significantly in favor of the females (65.6% vs. 34.4%). The females were significantly longer and heavier than the males from 103 dph (~30 mm SL, ~0.44 g BW) to 165 dph, but the modeling of the growth curves suggests that differences in size already existed at 83 dph. A significant difference in the daily growth coefficient (DGC) was observed only between 96 and 103 dph, suggesting a physiological or biological change occurring during this period. The female-biased SSD pattern in European sea bass is thus strongly influenced by very early growth differences between sexes, as already shown in previous studies, and in any case long before gonadal sex differentiation has been started, and thus probably before sex has been determined. This leads to the hypothesis that early growth might be a cause rather than a consequence of sex differentiation in sea bass.


Subject(s)
Bass/growth & development , Animals , Bass/physiology , Body Size , Female , Gonads/growth & development , Gonads/physiology , Male , Sex Characteristics , Sex Differentiation , Sex Ratio
14.
Amino Acids ; 53(1): 49-62, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33398521

ABSTRACT

Fishmeal has long been a staple protein feedstuff for fish, but its global shortage and high price have prompted its replacement with alternative sustainable sources. In this experiment involving largemouth bass (a carnivorous fish), a new mixture of feedstuffs (45% poultry byproduct meal, 30% soybean meal, 15% blood meal, and 10% krill shrimp meal) was added to low (14.5%) fishmeal diets along with 0.0%, 0.5% taurine, 0.5% methionine, or 0.5% taurine plus 0.5% methionine (dry matter basis). The positive control diet [65.3% fishmeal (46% crude protein on dry matter basis)] and all low-fishmeal diets contained 40% true protein and 10% lipids. There were 3 tanks per treatment group (20 fish/tank). Fish with the mean initial body weight of 16.6 g were fed to satiety twice daily. Compared with the unsupplemented low-fishmeal group, supplementing either 0.5% methionine or 0.5% methionine plus 0.5% taurine to the low-fishmeal diet improved (P < 0.05) the growth, feed utilization, retention of dietary protein and lipids, and health of largemouth bass, reduced (P < 0.05) the occurrence of black skin syndrome from ~ 40 to ~ 10%. Histological sections of tissues from the fish with black skin syndrome showed retina degeneration, liver damage, and enteritis in the intestine. Compared with methionine supplementation, supplementing 0.5% taurine alone to the low-fishmeal diet did not affect the growth or feed efficiency of fish and had less beneficial effects (P < 0.05) on ameliorating the black skin syndrome. These results indicated that: (a) the basal low-fishmeal diet was inadequate in methionine or taurine; and (b) dietary supplementation with methionine was an effective method to improve the growth performance, feed efficiency, and health of largemouth bass. Further studies are warranted to understand the pathogenesis of the black skin syndrome in largemouth bass.


Subject(s)
Bass/physiology , Diet/veterinary , Dietary Supplements , Methionine/administration & dosage , Taurine/administration & dosage , Amino Acids/blood , Animal Feed/adverse effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Bass/growth & development , Bass/metabolism , Body Composition , Dietary Proteins/analysis , Dietary Supplements/analysis , Eating , Fish Diseases/etiology , Fish Diseases/pathology , Lipids/analysis , Methionine/analysis , Taurine/analysis
15.
Dev Comp Immunol ; 118: 104011, 2021 05.
Article in English | MEDLINE | ID: mdl-33460678

ABSTRACT

The female sex steroid 17ß-oestradiol (E2) is involved in the regulation of numerous physiological functions, including the immune system development and performance. The role of oestrogens during ontogenesis is, however, not well studied. In rodents and fish, thymus maturation appears to be oestrogen-dependent. Nevertheless, little is known about the function of oestrogen in immune system development. To further the understanding of the role of oestrogens in fish immune system ontogenesis, fingerlings of European sea bass (Dicentrarchus labrax) were exposed for 30 days to 20 ng E2·L-1, at two ages tightly related to thymic maturation, i.e., 60 or 90 days post hatch (dph). The expression of nuclear and membrane oestrogen receptors was measured in the thymus and spleen, and the expression of several T cell-related gene markers was studied in both immune organs, as well as in the liver. Waterborne E2-exposure at 20.2 ± 2.1 (S.E.) ng·L-1 was confirmed by radioimmunoassay, leading to significantly higher E2-contents in the liver of exposed fish. The majority of gene markers presented age-dependent dynamics in at least one of the organs, confirming thymus maturation, but also suggesting a critical ontogenetic window for the implementation of liver resident γδ and αß T cells. The oestrogen receptors, however, remained unchanged over the age and treatment comparisons with the exception of esr2b, which was modulated by E2 in the younger cohort and increased its expression with age in the thymus of the older cohort, as did the membrane oestrogen receptor gpera. These results confirm that oestrogen-signalling is involved in thymus maturation in European sea bass, as it is in mammals. This suggests that esr2b and gpera play key roles during thymus ontogenesis, particularly during medulla maturation. In contrast, the spleen expressed low or non-detectable levels of oestrogen receptors. The E2-exposure decreased the expression of tcrγ in the liver in the cohort exposed from 93 to 122 dph, but not the expression of any other immune-related gene analysed. These results indicate that the proliferation/migration of these innate-like T cell populations is oestrogen-sensitive. In regard to the apparent prominent role of oestrogen-signalling in the late thymus maturation stage, the thymic differentiation of the corresponding subpopulations of T cells might be regulated by oestrogen. To the best of our knowledge, this is the first study investigating the dynamics of both nuclear and membrane oestrogen receptors in specific immune organs in a teleost fish at very early stages of immune system development as well as to examine thymic function in sea bass after an exposure to E2 during ontogenesis.


Subject(s)
Bass/immunology , Estradiol/metabolism , Fish Proteins/metabolism , Receptors, Estrogen/metabolism , Animals , Bass/growth & development , Bass/metabolism , Female , Immune Tolerance , Liver/growth & development , Liver/immunology , Lymphopoiesis/immunology , Male , Organogenesis/immunology , Thymus Gland/growth & development , Thymus Gland/immunology
16.
Genes (Basel) ; 13(1)2021 12 29.
Article in English | MEDLINE | ID: mdl-35052423

ABSTRACT

Pluripotency markers Pou5f1 and Nanog are core transcription factors regulating early embryonic development and maintaining the pluripotency and self-renewal of stem cells. Pou5f1 and Nanog also play important roles in germ cell development and gametogenesis. In this study, Pou5f1 (EcPou5f1) and Nanog (EcNanog) were cloned from orange-spotted grouper, Epinephelus coioides. The full-length cDNAs of EcPou5f1 and EcNanog were 2790 and 1820 bp, and encoded 475 and 432 amino acids, respectively. EcPou5f1 exhibited a specific expression in gonads, whereas EcNanog was expressed highly in gonads and weakly in some somatic tissues. In situ hybridization analyses showed that the mRNA signals of EcNanog and EcPou5f1 were exclusively restricted to germ cells in gonads. Likewise, immunohistofluorescence staining revealed that EcNanog protein was limited to germ cells. Moreover, both EcPou5f1 and EcNanog mRNAs were discovered to be co-localized with Vasa mRNA, a well-known germ cell maker, in male and female germ cells. These results implied that EcPou5f1 and EcNanog could be also regarded as reliable germ cell marker genes. Therefore, the findings of this study would pave the way for elucidating the mechanism whereby EcPou5f1 and EcNanog regulate germ cell development and gametogenesis in grouper fish, and even in other protogynous hermaphroditic species.


Subject(s)
Bass/metabolism , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Germ Cells/metabolism , Gonads/metabolism , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Animals , Bass/genetics , Bass/growth & development , Cell Differentiation , Female , Fish Proteins/genetics , Germ Cells/growth & development , Gonads/cytology , Male , Nanog Homeobox Protein/genetics , Octamer Transcription Factor-3/genetics
17.
Br J Nutr ; 125(4): 408-419, 2021 02 28.
Article in English | MEDLINE | ID: mdl-32713354

ABSTRACT

A 6-week growth trial was conducted to evaluate the influences of dietary valine (Val) levels on growth, protein utilisation, immunity, antioxidant status and gut micromorphology of juvenile hybrid groupers. Seven isoenergetic, isoproteic and isolipidic diets were formulated to contain graded Val levels (1·21, 1·32, 1·45, 1·58, 1·69, 1·82 and 1·94 %, DM basis). Each experimental diet was hand-fed to triplicate groups of twelve hybrid grouper juveniles. Results showed that weight gain percentage (WG%), protein productive value, protein efficiency ratio, and feed efficiency were increased as dietary Val level increased, reaching a peak value at 1·58 % dietary Val. The quadratic regression analysis of WG% against dietary Val levels indicated that the optimum dietary Val requirement for hybrid groupers was estimated to be 1·56 %. Gut micromorphology and expression of growth hormone in pituitary, insulin-like growth factor 1, target of rapamycin and S6 kinase 1 in liver were significantly affected by dietary Val levels. In serum, fish fed 1·58 % dietary Val had higher superoxide dismutase, catalase, lysozyme activities and IgM concentrations than fish fed other dietary Val levels. Fish fed 1·58 % dietary Val had higher expression of NF-E2-related factor 2 in head kidney than fish fed other dietary Val levels. Generally, the optimum dietary Val requirement for maximal growth of hybrid groupers was estimated to be 1·56 % of DM, corresponding to 3·16 % of dietary protein, and dietary Val levels affected growth, protein utilisation, immunity and antioxidant status in hybrid groupers.


Subject(s)
Animal Feed/analysis , Antioxidants/metabolism , Bass/growth & development , Diet/veterinary , Dietary Proteins/metabolism , Valine/administration & dosage , Animal Nutritional Physiological Phenomena , Animals , Bass/immunology , Bass/metabolism , Dietary Supplements , Hybridization, Genetic
18.
Amino Acids ; 53(1): 33-47, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33236255

ABSTRACT

Five isonitrogenous and isocaloric diets [containing 54, 30, 15, 10, and 5% fishmeal crude-protein (CP), dry matter (DM) basis] were prepared by replacing fishmeal with poultry by-product meal plus soybean meal to feed juvenile largemouth bass (LMB, with an initial mean body weight of 4.9 g) for 8 weeks. All diets contained 54% CP and 13% lipids. There were four tanks of fish per treatment group (15 fish/tank). The fish were fed twice daily with the same feed intake (g/fish) in all the dietary groups. Results indicated that the inclusion of 15% fishmeal protein in the diet is sufficient for LMB growth. However, some of the fish that were fed diets containing ≤ 15% fishmeal CP had black skin syndrome (characterized by skin darkening and retinal degeneration, as well as intestinal and liver atrophies and structural abnormalities). The concentrations of taurine, methionine, threonine and histidine in serum were reduced (P < 0.05) in fish fed the diets containing 5, 10 and 15% fishmeal CP, compared with the 30 and 54% fishmeal CP diets. Interestingly, the concentrations of tyrosine and tryptophan in serum were higher in fish fed diets with ≤ 15% fishmeal CP than those in the 54% fishmeal CP group. These results indicated that 15% fishmeal CP in the diet containing poultry by-product meal and soybean meal was sufficient for the maximum growth and feed efficiency in LMB but inadequate for their intestinal, skin, eye, and liver health. A reduction in dietary methionine and taurine content and the possible presence of antinutritional factors in the fishmeal replacements diets containing high inclusion levels of soybean meal may contribute to black skin syndrome in LMB. We recommend that the diets of juvenile LMB contain 30% fishmeal CP (DM basis).


Subject(s)
Bass/physiology , Diet/veterinary , Dietary Proteins/analysis , Glycine max , Poultry , Amino Acids/analysis , Animal Feed/adverse effects , Animal Feed/analysis , Animal Feed/economics , Animal Nutritional Physiological Phenomena , Animals , Bass/growth & development , Bass/metabolism , Body Composition , Costs and Cost Analysis , Eating , Fish Diseases/etiology , Fish Diseases/pathology , Lipids/analysis , Glycine max/chemistry
19.
Fish Shellfish Immunol ; 108: 53-62, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33248252

ABSTRACT

Azomite is a hydrated calcium sodium aluminosilicat rich in rare earth elements. To investigate the dietary effects of Azomite on growth, intestine microbiota and morphology, immunohematological changes and disease resistance, seven diets with Azomite supplementation of 0 (the control), 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g/kg (A0, A1, A2, A3, A4, A5, A6), were prepared and fed to largemouth bass, Micropterus salmoides (7.96 ± 0.19) for 60 days. The results revealed that the weight gain (WG) increased first and then decreased with the increasing dietary Azomite, and the A2 group presented the highest WG and lowest feed conversion ratio among all the groups. The supplementation of 2.0 g/kg Azomite significantly increased the intestine protease activity, the crude protein of whole body and protein retention (P < 0.05), and high inclusion of Azomite (6.0 g/kg) significantly reduced the lipid retention (P < 0.05). The amounts of red blood cells in A5, A6 groups, white blood cells in A3, A5, A6 groups and lymphocyte in A2-A6 groups were all significantly higher than those in the control group (P < 0.05). In addition, serum superoxide dismutase and catalase activities in A5, A6 groups, and serum alkaline phosphatase and lysozyme activities in A2-A4 groups showed significantly higher values than the control group (P < 0.05). Intestinal microbiota analysis indicated that the Tenericutes abundance was increased, whereas Proteobacteria abundance was decreased in all Azomite supplemented groups. The villus height in A2-A4 groups, and the villus width in A2 group were significantly higher than those of the control group (P < 0.05). The cumulative mortality was reduced by the addition of 2.0-5.0 g/kg Azomite after challenging with A. hydrophila (P < 0.05). In conclusion, proper addition of Azomite in diets improved the growth, intestine morphology, immune response and disease resistance in largemouth bass, and the optimal inclusion was estimated to be 2.0-3.0 g/kg diet.


Subject(s)
Aluminum Silicates/metabolism , Bass/immunology , Disease Resistance/drug effects , Fish Diseases/immunology , Trace Elements/metabolism , Aluminum Silicates/administration & dosage , Animal Feed/analysis , Animals , Bacterial Infections/immunology , Bacterial Infections/microbiology , Bacterial Infections/veterinary , Bass/growth & development , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Fish Diseases/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Random Allocation , Trace Elements/administration & dosage
20.
Aquat Toxicol ; 229: 105670, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33166902

ABSTRACT

Antibiotics have been widely used (mainly mixed with feed) in aquaculture, while few studies have evaluated the interactions between feed composition and antibiotics. Sulfamethoxazole (SMX) is a fat-soluble antibiotic, an eight weeks feeding trial was conducted to investigate the interactions between dietary lipid levels and chronic exposure of legal aquaculture dose of sulfamethoxazole in juvenile largemouth bass Micropterus salmoides, and evaluated the possible human health risk. Six practical diets were formulated to three levels of crude lipid (11, 14.5, 18 %) and two levels of SMX (0 and 0.3 %), namely low fat (LF), moderate fat (MF), high fat (HF), low fat and SMX (LFS), moderate fat and SMX (MFS), high fat and SMX (HFS), respectively. Each diet was assigned to three tanks (20 fish per tank, average weight 30.65 ± 0.02 g). Growth and organ indices were increased by SMX. Higher malformation rate and lower hypoxia stress resistance were found in fish exposed to SMX than those not exposed. Cholesterol and bile acid synthesis related gene expressions were down-regulated by SMX exposure. Oxidative stress, inflammation and apoptosis were increased in fish exposed to SMX. Significant interactions between dietary lipid levels and SMX on renal immune response of fish were observed. Remarkable damage of intestinal histology was observed in fish fed the diet HFS. In addition, dietary SMX exposure increased pathogen susceptibility of largemouth bass and induced dysbiosis of gut microbiota. The concentrations of SMX in muscle of fish fed diets containing SMX were higher than those fed other diets, and close to the maximum residue limit (MRL) in China and international organizations. Although chronic legal aquaculture dose of dietary SMX also increased the target hazard quotient (THQ) and estimated daily intake (EDI), there is no health risk in adults and children consuming fish filet.


Subject(s)
Aquaculture , Bass/metabolism , Dietary Exposure , Dietary Fats/pharmacology , Sulfamethoxazole/toxicity , Animals , Antioxidants/metabolism , Bass/blood , Bass/growth & development , Bass/immunology , China , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Humans , Hypoxia/genetics , Intestines/drug effects , Kidney/drug effects , Kidney/immunology , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...