Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 17383, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462470

ABSTRACT

Amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused the greatest known loss of biodiversity due to an infectious disease. We used Bd infection data from quantitative real-time PCR (qPCR) assays of amphibian skin swabs collected across Chile during 2008-2018 to model Bd occurrence with the aim to determine bioclimatic and anthropogenic variables associated with Bd infection. Also, we used Bd presence/absence records to identify geographical Bd high-risk areas and compare Bd prevalence and infection loads between amphibian families, ecoregions, and host ecology. Data comprised 4155 Bd-specific qPCR assays from 162 locations across a latitudinal gradient of 3700 km (18º to 51ºS). Results showed a significant clustering of Bd associated with urban centres and anthropogenically highly disturbed ecosystems in central-south Chile. Both Bd prevalence and Bd infection loads were higher in aquatic than terrestrial amphibian species. Our model indicated positive associations of Bd prevalence with altitude, temperature, precipitation and human-modified landscapes. Also, we found that macroscale drivers, such as land use change and climate, shape the occurrence of Bd at the landscape level. Our study provides with new evidence that can improve the effectiveness of strategies to mitigate biodiversity loss due to amphibian chytridiomycosis.


Subject(s)
Amphibians/microbiology , Batrachochytrium/genetics , Altitude , Animals , Batrachochytrium/isolation & purification , Chile , DNA, Fungal/analysis , DNA, Fungal/metabolism , Ecosystem , Linear Models , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/pathology , Mycoses/veterinary , Prevalence , Real-Time Polymerase Chain Reaction , Spatial Analysis , Temperature
2.
Ecohealth ; 17(3): 302-314, 2020 09.
Article in English | MEDLINE | ID: mdl-33237500

ABSTRACT

The fungal pathogen, Batrachochytrium dendrobatidis (Bd), has devastated biodiversity and ecosystem health and is implicated as a driver of mass amphibian extinctions. This 100-year study investigates which environmental factors contribute to Bd prevalence in a fully terrestrial species, and determines whether infection patterns differ between a fully terrestrial amphibian and more aquatic host species. We performed a historical survey to quantify Bd prevalence in 1127 Batrachoseps gregarius museum specimens collected from 1920 to 2000, and recent data from 16 contemporary (live-caught) B. gregarius populations from the southwestern slopes of the Sierra Nevada mountains in California, USA. We compared these results to Bd detection rates in 1395 historical and 1033 contemporary specimens from 10 species of anurans and 427 historical Taricha salamander specimens collected throughout the Sierra Nevada mountains. Our results indicate that Bd dynamics in the entirely terrestrial species, B. gregarius, differ from aquatic species in the same region in terms of both seasonal patterns of Bd abundance and in the possible timing of Bd epizootics.


Subject(s)
Amphibians/microbiology , Batrachochytrium/isolation & purification , Ecosystem , Mycoses/epidemiology , Animals , Biodiversity , California , Chytridiomycota , Host-Pathogen Interactions
3.
BMC Microbiol ; 20(1): 292, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32962670

ABSTRACT

BACKGROUND: The skin microbiome serves as a first line defense against pathogens in vertebrates. In amphibians, it has the potential to protect against the chytrid fungus Batrachochytrium dendrobatis (Bd), a likely agent of amphibian declines. Alteration of the microbiome associated with unfavorable environmental changes produced by anthropogenic activities may make the host more susceptible to pathogens. Some amphibian species that were thought to be "extinct" have been rediscovered years after population declines in the late 1980s probably due to evolved Bd-resistance and are now threatened by anthropogenic land-use changes. Understanding the effects of habitat disturbance on the host skin microbiome is relevant for understanding the health of these species, along with its susceptibility to pathogens such as Bd. Here, we investigate the influence of habitat alteration on the skin bacterial communities as well as specifically the putative Bd-inhibitory bacterial communities of the montane frog Lithobates vibicarius. This species, after years of not being observed, was rediscovered in small populations inhabiting undisturbed and disturbed landscapes, and with continuous presence of Bd. RESULTS: We found that cutaneous bacterial communities of tadpoles and adults differed between undisturbed and disturbed habitats. The adults from disturbed habitats exhibited greater community dispersion than those from undisturbed habitats. We observed a higher richness of putative Bd-inhibitory bacterial strains in adults from disturbed habitats than in those from undisturbed habitats, as well as a greater number of these potential protective bacteria with a high relative abundance. CONCLUSIONS: Our findings support the microbial "Anna Karenina principle", in which disturbance is hypothesized to cause greater microbial dispersion in communities, a so-called dysbiosis, which is a response of animal microbiomes to stress factors that decrease the ability of the host or its microbiome to regulate community composition. On the positive side, the high richness and relative abundance of putative Bd-inhibitory bacteria may indicate the development of a defense mechanism that enhances Bd-protection, attributed to a co-occurrence of more than 30-years of host and pathogen in these disturbed habitats. Our results provide important insight into the influence of human-modified landscapes on the skin microbiome and health implications of Bd-survivor species.


Subject(s)
Bacteria/classification , Batrachochytrium/genetics , Microbiota/genetics , Ranidae/microbiology , Skin/microbiology , Agriculture , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Typing Techniques , Batrachochytrium/isolation & purification , Batrachochytrium/pathogenicity , Costa Rica , Ecosystem , Humans , Larva/microbiology , Parks, Recreational , Symbiosis/physiology
4.
Sci Rep ; 10(1): 13012, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747670

ABSTRACT

The salamander chytrid fungus (Batrachochytrium salamandrivorans [Bsal]) is causing massive mortality of salamanders in Europe. The potential for spread via international trade into North America and the high diversity of salamanders has catalyzed concern about Bsal in the U.S. Surveillance programs for invading pathogens must initially meet challenges that include low rates of occurrence on the landscape, low prevalence at a site, and imperfect detection of the diagnostic tests. We implemented a large-scale survey to determine if Bsal was present in North America designed to target taxa and localities where Bsal was determined highest risk to be present based on species susceptibility and geography. Our analysis included a Bayesian model to estimate the probability of occurrence of Bsal given our prior knowledge of the occurrence and prevalence of the pathogen. We failed to detect Bsal in any of 11,189 samples from 594 sites in 223 counties within 35 U.S. states and one site in Mexico. Our modeling indicates that Bsal is highly unlikely to occur within wild amphibians in the U.S. and suggests that the best proactive response is to continue mitigation efforts against the introduction and establishment of the disease and to develop plans to reduce impacts should Bsal establish.


Subject(s)
Amphibians/microbiology , Batrachochytrium/isolation & purification , Amphibians/classification , Animals , Batrachochytrium/genetics , Bayes Theorem , DNA, Fungal/genetics , North America , Polymerase Chain Reaction , Species Specificity
5.
Sci Rep ; 10(1): 10280, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581260

ABSTRACT

The regional and international trade of live animals facilitates the movement, spillover, and emergence of zoonotic and epizootic pathogens around the world. Detecting pathogens in trade is critical for preventing their continued movement and introduction, but screening a sufficient fraction to ensure rare infections are detected is simply infeasible for many taxa and settings because of the vast numbers of animals involved-hundreds of millions of live animals are imported into the U.S.A. alone every year. Batch processing pools of individual samples or using environmental DNA (eDNA)-the genetic material shed into an organism's environment-collected from whole consignments of animals may substantially reduce the time and cost associated with pathogen surveillance. Both approaches, however, lack a framework with which to determine sampling requirements and interpret results. Here I present formulae for pooled individual samples (e.g,. swabs) and eDNA samples collected from finite populations and discuss key assumptions and considerations for their use with a focus on detecting Batrachochytrium salamandrivorans, an emerging pathogen that threatens global salamander diversity. While empirical validation is key, these formulae illustrate the potential for eDNA-based detection in particular to reduce sample sizes and help bring clean trade into reach for a greater number of taxa, places, and contexts.


Subject(s)
Animal Diseases/diagnosis , Batrachochytrium/isolation & purification , Commerce , DNA, Environmental/isolation & purification , Urodela/microbiology , Animal Diseases/microbiology , Animal Diseases/prevention & control , Animals , Batrachochytrium/genetics , Internationality , Sample Size
6.
J Wildl Dis ; 56(4): 803-814, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32544028

ABSTRACT

Wildlife diseases are a major threat for species conservation and there is a growing need to implement disease surveillance programs to protect species of concern. Globally, amphibian populations have suffered considerable losses from disease, particularly from chytrid fungi (Batrachochytrium dendrobatidis [Bd] and Batrachochytrium salamandrivorans [Bsal]) and ranavirus. Hellbenders (Cryptobranchus alleganiensis) are large riverine salamanders historically found throughout several watersheds of the eastern and midwestern US. Populations of both subspecies (Ozark hellbender, Cryptobranchus alleganiensis bishopi; eastern hellbender, Cryptobranchus alleganiensis alleganiensis) have experienced precipitous declines over at least the past five decades, and emerging pathogens are hypothesized to play a role. We surveyed Ozark hellbender populations in Arkansas (AR) and eastern hellbender populations in Middle Tennessee (MTN) and East Tennessee (ETN) for both chytrid fungi and ranavirus from swabs and tail tissue, respectively, from 2011 to 2017. Overall, we detected Bd on hellbenders from nine out of 15 rivers, with total prevalence of 26.7% (54/ 202) that varied regionally (AR: 33%, 28/86; MTN: 11%, 4/36; ETN: 28%, 22/80). Ranavirus prevalence (9.0%, 18/200) was comparatively lower than Bd, with less regional variation in prevalence (AR: 6%, 5/ 85; MTN: 11%, 4/36; ETN: 10%, 8/79). We did not detect Bsal in any hellbender populations. We detected a significant negative correlation between body condition score and probability of ranavirus infection (ß=-0.13, SE=0.06, 95% confidence interval: -0.24, -0.02). Evaluation of infection load of positive individuals revealed different trends than prevalence alone for both ranavirus and Bd, with MTN having a significantly greater average ranaviral load than both other regions. We documented a variety of lesions that likely have multiple etiologies on hellbenders located within all geographic regions. Our data represent a multiyear pathogen dataset across several regions of C. alleganiensis, and we emphasize the need for continued pathogen surveillance.


Subject(s)
Batrachochytrium/isolation & purification , DNA Virus Infections/veterinary , Mycoses/veterinary , Ranavirus/isolation & purification , Urodela/microbiology , Animals , Arkansas/epidemiology , DNA Virus Infections/epidemiology , DNA Virus Infections/virology , Mycoses/epidemiology , Prevalence , Rivers , Tennessee/epidemiology , Urodela/virology
7.
J Wildl Dis ; 56(3): 702-706, 2020 07.
Article in English | MEDLINE | ID: mdl-32243244

ABSTRACT

Environmental DNA (eDNA) methods provide novel options for the detection of pathogens. The amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Ranavirus have been relatively understudied in Texas, US, so we applied eDNA assays for the surveillance of these pathogens in the upper Brazos River basin near the Texas panhandle. We collected water samples from five urban playa lakes and one reservoir in and around Lubbock, Texas. Quantitative PCR detected both Bd and Ranavirus at one playa lake, representing novel detection of both pathogens in the region. Based on these results, we recommend increased monitoring for the pathogens and symptoms of amphibian disease throughout the region.


Subject(s)
Batrachochytrium/isolation & purification , DNA, Environmental/isolation & purification , Ranavirus/isolation & purification , Rivers , Amphibians , Animals , DNA Virus Infections/epidemiology , DNA Virus Infections/veterinary , DNA Virus Infections/virology , DNA, Environmental/genetics , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/veterinary , Texas
8.
J Wildl Dis ; 56(4): 823-836, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33600598

ABSTRACT

It is unclear how suitable human-made wetlands are for supporting wildlife and how they impact wildlife disease risk. Natural wetlands (those that were created without human actions) can support more diverse and resilient communities that are at lower risk of disease outbreaks. We compared frog community composition and infection with the pathogenic fungus Batrachochytrium dendrobatidis (Bd) between human-made and natural wetlands in Tippecanoe County, Indiana, US. We conducted visual encounter surveys of frog communities and quantified Bd infection prevalence at four natural and five human-made wetlands. Water parameters associated with human practices (e.g., pH, salinity) and surrounding land use were also compared across sites. We found higher Bd infection prevalence at human-made sites than at natural sites, with monthly differences showing highest infection in spring and fall, and decreasing infection with increasing water temperature. However, we found no differences between human-made and natural sites regarding amphibian community composition, water quality, or surrounding land use. Further, we found frog density increased with distance to nearest roads among both human-made and natural sites. These findings might suggest that human-made wetlands can support frog communities similar to natural wetlands, but pose a greater risk of Bd infection.


Subject(s)
Anura/microbiology , Batrachochytrium/isolation & purification , Mycoses/veterinary , Wetlands , Animals , Female , Humans , Indiana , Male , Mycoses/microbiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...