Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 18274, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107404

ABSTRACT

Nursing honeybees produce brood food with millimolar concentrations of acetylcholine (ACh), which is synthesized through head gland secretions mixed with honey stomach contents. While we previously demonstrated the necessity of ACh for proper larval development, the dynamics of ACh levels throughout ontogenesis and their seasonal variations have remained unclear until now. Our HPLC analysis reveals dependencies of choline and ACh levels on larval development days (LDDs), influenced by seasonal (April-September) variations. Median ACh concentrations peak on LDD 2, declining significantly toward cell capping, while choline levels are lowest during the initial LDDs, rising markedly toward cell capping. Seasonal patterns show peak ACh levels from April to June and a low in August, paralleling choline's peak in July and low in August. This seasonality holds consistently across multiple years (2020-2022) and colonies, despite potential variations in colony performance and environmental conditions. Our analysis found no correlation between temperature, sunshine, precipitation, or favourable foraging days and ACh/choline levels, suggesting the involvement of additional factors. These findings underscore the seasonal fluctuation of ACh levels and its potential implications for the genetic programs governing winter bee development.


Subject(s)
Acetylcholine , Choline , Seasons , Animals , Bees/metabolism , Bees/physiology , Choline/metabolism , Choline/analysis , Acetylcholine/metabolism , Acetylcholine/analysis , Larva/metabolism , Honey/analysis , Age Factors
2.
PLoS One ; 19(8): e0308950, 2024.
Article in English | MEDLINE | ID: mdl-39150928

ABSTRACT

Eusocial insects, such as stingless bees (Meliponini), depend on division of labour, overlapping generations, and collaborative brood care to ensure the functionality and success of their colony. Female workers transition through a range of age-specific tasks during their lifespan (i.e., age-polyethism) and play a central role in the success of a colony. These age-specific tasks (e.g., brood care or foraging) often closely coincide with key physiological changes necessary to ensure optimal performance. However, our understanding of how nutrition, age, and polyethism may affect the development of such physiological traits in stingless bees remains limited. Here we show that pollen consumption and age-polyethism govern hypopharyngeal gland (HPG) acini size and protein content in Tetragonula pagdeni. By conducting a controlled laboratory experiment we monitored the effect of pollen consumption on worker bee survival as well as assessed how a pollen diet and age affected their HPG acini width and protein content. Further, we sampled nurses and foragers from field colonies to measure the effect of age-polyethism on HPG acini width. We found that pollen consumption enhanced survival and led to increased HPG acini width and protein content and that HPG acini were as expected largest in nurse bees. Our findings highlight the beneficial effects of an adequate diet for physiological development and health in stingless bees and reveal that age-polyethism is the key factor governing HPG size in worker bees. As HPGs are imperative for collaborative brood care-an essential component of eusociality-the data provide a foundation for future studies to investigate the impact of potential environmental stressors on a critical physiological trait in stingless bees which may serve as a proxy to understand the effects at the colony level.


Subject(s)
Insect Proteins , Animals , Bees/physiology , Bees/metabolism , Female , Insect Proteins/metabolism , Hypopharynx/metabolism , Pollen/metabolism , Aging/physiology , Aging/metabolism , Age Factors
3.
Sci Rep ; 14(1): 15177, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956174

ABSTRACT

Human activities associated with large-scale farms and the monocultures expose honey bees to one type of food. Moreover, there is an ongoing decline of plant species producing pollen and nectar in Europe. A poorly balanced diet affects a number of processes occurring in a bee's body. The fat body and hemolymph are the tissues that participate in all of them. Therefore, the aim of our study was to determine the effect of hazel, pine, rapeseed, buckwheat, phacelia and goldenrod pollen on the morphological parameters of fat body trophocytes, the diameters of cell nuclei in oenocytes and the concentrations of compounds involved in energy metabolism (glucose, glycogen, triglycerides and protein). In the cage tests, the bees were fed from the first day of life with sugar candy (control group) or candy with a 10% addition of one of the 6 pollen types. Hemolymph and fat body from various locations were collected from 1-, 7- and 14-day-old workers. Pollen produced by plant species such as hazel and pine increased glucose concentrations in the bee tissues, especially in the hemolymph. It can therefore be concluded that they are valuable sources of energy (in the form of simple carbohydrates) which are quickly used by bees. Pollen from plants blooming in the summer and autumn increased the concentrations of proteins, glycogen and triglycerides in the fat body, especially that from the third tergite. The accumulation of these compounds was associated with an increased the length and width of trophocytes as well as with enhanced metabolic activity, which was evidenced in the increasing diameter of oenocyte cell nuclei. It seems a balanced multi-pollen diet is more valuable for bees, but it is important to understand the effects of the particular pollen types in the context of a mono-diet. In the future, this will make it possible to produce mixtures that can ensure homeostasis in the apian body.


Subject(s)
Energy Metabolism , Fat Body , Hemolymph , Pollen , Bees/metabolism , Bees/physiology , Animals , Pollen/metabolism , Hemolymph/metabolism , Fat Body/metabolism , Glycogen/metabolism , Glucose/metabolism
4.
J Agric Food Chem ; 72(32): 18283-18293, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39082820

ABSTRACT

The authentication of the entomological origin of honey is a widespread concern, necessitating the prompt establishment of an effective approach for distinguishing between Apis cerana cerana honey (ACH) and Apis mellifera ligustica honey (AMH). Hydroxy fatty acids (HFAs) found in honey are bee-derived components synthesized by the mandibular glands of worker bees. We previously discovered significant variations in the hydroxy fatty acid composition between ACH and AMH, suggesting their potential as indicators for identifying the authenticity of the entomological origin of honey. Herein, we identified differentially expressed genes associated with HFA synthesis by conducting transcriptome sequencing of the mandibular glands of AC and AM honeybees. Subsequently, we proposed a method for the relative quantitative analysis of bee-derived RNA components using real-time fluorescence quantitative polymerase chain reaction, which was supplemented by multivariate statistical analysis to further discern differences in HFA synthesis-related mRNA between ACH and AMH. The results showed that the mRNAs of FAXDC2 (fatty acid hydroxylase domain-containing protein 2) and FAS (fatty acid synthase) may serve as indicators to discern the entomological origin of honey. This study presents two novel biomarkers for detecting mislabeling of the entomological origin in ACH and AMH based on variations in bee-derived components.


Subject(s)
Biomarkers , Fatty Acids , Honey , Insect Proteins , RNA, Messenger , Animals , Honey/analysis , Bees/genetics , Bees/metabolism , Fatty Acids/metabolism , Fatty Acids/analysis , RNA, Messenger/genetics , RNA, Messenger/analysis , Insect Proteins/genetics , Insect Proteins/metabolism , Biomarkers/analysis , Food Contamination/analysis
5.
Sci Rep ; 14(1): 14567, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914659

ABSTRACT

Cuticular hydrocarbon (CHCs) variation has been detected in various insect taxa, but the potential contribution of cuticular compounds for analyzing intraspecific diversity at the population level has been little explored. Here we assess for the first time intraspecific variation in the CHC profile of stingless bees, using the species Melipona beecheii and Nannotrigona perilampoides. The objective is determining whether intraspecific variation can be useful for population identification. We found species-specific chemical patterns and extensive variation within each species. Notably, chemotypes were significantly associated to geographic origin in N. perilampoides but less so in M. beecheii and we discuss possible explanations for these patterns. Our results support the use of CHCs in conjunction with other methods in emerging problems such as undetected colony mobilization across regions. As CHCs are involved in several aspects of stingless bee recognition and interactions, it would be essential to unravel how these chemical signatures evolve across populations.


Subject(s)
Hydrocarbons , Animals , Bees/metabolism , Hydrocarbons/analysis , Hydrocarbons/metabolism , Species Specificity
6.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928075

ABSTRACT

In most cases, the number of honeybee stings received by the body is generally small, but honeybee stings can still cause serious allergic reactions. This study fully simulated bee stings under natural conditions and used 1H Nuclear Magnetic Resonance (1H NMR) to analyze the changes in the serum metabolome of Sprague-Dawley (SD) rats stung once or twice by honeybees to verify the impact of this mild sting on the body and its underlying mechanism. The differentially abundant metabolites between the blank control rats and the rats stung by honeybees included four amino acids (aspartate, glutamate, glutamine, and valine) and four organic acids (ascorbic acid, lactate, malate, and pyruvate). There was no separation between the sting groups, indicating that the impact of stinging once or twice on the serum metabolome was similar. Using the Principal Component Discriminant Analysis ( PCA-DA) and Variable Importance in Projection (VIP) methods, glucose, lactate, and pyruvate were identified to help distinguish between sting groups and non-sting groups. Metabolic pathway analysis revealed that four metabolic pathways, namely, the tricarboxylic acid cycle, pyruvate metabolism, glutamate metabolism, and alanine, aspartate, and glutamate metabolism, were significantly affected by bee stings. The above results can provide a theoretical basis for future epidemiological studies of bee stings and medical treatment of patients stung by honeybees.


Subject(s)
Insect Bites and Stings , Metabolome , Rats, Sprague-Dawley , Animals , Bees/metabolism , Rats , Insect Bites and Stings/blood , Male , Metabolic Networks and Pathways , Principal Component Analysis
7.
J Insect Physiol ; 156: 104665, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38906458

ABSTRACT

The dopaminergic system is involved in caste-specific behaviors in eusocial bumble bees. However, little is known about how the caste differences in dopaminergic system are formed during pupal stages in the brains of bumble bees. Thus, we investigated the levels of dopamine-related substances and expression of genes encoding enzymes involved in dopamine synthesis and metabolism, dopamine receptors, and a dopamine transporter in the brain of female Bombus ignitus. The levels of dopamine and dopamine-related substances in the brain were significantly higher in gynes than in workers from the late pupal stage to emergence, but the dynamics were similar between the castes. The relative expression levels of genes encoding enzymes involved in dopamine synthesis (BigTh and BigDdc) and dopamine metabolism (BigNat) increased significantly from pupal stage to emergence, but there were no differences in the relative expression levels of these genes between castes. A similar pattern was seen in the relative expression levels of four dopamine receptor genes (BigDop1, BigDop2, BigDop3, and BigDopEcR) and a dopamine transporter gene (BigDat). Compared with the honey bee Apis mellifera, the caste-specific dopaminergic system in the bumble bee is less differentiated, which might reflect the degree of behavioral specialization in these two species.


Subject(s)
Brain , Dopamine Plasma Membrane Transport Proteins , Dopamine , Receptors, Dopamine , Animals , Bees/metabolism , Bees/genetics , Bees/growth & development , Dopamine/metabolism , Female , Receptors, Dopamine/metabolism , Receptors, Dopamine/genetics , Brain/metabolism , Brain/growth & development , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Pupa/growth & development , Pupa/metabolism , Pupa/genetics
8.
Biochem Biophys Res Commun ; 726: 150273, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38914041

ABSTRACT

Insect olfactory receptors (ORs) are seven-transmembrane domain ion channels that function by forming heteromeric complexes with olfactory receptor co-receptors (Orcos). In this study, we investigated the potential for enhancing sensitivity of odor detection and responsivity through genetic modification of Orcos, considering its wider application in odor sensing. First, we measured the intensity of response to 1-octen-3-ol for the mosquito Aedes aegypti OR (AaOR8) when complexed individually with an Orco from the same mosquito (AaOrco), the honeybee Apis mellifera (AmOrco), the silkworm Bombyx mori (BmOrco), or the fruit fly Drosophila melanogaster (DmOrco). Relative to the other Orcos, AmOrco demonstrated higher sensitivity and responsivity, with a 1.8 to 21-fold decrease in the half-maximal effective concentration (EC50) and a 1.6-8.8-fold increase in the maximal effect (Emax), respectively. Furthermore, AmOrco co-expressed with AaOR10, BmOR56, or DmOR47a showed higher sensitivity and responsivity than AaOrco, BmOrco, or DmOrco co-expressed with their respective ORs. To further increase sensitivity and responsivity, we engineered chimeric Orcos by fusing AmOrco with DmOrco, considering the domain characteristics of Orcos. The response to 1-octen-3-ol was evaluated for AaOR8 when complexed individually with AmOrco, as well as for a mutant that combines DmOrco from the N-terminal (NT) to the C-terminal region of the fourth transmembrane domain (TM4) with the region of AmOrco following TM4 (Dm[NT-TM4]AmOrco). When compared to AmOrco, Dm(NT-TM4)AmOrco showed higher sensitivity and responsivity, with a 1.4-fold decrease in the EC50 and a 1.4-fold increase in the Emax, respectively. In addition, Dm(NT-TM4)AmOrco co-expressed with either DmOR47a or BmOR56 demonstrated higher sensitivity and responsivity than AmOrco co-expressed with their respective ORs. These results suggest that AmOrco could be a relatively more sensitive Orco, and further enhancement of sensitivity and responsivity could be achieved through recombination with heterologous Orcos near the TM4 of AmOrco.


Subject(s)
Odorants , Receptors, Odorant , Animals , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry , Odorants/analysis , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Bombyx/genetics , Bombyx/metabolism , Aedes/genetics , Aedes/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Bees/metabolism , Bees/genetics , HEK293 Cells , Octanols
9.
Proc Biol Sci ; 291(2024): 20232771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864334

ABSTRACT

Land use change alters floral resource availability, thereby contributing to declines in important pollinators. However, the severity of land use impact varies by species, influenced by factors such as dispersal ability and resource specialization, both of which can correlate with body size. Here. we test whether floral resource availability in the surrounding landscape (the 'matrix') influences bee species' abundance in isolated remnant woodlands, and whether this effect varies with body size. We sampled quantitative flower-visitation networks within woodland remnants and quantified floral energy resources (nectar and pollen calories) available to each bee species both within the woodland and the matrix. Bee abundance in woodland increased with floral energy resources in the surrounding matrix, with strongest effects on larger-bodied species. Our findings suggest important but size-dependent effects of declining matrix floral resources on the persistence of bees in remnant woodlands, highlighting the need to incorporate landscape-level floral resources in conservation planning for pollinators in threatened natural habitats.


Subject(s)
Bees , Body Size , Energy Metabolism , Forests , Pollination , Population Density , Bees/anatomy & histology , Bees/metabolism , Plant Nectar/metabolism , Biodiversity , Animals
10.
Insect Mol Biol ; 33(4): 312-322, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38767730

ABSTRACT

Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3' untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.


Subject(s)
Bee Venoms , Insect Proteins , MicroRNAs , Animals , Bees/genetics , Bees/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Bee Venoms/pharmacology , Insect Proteins/metabolism , Insect Proteins/genetics , Cell Survival , Polyamines/metabolism , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase/genetics
11.
Arch Insect Biochem Physiol ; 116(1): e22120, 2024 May.
Article in English | MEDLINE | ID: mdl-38739744

ABSTRACT

The vitellogenin receptor (VgR) is essential for the uptake and transport of the yolk precursor, vitellogenin (Vg). Vg is synthesized in the fat body, released in the hemolymph, and absorbed in the ovaries, via receptor-mediated endocytosis. Besides its important role in the reproductive pathway, Vg occurs in nonreproductive worker honey bee, suggesting its participation in other pathways. The objective was to verify if the VgR occurs in the hypopharyngeal glands of Apis mellifera workers and how Vg is internalized by these cells. VgR occurrence in the hypopharyngeal glands was evaluated by qPCR analyses of VgR and immunohistochemistry in workers with different tasks. The VgR gene is expressed in the hypopharyngeal glands of workers with higher transcript levels in nurse honey bees. VgR is more expressed in 11-day-old workers from queenright colonies, compared to orphan ones. Nurse workers with developed hypopharyngeal glands present higher VgR transcripts than those with poorly developed glands. The immunohistochemistry results showed the co-localization of Vg, VgR and clathrin (protein that plays a major role in the formation of coated vesicles in endocytosis) in the hypopharyngeal glands, suggesting receptor-mediated endocytosis. The results demonstrate that VgR performs the transport of Vg to the hypopharyngeal glands, supporting the Ovary Ground Plan Hypothesis and contributing to the understanding of the role of this gland in the social context of honey bees.


Subject(s)
Egg Proteins , Hypopharynx , Insect Proteins , Receptors, Cell Surface , Animals , Bees/metabolism , Bees/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Egg Proteins/metabolism , Egg Proteins/genetics , Hypopharynx/metabolism , Female , Vitellogenins/metabolism , Vitellogenins/genetics , Clathrin/metabolism
12.
Commun Biol ; 7(1): 502, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664580

ABSTRACT

In Asian honeybees, virgin queens typically only mate during a single nuptial flight before founding a colony. This behavior is controlled by the queen-released mandibular pheromone (QMP). 9-oxo-(E)-2-decenoic acid (9-ODA), a key QMP component, acts as sex pheromone and attracts drones. However, how the queens prevent additional mating remains elusive. Here, we show that the secondary QMP component methyl p-hydroxybenzoate (HOB) released by mated queens inhibits male attraction to 9-ODA. Results from electrophysiology and in situ hybridization assay indicated that HOB alone significantly reduces the spontaneous spike activity of 9-ODA-sensitive neurons, and AcerOr11 is specifically expressed in sensilla placodea from the drone's antennae, which are the sensilla that narrowly respond to both 9-ODA and HOB. Deorphanization of AcerOr11 in Xenopus oocyte system showed 9-ODA induces robust inward (regular) currents, while HOB induces inverse currents in a dose-dependent manner. This suggests that HOB potentially acts as an inverse agonist against AcerOr11.


Subject(s)
Fatty Acids, Monounsaturated , Sex Attractants , Animals , Bees/genetics , Bees/physiology , Bees/metabolism , Sex Attractants/metabolism , Male , Female , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Sexual Behavior, Animal , Insect Proteins/metabolism , Insect Proteins/genetics , Oocytes/metabolism , Oocytes/drug effects
13.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673857

ABSTRACT

Honey bees are commonly used to study metabolic processes, yet the molecular mechanisms underlying nutrient transformation, particularly proteins and their effects on development, health, and diseases, still evoke varying opinions among researchers. To address this gap, we investigated the digestibility and transformation of water-soluble proteins from four artificial diets in long-lived honey bee populations (Apis mellifera ligustica), alongside their impact on metabolism and DWV relative expression ratio, using transcriptomic and protein quantification methods. Diet 2, characterized by its high protein content and digestibility, was selected for further analysis from the other studied diets. Subsequently, machine learning was employed to identify six diet-related molecular markers: SOD1, Trxr1, defensin2, JHAMT, TOR1, and vg. The expression levels of these markers were found to resemble those of honey bees who were fed with Diet 2 and bee bread, renowned as the best natural food. Notably, honey bees exhibiting chalkbrood symptoms (Control-N) responded differently to the diet, underscoring the unique nutritional effects on health-deficient bees. Additionally, we proposed a molecular model to elucidate the transition of long-lived honey bees from diapause to development, induced by nutrition. These findings carry implications for nutritional research and beekeeping, underscoring the vital role of honey bees in agriculture.


Subject(s)
Diet , Bees/genetics , Bees/metabolism , Animals , Diet/veterinary , Insect Proteins/genetics , Insect Proteins/metabolism , Animal Feed/analysis , Biomarkers , Transcriptome , Gene Expression Regulation/drug effects
14.
Food Chem ; 449: 139246, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604035

ABSTRACT

The levels of metabolites in honey are influenced by floral origin, production region, and bee species. However, how environmental factors affect honey quality remains unclear. Based on untargeted metabolomics and using UPLC Q-Orbitrap MS, we analyzed 3596 metabolites in 51 honey samples from Yunnan and Shennongjia. Comparative analysis revealed that geniposidic acid, kynurenic acid and caffieine accumulated at significantly different levels between Shennongjia and Yunnan honey. Based on cluster structure analysis, 36 Yunnan honey samples were divided into two distinct groups by altitude. Notably, quercetin, hyperoside, taxifolin, rutin, tryptophan, astragalin and phenylalanine were higher levels in high-altitude honey (>1700 m), whereas abscisic acid was higher levels in low-altitude honey (≤1700 m). Among these, significantly elevated levels of hyperoside, taxfolin, astragalin, and tryptophan were observed in honey collected from high-altitude areas in Shennongjia. Our findings highlight the effect of altitude on honey health-promoting components, providing valuable insights into honey quality.


Subject(s)
Altitude , Honey , Honey/analysis , Animals , Bees/metabolism , China , Metabolomics , Chromatography, High Pressure Liquid
15.
J Agric Food Chem ; 72(18): 10596-10604, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38619869

ABSTRACT

Identification of chemical markers is important to ensure the authenticity of monofloral honey; however, the formation of chemical markers in honey has received little attention. Herein, using comparative metabolomics, we first identified chemical markers in chaste honey and then explored their formation and accumulation from nectar to mature honey. We identified agnuside and p-hydroxybenzoic acid glucosides as chemical markers for chaste honey. Besides, we developed an UHPLC-MS/MS method for quantifying these markers and found that their levels varied significantly across sample sources. We compared the presence of these compounds in chaste nectar and mature honey. The outcomes underscore that these characteristic compounds are not simply delivered from nectar to mature honey, and activities of honeybees (collecting and processing) play a pivotal role in their formation and accumulation. These observations shed light on how mature honey can form its unique qualities with a rich assortment of natural bioactive compounds, potentially supporting health benefits.


Subject(s)
Honey , Metabolomics , Plant Nectar , Tandem Mass Spectrometry , Honey/analysis , Bees/metabolism , Plant Nectar/chemistry , Plant Nectar/metabolism , Animals , Chromatography, High Pressure Liquid , Biomarkers/analysis , Biomarkers/metabolism
16.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38680096

ABSTRACT

The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.


Subject(s)
Coleoptera , Drosophila melanogaster , Energy Metabolism , Animals , Bees/enzymology , Bees/metabolism , Bees/physiology , Drosophila melanogaster/enzymology , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Coleoptera/enzymology , Coleoptera/metabolism , Coleoptera/physiology , Hot Temperature
17.
Pestic Biochem Physiol ; 201: 105793, 2024 May.
Article in English | MEDLINE | ID: mdl-38685207

ABSTRACT

Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 µL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.


Subject(s)
Chlorpyrifos , Flight, Animal , Glycine , Glyphosate , Metabolomics , Neonicotinoids , Nitro Compounds , Pesticides , Transcriptome , Animals , Bees/drug effects , Bees/genetics , Bees/metabolism , Nitro Compounds/toxicity , Chlorpyrifos/toxicity , Neonicotinoids/toxicity , Flight, Animal/drug effects , Transcriptome/drug effects , Glycine/analogs & derivatives , Glycine/toxicity , Pesticides/toxicity , Insecticides/toxicity , Metabolome/drug effects
19.
Arq. bras. med. vet. zootec ; 65(3): 699-704, June 2013. tab
Article in Portuguese | LILACS | ID: lil-679101

ABSTRACT

Avaliou-se o efeito da suplementação com geleia real sobre a morfometria do aparelho genital, resposta superovulatória e qualidade embrionária de coelhas. Trinta e seis fêmeas foram distribuídas em quatro grupos (G), sendo: G1 (n=9) formado por animais não suplementados com geleia real, e G2, G3 e G4 (n=9 em cada grupo) por animais suplementados com 10, 20 e 40mg/dia de geleia real. A superovulação consistiu na aplicação de 40UI de gonadotrofina coriônica equina, seguida por 40UI de gonadotrofina coriônica humana, via intramuscular, 48 horas após, e submetidas à cobrição natural. Os animais foram sacrificados, e os embriões coletados 72 horas após a cópula. Não houve diferença estatística entre tratamentos para as variáveis analisadas. O peso médio do aparelho genital foi de 10,88±0,38g; dos ovários - direito e esquerdo -, 0,28±0,02g; e o índice gonadossomático, 0,02±0,0g. O número médio de estruturas totais recuperadas foi de 9,2±1,4; de embriões viáveis, 8,7±1,4; e de degenerados, 0,5±0,2. Dos embriões viáveis, 5,6±0,8 foram classificados como grau I; 2,3±0,5, como grau II; e 0,8±0,2, como grau III. A suplementação com geleia real na dose de até 40mg/dia não apresentou efeito estimulador sobre o aparelho genital e a qualidade embrionária de coelhas.


The purpose of this paper was to assess the effect of supplementation of royal jelly on the morphometry of the genital tract, superovulatory response and embryonic quality in adult rabbits. 36 rabbits were distributed in four groups (G), as follows: G1 (n=9): no supplementation with royal jelly, G2, 3 and 4 (n=9): supplementation with 10, 20 and 40mg/day of royal jelly. The superovulatory protocol consisted in the application of a dose of 40UI of Equine Chorionic Gonadotrophin, followed by a dose of UI of Human Chorionic Gonadotrophin, intramuscularly, 48 hours later, and submitted to natural cover. The animals were euthanasiated and the embryos collected 72 hours after copulation. There was no statistical difference for the analyzed variables (P>0.05). The average weight for the female genital tract was 10.89±0.38g; the average weight of right and left ovaries was 0.28±0.02g and the average gonadosomatic index rate was 0.02±0.0g. The number of total recovered structures was 9.2±1.4. The average number of viable embryos was 8.7±1.4 and of degenerated embryos was 0.5±0.2. Viable embryos were morphologically classified as degree I: 5.6±0.8; degree II: 2.3±0.5; degree III: 0.8±0.2. Royal jelly did not present stimulatory effect on organs related to the reproduction of rabbits, nor was it effective to improve their embryonic quality at dosages of up to 40mg of in natura royal jelly.


Subject(s)
Animals , Bees/metabolism , Superovulation , Urogenital System/anatomy & histology , Rabbits/classification
20.
Rev. argent. microbiol ; 42(4): 279-283, oct.-dic. 2010. graf, tab
Article in Spanish | LILACS | ID: lil-634667

ABSTRACT

Las abejas melíferas son afectadas por gran cantidad de enfermedades infecciosas principalmente producidas por bacterias, hongos, virus y parásitos eucariotas. Dentro de las ocasionadas por procariotas, la loque americana es una enfermedad extremadamente grave que afecta a larvas y pupas de abejas; su agente causal es la bacteria esporulada Paenibacillus larvae. La administración de antibióticos es la principal alternativa para el control de esta enfermedad en colmenares con altos niveles de infección. El objetivo del presente trabajo fue determinar, mediante un método biológico, la unión de los antibióticos tilosina, tilmicosina y oxitetraciclina a las proteínas presentes en abejas adultas, larvas menores de 72 horas, larvas mayores de 72 horas, jalea de obreras, miel y polen, con la finalidad de diseñar un modelo de ruta cinética de los antibióticos. Los límites de sensibilidad de la técnica de valoración de estos antibióticos fueron 0,05 μg/ml para tilosina y tilmicosina, y 0,01 μg/ml para oxitetraciclina. Los coeficientes de correlación fueron superiores a 0,90 y los coeficientes de variación intra e inter-ensayo inferiores al 5%. Tanto tilosina como oxitetraciclina presentaron un porcentaje de unión a proteínas de un 15% en promedio en tejidos y subproductos de la colmena, lo cual resultó inferior a lo observado con tilmicosina (29% en promedio). En conclusión, por sus características químicas, su actividad antimicrobiana y su baja tasa de unión a las abejas, larvas y subproductos de la colmena, la tilosina presenta propiedades farmacocinéticas que podrían representar una ventaja terapéutica para el tratamiento de la loque americana en colmenas.


American Foulbrood (AFB) caused by the spore-forming bacterium Paenibacillus larvae is the most serious disease of bacterial origin affecting larvae and pupae of honeybees. Antibiotics are used in many countries for the control of AFB in high incidence areas, but their misuse may lead to antibiotic resistance of bacterial strains and honey contamination. The objective of the present work was to determine, through a biological method, the protein binding of tylosin, tilmicosin and oxytetracycline to worker jelly; honey; pollen; adult bees and larvae in order to propose their kinetic routes. The sensitivity limit of the technique used was 0.05 μg/ml for tylosin and tilmicosin and 0.01 μg/ml for oxytetracycline, respectively. The method had intra and inter-assay correlation coefficients over 0.90, respectively and a coefficient variation of intra-and inter-assay for all antibiotics and processed samples under 5%. Tylosin and oxytetracycline presented lower percentages of protein binding in tissues and hive products (average 15%) in relation to those observed for tilmicosin (29%). In conclusion, tylosin is useful for AFB control in honey bee colonies due to its chemical characteristics, antimicrobial activity and levels of protein binding in bees, larvae, and beehive products.


Subject(s)
Animals , Anti-Bacterial Agents/metabolism , Bees/metabolism , Insect Proteins/metabolism , Oxytetracycline/metabolism , Tylosin/analogs & derivatives , Tylosin/metabolism , Anti-Bacterial Agents/pharmacokinetics , Bees/growth & development , Fatty Acids/analysis , Fatty Acids/metabolism , Honey/analysis , Larva/metabolism , Oxytetracycline/pharmacokinetics , Protein Binding , Pollen/chemistry , Pollen/metabolism , Tylosin/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL