Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.442
Filter
1.
Curr Biol ; 34(9): R335-R337, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714157

ABSTRACT

A new study compiles compelling evidence that stingless bees construct their brood combs in a self-organised manner in which local modification of a structure stimulates further modifications, a process known as stigmergy.


Subject(s)
Nesting Behavior , Animals , Bees/physiology , Nesting Behavior/physiology , Social Behavior , Behavior, Animal/physiology
2.
PeerJ ; 12: e17273, 2024.
Article in English | MEDLINE | ID: mdl-38708362

ABSTRACT

Gradual pollen presentation is a plant reproductive mechanism to improve pollination efficiency and accuracy and promote outcrossing. Vaccinium corymbosum 'Bluecrop' has a typical gradual pollen presentation mechanism. 'Bluecrop' exhibits an inverted bell-shaped flower with a white coloration. By investigating the flower syndrome, pollination characteristics, pollination efficiency, and breeding system of 'Bluecrop', this study aims to explore the adaptive significance of these traits. The results showed 'Bluecrop' released pollen gradually through anther poricidal dehiscence. Among different pollinators, Apis mellifera and Bombus can pollinate effectively, and the mechanism of gradual pollen presentation significantly improved the efficiency of pollen transfer. This characteristic limits the amount of pollen removed by the pollinators and prolongs pollen presentation, thus attracting more pollinators and thereby increasing male fitness. The nectar secretion of 'Bluecrop' is gradual, with a large nectar production and a long phase of nectar secretion, enhance visitation frequencies and the chances of successful pollination. At the same time, campanulate corolla can protect pollen as well as nectar from waste due to environmental factors and other effects. The breeding system of 'Bluecrop' relies mainly on outcrossing because of its low affinity for self-fertilization and good interaction with pollinating insects. Thus, the special floral syndrome and the mechanism of secondary pollen presentation are significant in improving pollination efficiency and promoting the reproductive success of 'Bluecrop' by outcrossing. It can provide a certain theoretical basis for the future propagation breeding of 'Bluecrop'.


Subject(s)
Flowers , Pollen , Pollination , Bees/physiology , Flowers/genetics , Flowers/physiology , Animals , Blueberry Plants , Plant Nectar , Plant Breeding
3.
Proc Biol Sci ; 291(2022): 20240055, 2024 May.
Article in English | MEDLINE | ID: mdl-38689557

ABSTRACT

Cooperation is common in animals, yet the specific mechanisms driving collaborative behaviour in different species remain unclear. We investigated the proximate mechanisms underlying the cooperative behaviour of bumblebees in two different tasks, where bees had to simultaneously push a block in an arena or a door at the end of a tunnel for access to reward. In both tasks, when their partner's entry into the arena/tunnel was delayed, bees took longer to first push the block/door compared with control bees that learned to push alone. In the tunnel task, just before gaining access to reward, bees were more likely to face towards their partner than expected by chance or compared with controls. These results show that bumblebees' cooperative behaviour is not simply a by-product of individual efforts but is socially influenced. We discuss how bees' turning behaviours, e.g. turning around before first reaching the door when their partner was delayed and turning back towards the door in response to seeing their partner heading towards the door, suggest the potential for active coordination. However, because these behaviours could also be interpreted as combined responses to social and secondary reinforcement cues, future studies are needed to help clarify whether bumblebees truly use active coordination.


Subject(s)
Cooperative Behavior , Animals , Bees/physiology , Social Behavior , Behavior, Animal , Reward
4.
Sci Rep ; 14(1): 10079, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698037

ABSTRACT

Over the last quarter century, increasing honey bee colony losses motivated standardized large-scale surveys of managed honey bees (Apis mellifera), particularly in Europe and the United States. Here we present the first large-scale standardized survey of colony losses of managed honey bees and stingless bees across Latin America. Overall, 1736 beekeepers and 165 meliponiculturists participated in the 2-year survey (2016-2017 and 2017-2018). On average, 30.4% of honey bee colonies and 39.6% of stingless bee colonies were lost per year across the region. Summer losses were higher than winter losses in stingless bees (30.9% and 22.2%, respectively) but not in honey bees (18.8% and 20.6%, respectively). Colony loss increased with operation size during the summer in both honey bees and stingless bees and decreased with operation size during the winter in stingless bees. Furthermore, losses differed significantly between countries and across years for both beekeepers and meliponiculturists. Overall, winter losses of honey bee colonies in Latin America (20.6%) position this region between Europe (12.5%) and the United States (40.4%). These results highlight the magnitude of bee colony losses occurring in the region and suggest difficulties in maintaining overall colony health and economic survival for beekeepers and meliponiculturists.


Subject(s)
Beekeeping , Seasons , Animals , Bees/physiology , Latin America
5.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230111, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705186

ABSTRACT

Global pollinator decline urgently requires effective methods to assess their trends, distribution and behaviour. Passive acoustics is a non-invasive and cost-efficient monitoring tool increasingly employed for monitoring animal communities. However, insect sounds remain highly unexplored, hindering the application of this technique for pollinators. To overcome this shortfall and support future developments, we recorded and characterized wingbeat sounds of a variety of Iberian domestic and wild bees and tested their relationship with taxonomic, morphological, behavioural and environmental traits at inter- and intra-specific levels. Using directional microphones and machine learning, we shed light on the acoustic signature of bee wingbeat sounds and their potential to be used for species identification and monitoring. Our results revealed that frequency of wingbeat sounds is negatively related with body size and environmental temperature (between-species analysis), while it is positively related with experimentally induced stress conditions (within-individual analysis). We also found a characteristic acoustic signature in the European honeybee that supported automated classification of this bee from a pool of wild bees, paving the way for passive acoustic monitoring of pollinators. Overall, these findings confirm that insect sounds during flight activity can provide insights on individual and species traits, and hence suggest novel and promising applications for this endangered animal group. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Acoustics , Wings, Animal , Animals , Bees/physiology , Wings, Animal/physiology , Flight, Animal/physiology , Vocalization, Animal/physiology , Pollination , Sound
6.
Curr Biol ; 34(9): 1893-1903.e3, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38636513

ABSTRACT

Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.


Subject(s)
Crops, Agricultural , Pollination , Bees/physiology , Bees/parasitology , Animals , Varroidae/physiology , Canada , Stress, Physiological , Beekeeping/methods
7.
Curr Biol ; 34(8): R313-R315, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653197

ABSTRACT

A new study combining high-speed video recordings and computational modeling has revealed an overlooked feature of the famous honeybee waggle dance, yielding the first biologically plausible neural circuit model of how the information transmitted via the waggle dance could be assimilated by the follower bees.


Subject(s)
Animal Communication , Animals , Bees/physiology , Video Recording
8.
Commun Biol ; 7(1): 502, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664580

ABSTRACT

In Asian honeybees, virgin queens typically only mate during a single nuptial flight before founding a colony. This behavior is controlled by the queen-released mandibular pheromone (QMP). 9-oxo-(E)-2-decenoic acid (9-ODA), a key QMP component, acts as sex pheromone and attracts drones. However, how the queens prevent additional mating remains elusive. Here, we show that the secondary QMP component methyl p-hydroxybenzoate (HOB) released by mated queens inhibits male attraction to 9-ODA. Results from electrophysiology and in situ hybridization assay indicated that HOB alone significantly reduces the spontaneous spike activity of 9-ODA-sensitive neurons, and AcerOr11 is specifically expressed in sensilla placodea from the drone's antennae, which are the sensilla that narrowly respond to both 9-ODA and HOB. Deorphanization of AcerOr11 in Xenopus oocyte system showed 9-ODA induces robust inward (regular) currents, while HOB induces inverse currents in a dose-dependent manner. This suggests that HOB potentially acts as an inverse agonist against AcerOr11.


Subject(s)
Fatty Acids, Monounsaturated , Sex Attractants , Animals , Bees/genetics , Bees/physiology , Bees/metabolism , Sex Attractants/metabolism , Male , Female , Receptors, Pheromone/genetics , Receptors, Pheromone/metabolism , Sexual Behavior, Animal , Insect Proteins/metabolism , Insect Proteins/genetics , Oocytes/metabolism , Oocytes/drug effects
9.
Biol Lett ; 20(4): 20230518, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593853

ABSTRACT

Only a few diurnal animals, such as bumblebees, extend their activity into the time around sunrise and sunset when illumination levels are low. Low light impairs viewing conditions and increases sensory costs, but whether diurnal insects use low light as a cue to make behavioural decisions is uncertain. To investigate how they decide to initiate foraging at these times of day, we observed bumblebee nest-departure behaviours inside a flight net, under naturally changing light conditions. In brighter light bees did not attempt to return to the nest and departed with minimal delay, as expected. In low light the probability of non-departures increased, as a small number of bees attempted to return after spending time on the departure platform. Additionally, in lower illumination bees spent more time on the platform before flying away, up to 68 s. Our results suggest that bees may assess light conditions once outside the colony to inform the decision to depart. These findings give novel insights into how behavioural decisions are made at the start and the end of a foraging day in diurnal animals when the limits of their vision impose additional costs on foraging efficiency.


Subject(s)
Bees , Behavior, Animal , Light , Animals , Bees/physiology
10.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569959

ABSTRACT

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Subject(s)
Crops, Agricultural , Environmental Monitoring , Pesticides , Pollination , Animals , Bees/physiology , Pesticides/analysis , Pollen , Malus , Environmental Exposure/statistics & numerical data
11.
Sci Rep ; 14(1): 9738, 2024 04 28.
Article in English | MEDLINE | ID: mdl-38679614

ABSTRACT

The mining bee (Andrena spp.) play a key role in ensuring plant and animal diversity. The present study examines their diversity in a post-agricultural landscape exemplified by the Kampinos National Park (KNP), a UNESCO Biosphere Reserve in Poland. The following hypotheses were addressed: (H1) the mining bees demonstrate a narrow ecological amplitude, (H2) there are no indicator species for particular habitats, and (H3) the studied mining bees have the same ecological preferences to those presented in the literature. A total of 40 catch per unit effort samples (CPUE) were collected across various habitats with different soil humidity. Forty-six species were recorded, representing 46% of mining bees and approximately 10% of the known Polish bee fauna. Nineteen of the recorded species (41%) were assigned to CR-NT threat categories, indicating that the national park plays a significant role in preserving mining bee species diversity and their conservation. None of the hypotheses (H1, H2, H3) were confirmed. The mining bees were found to demonstrate a wide ecological amplitude. Surprisingly, habitats located in dry and wet soils were both characterised by high abundance and species richness. Seventeen indicators were distinguished among the dominant and rarer species. Our findings suggest that Andrena nigroaenea and A. ventralis (lower humidity), as well as A. alfkenella and A. minutuloides (higher humidity), have different significant relationships with habitat soil humidity to those reported in the literature.


Subject(s)
Biodiversity , Ecosystem , Parks, Recreational , Animals , Bees/physiology , Poland , Conservation of Natural Resources , Agriculture
12.
Pestic Biochem Physiol ; 201: 105909, 2024 May.
Article in English | MEDLINE | ID: mdl-38685230

ABSTRACT

Flumethrin has been supplied as an acaricide for Varroa mite control in world-wide apiculture due to its low lethal effects on honey bees. However, little is known about the effects of short-term flumethrin exposure in the larval stage on adult life stage of bees involving survival status, foraging and memory-related behaviors. Here, we found that exposure to flumethrin at 1 mg/L during larval stage reduced survival and altered foraging activities including induced precocious foraging activity, decreased foraging trips and time, and altered rotating day-off status of adult worker bees using the radio frequency identification system. Furthermore, larval exposure at 1 mg/L flumethrin influenced the correct proboscis extension responses of 7-day-old worker bees and decreased homing rates of 20-day-old worker bees, suggesting that 1 mg/L flumethrin exposure at larval stage could affect memory-related behaviors of adult bees; meanwhile, three genes related to memory (GluRA, Nmdar1 and Tyr1) were certainly down-regulated varying different flumethrin concentrations (0.01, 0.1, and 1 mg/L). Combined with transcriptomic sequencing, differentially expressed genes involved in olfactory memory of adult bees were completely down-regulated under flumethrin exposure. Our findings highlight the unprecedented impact of short-term exposure of insecticides on honey bees in long-term health monitoring under field conditions.


Subject(s)
Larva , Memory , Pyrethrins , Animals , Pyrethrins/toxicity , Bees/drug effects , Bees/physiology , Larva/drug effects , Memory/drug effects , Behavior, Animal/drug effects , Insecticides/toxicity , Acaricides/toxicity
13.
PeerJ ; 12: e17247, 2024.
Article in English | MEDLINE | ID: mdl-38685938

ABSTRACT

In order to improve the productivity of honey bees (Apis mellifera), some of their traits are selected by breeding. On one hand, breeding is mainly based on the natural geographical variation of this species; on the other hand, mass production and distribution of artificially selected queens can significantly affect the natural geographic variation of honey bees. In this study, we have compared honey bee wings originating from breeding and non-breeding populations in Serbia. In the comparison, we have also used data from a large area of south-eastern Europe. The wings were measured using the 19 landmarks indicated on the wing images. The coordinates were analysed using the methodology of geometric morphometrics. We found that honey bees obtained from honey bee queen breeder differed in wing venation from surrounding populations, which are under natural selection. Therefore, we argue against including populations under artificial selection in the analysis of the natural geographical variation of honey bees. In our analysis of non-breeding samples, we found that in south-eastern Europe there is continuous variation in wing venation and no clear boundaries between A. m. carnica, A. m. cecropia, and A. m. macedonica.


Subject(s)
Breeding , Wings, Animal , Bees/anatomy & histology , Bees/physiology , Animals , Wings, Animal/anatomy & histology , Serbia , Female
14.
J Exp Biol ; 227(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38629177

ABSTRACT

Bumble bees are common in cooler climates and many species likely experience periodic exposure to very cold temperatures, but little is known about the temporal dynamics of cold response mechanisms following chill exposure, especially how persistent effects of cold exposure may facilitate tolerance of future events. To investigate molecular processes involved in the temporal response by bumble bees to acute cold exposure, we compared mRNA transcript abundance in Bombus impatiens workers exposed to 0°C for 75 min (inducing chill coma) and control bees maintained at a constant ambient temperature (28°C). We sequenced the 3' end of mRNA transcripts (TagSeq) to quantify gene expression in thoracic tissue of bees at several time points (0, 10, 30, 120 and 720 min) following cold exposure. Significant differences from control bees were only detectable within 30 min after the treatment, with most occurring at the 10 min recovery time point. Genes associated with gluconeogenesis and glycolysis were most notably upregulated, while genes related to lipid and purine metabolism were downregulated. The observed patterns of expression indicate a rapid recovery after chill coma, suggesting an acute differential transcriptional response during recovery from chill coma and return to baseline expression levels within an hour, with no long-term gene expression markers of this cold exposure. Our work highlights the functions and pathways important for acute cold recovery, provides an estimated time frame for recovery from cold exposure in bumble bees, and suggests that cold hardening may be less important for these heterothermic insects.


Subject(s)
Cold Temperature , Animals , Bees/genetics , Bees/physiology , Gene Expression Regulation , Transcriptome , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
15.
Sci Total Environ ; 928: 172525, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631635

ABSTRACT

Bumblebees play a vital role in both natural and agricultural environments, but there has been a noticeable decline in their populations. Pesticides, particularly neonicotinoids, are widely regarded as a substantial contributing factor to the decline in bumblebee populations, as evidenced by the detrimental impacts documented across many stages of their life cycle. Mating is vital for the population maintenance of bumblebees. Nevertheless, there is a scarcity of research conducted on the effects of pesticides on the mating process. In this study, we individually examined the impact of imidacloprid on the mating behavior of bumblebee males and queens. A competitive mating experiment was conducted to evaluate the effect on the competitive prowess of male individuals and the mate selection behavior of female individuals. The study revealed that the mating rate of bumblebees exposed to a concentration of 10 ppb of imidacloprid was 3 %. This finding demonstrated a statistically significant impact when compared to the control group, which exhibited a mating rate of 58 % in the normal mating experiment. Furthermore, in the competitive mating experiment, we found that the competitive mating success rate of treated males (1 %) was significantly lower than that of untreated males (35 %). Hence, it provides evidence that neonicotinoid imidacloprid negatively affects bumblebee mating success and cautions us to protect bumblebees from pesticide exposure to prevent a severe impact on their populations.


Subject(s)
Insecticides , Neonicotinoids , Nitro Compounds , Sexual Behavior, Animal , Animals , Neonicotinoids/toxicity , Bees/drug effects , Bees/physiology , Nitro Compounds/toxicity , Male , Sexual Behavior, Animal/drug effects , Insecticides/toxicity , Female , Imidazoles/toxicity , Reproduction/drug effects
16.
Naturwissenschaften ; 111(3): 26, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647655

ABSTRACT

In specialized plant-pollinator associations, partners may exhibit adaptive traits, which favor the maintenance of the interaction. The association between Calibrachoa elegans (Solanaceae) and its oligolectic bee pollinator, Hexantheda missionica (Colletidae), is mutualistic and forms a narrowly specialized pollination system. Flowers of C. elegans are pollinated exclusively by this bee species, and the bees restrict their pollen resources to this plant species. The pollen presentation schedules of C. elegans were evaluated at the population level to test the hypothesis that H. missionica females adjust their foraging behavior to the resource offering regime of C. elegans plants. For this, the number of new flowers and anthers opened per hour (as a proxy for pollen offering) was determined, and pollen advertisement was correlated with the frequency of flower visits during the day. Preferences of female bees for flowers of different stages were also investigated, and their efficiency as pollinators was evaluated. Pollen offering by C. elegans was found to be partitioned throughout the day through scattered flower openings. Females of H. missionica indeed adjusted their foraging activity to the most profitable periods of pollen availability. The females preferred new, pollen-rich flowers over old ones and gathered pollen and nectar selectively according to flower age. Such behaviors must optimize female bee foraging efficiency on flowers. Female bees set 93% of fruit after a single visit. These findings guarantee their importance as pollinators and the persistence of the specialized plant-pollinator association.


Subject(s)
Feeding Behavior , Flowers , Pollination , Solanaceae , Animals , Bees/physiology , Flowers/physiology , Pollination/physiology , Female , Feeding Behavior/physiology , Solanaceae/physiology , Pollen/physiology
17.
Neotrop Entomol ; 53(3): 499-513, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656591

ABSTRACT

The use of Meliponini for crop pollination in protected environments is practically non-existent. One of the reasons is the difficulty of acclimatizing Meliponini to the temperature and light conditions inside greenhouses. We investigated how covering materials used in greenhouses, which filter different intensities of ultraviolet (UV) light, affect the foraging behaviors, flight orientation, attraction to walls and ceilings, and mortality of Scaptotrigona cf. postica (Letreille), Frieseomelitta varia (Lepeletier), and Melipona quadrifasciata (Lepeletier). The experiments were conducted in 5.3 m3 arenas covered with four types of plastic films that do not polarize sunlight, with UV transmittance levels ranging from 0.1 to 54%, compared to a transparent glass control. The temperature inside the arenas varied between treatments, from 27 ± 3°C to 31 ± 2°C. All three species collected resources and returned to the colony, regardless of the covering material. However, the proportion of this behavior, the number of bees attracted to the ceiling and wall, and mortality varied among treatments and/or throughout the confinement days for each species. Melipona quadrifasciata and F. varia acclimatized better to the confined environments than S. cf. postica and showed consistent resource collection behavior throughout the confinement days in all tested materials, except for the one that filtered around 90% of UV. In all three species, the mortality gradually decreased throughout the confinement days. The results indicate that the choice of covering material, considering its optical characteristics, can be crucial to ensure greater effectiveness of the pollination services provided by stingless bees in protected systems.


Subject(s)
Acclimatization , Ultraviolet Rays , Bees/physiology , Animals , Brazil , Temperature , Pollination , Feeding Behavior , Flight, Animal
18.
New Phytol ; 242(5): 2322-2337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634161

ABSTRACT

Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.


Subject(s)
Flowers , Melastomataceae , Pollination , Pollination/physiology , Flowers/physiology , Flowers/anatomy & histology , Melastomataceae/physiology , Bees/physiology , Animals , Phylogeny , Species Specificity , Models, Biological
19.
Nat Commun ; 15(1): 3608, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684711

ABSTRACT

Invasive populations often experience founder effects: a loss of genetic diversity relative to the source population, due to a small number of founders. Even where these founder effects do not impact colonization success, theory predicts they might affect the rate at which invasive populations expand. This is because secondary founder effects are generated at advancing population edges, further reducing local genetic diversity and elevating genetic load. We show that in an expanding invasive population of the Asian honey bee (Apis cerana), genetic diversity is indeed lowest at range edges, including at the complementary sex determiner, csd, a locus that is homozygous-lethal. Consistent with lower local csd diversity, range edge colonies had lower brood viability than colonies in the range centre. Further, simulations of a newly-founded and expanding honey bee population corroborate the spatial patterns in mean colony fitness observed in our empirical data and show that such genetic load at range edges will slow the rate of population expansion.


Subject(s)
Founder Effect , Genetic Variation , Introduced Species , Animals , Bees/genetics , Bees/physiology , Male , Female , Population Dynamics , Social Behavior
20.
Ecology ; 105(5): e4306, 2024 May.
Article in English | MEDLINE | ID: mdl-38590050

ABSTRACT

Plants produce an array of defensive compounds with toxic or deterrent effects on insect herbivores. Pollen can contain relatively high concentrations of such defense compounds, but the causes and consequences of this enigmatic phenomenon remain mostly unknown. These compounds could potentially protect pollen against antagonists but could also reduce flower attractiveness to pollinators. We combined field observations of the pollen-rewarding Lupinus argenteus with chemical analysis and laboratory assays to test three hypotheses for the presence of pollen defense compounds: (1) these compounds are the result of spillover from adjacent tissues, (2) they protect against pollen thieves, and (3) they act as antimicrobial compounds. We also tested whether pollen defense compounds affect pollinator behavior. We found a positive relationship between alkaloid concentrations in pollen and petals, supporting the idea that pollen defense compounds partly originate from spillover. However, pollen and petals exhibited quantitatively (but not qualitatively) distinct alkaloid profiles, suggesting that plants can adjust pollen alkaloid composition independently from that of adjacent tissues. We found no relationship between pollen alkaloid concentration and the abundance of pollen thieves in Lupinus flowers. However, pollen alkaloids were negatively associated with bacterial abundance. Finally, plants with more alkaloids in their pollen received more pollinator visits, but these visits were shorter, resulting in no change in the overall number of flowers visited. We propose that pollen defense compounds are partly the result of spillover from other tissues, while they also play an antimicrobial role. The absence of negative effects of these compounds on pollinator visitation likely allows their maintenance in pollen at relatively high concentrations. Taken together, our results suggest that pollen alkaloids affect and are mediated by the interplay of multiple interactions.


Subject(s)
Lupinus , Pollen , Pollination , Pollen/chemistry , Animals , Lupinus/chemistry , Lupinus/physiology , Alkaloids , Flowers/chemistry , Bees/physiology , Insecta/physiology , Insecta/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...