Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Front Immunol ; 13: 1008702, 2022.
Article in English | MEDLINE | ID: mdl-36330522

ABSTRACT

Sepsis-induced myocardiopathy, characterized by innate immune cells infiltration and proinflammatory cytokines release, may lead to perfusion failure or even life-threatening cardiogenic shock. Macrophages-mediated inflammation has been shown to contribute to sepsis-induced myocardiopathy. In the current study, we introduced two photoactivated adenylyl cyclases (PACs), Beggiatoa sp. PAC (bPAC) and Beggiatoa sp. IS2 PAC (biPAC) into macrophages by transfection to detect the effects of light-induced regulation of macrophage pro-inflammatory response and LPS-induced sepsis-induced myocardiopathy. By this method, we uncovered that blue light-induced bPAC or biPAC activation considerably inhibited the production of pro-inflammatory cytokines IL-1 and TNF-α, both at mRNA and protein levels. Further, we assembled a GelMA-Macrophages-LED system, which consists of GelMA-a type of light crosslink hydrogel, gene modulated macrophages and wireless LED device, to allow light to regulate cardiac inflammation in situ with murine models of LPS-induced sepsis. Our results showed significant inhibition of leukocytes infiltration, especially macrophages and neutrophils, suppression of pro-inflammatory cytokines release, and alleviation of sepsis-induced cardiac dysfunction. Thus, our study may represent an emerging means to treat sepsis-induced myocardiopathy and other cardiovascular diseases by photo-activated regulating macrophage function.


Subject(s)
Beggiatoa , Cardiomyopathies , Sepsis , Mice , Animals , Adenylyl Cyclases/metabolism , Lipopolysaccharides , Beggiatoa/genetics , Beggiatoa/metabolism , Sepsis/complications , Sepsis/metabolism , Macrophages , Cytokines/metabolism , Cardiomyopathies/etiology
2.
Appl Environ Microbiol ; 82(8): 2527-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26896131

ABSTRACT

UNLABELLED: A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditions was presumably driven by sulfur respiration.Beggiatoa sp. 35Flor reached significantly higher biomass in hydrogen-supplemented oxygen-sulfide gradient media, but hydrogen did not support growth of the strain in the absence of reduced sulfur compounds. Nevertheless, hydrogen oxidation can provide Beggiatoa sp. 35Flor with energy for maintenance and assimilatory purposes and may support the disposal of internally stored sulfur to prevent physical damage resulting from excessive sulfur accumulation. Our knowledge about the exposure of natural populations of Beggiatoa ceae to hydrogen is very limited, but significant amounts of hydrogen could be provided by nitrogen fixation, fermentation, and geochemical processes in several of their typical habitats such as photosynthetic microbial mats and submarine sites of hydrothermal fluid flow. IMPORTANCE: Reduced sulfur compounds are certainly the main electron donors for chemolithoautotrophic Beggiatoa ceae, but the traditional focus on this topic has left other possible inorganic electron donors largely unexplored. In this paper, we provide evidence that hydrogen oxidation has the potential to strengthen the ecophysiological plasticity of Beggiatoa ceaein several ways. Moreover, we show that hydrogen oxidation by members of this family can significantly influence biogeochemical gradients and therefore should be considered in environmental studies.


Subject(s)
Beggiatoa/metabolism , Chemoautotrophic Growth , Hydrogen/metabolism , Aerobiosis , Anaerobiosis , Beggiatoa/growth & development , Biomass , Culture Media/chemistry , Oxidation-Reduction , Sulfides/metabolism
3.
Geobiology ; 13(6): 588-603, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26462132

ABSTRACT

Crusts and chimneys composed of authigenic barite are found at methane seeps and hydrothermal vents that expel fluids rich in barium. Microbial processes have not previously been associated with barite precipitation in marine cold seep settings. Here, we report on the precipitation of barite on filaments of sulfide-oxidizing bacteria at a brine seep in the Gulf of Mexico. Barite-mineralized bacterial filaments in the interiors of authigenic barite crusts resemble filamentous sulfide-oxidizing bacteria of the genus Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that the barite crusts that host these filaments also preserve DNA of Candidatus Maribeggiatoa, as well as sulfate-reducing bacteria. Isotopic analyses show that the sulfur and oxygen isotope compositions of barite have lower δ(34)S and δ(18)O values than many other marine barite crusts, which is consistent with barite precipitation in an environment in which sulfide oxidation was occurring. Laboratory experiments employing isolates of sulfide-oxidizing bacteria from Gulf of Mexico seep sediments showed that under low sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide-oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to the encrustation of bacteria in a manner reminiscent of our observations of barite-mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on filaments of sulfide-oxidizing bacteria, and not on other benthic substrates, suggests that sulfide oxidation plays a role in barite formation at certain marine brine seeps where sulfide is oxidized to sulfate in contact with barium-rich fluids, either prior to, or during, the mixing of those fluids with sulfate-containing seawater in the vicinity of the sediment/water interface. As with many other geochemical interfaces that foster mineral precipitation, both biological and abiological processes likely contribute to the precipitation of barite at marine brine seeps such as the one studied here.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Barium Sulfate/metabolism , Sulfides/metabolism , Bacteria/classification , Bacteria/isolation & purification , Beggiatoa/classification , Beggiatoa/genetics , Beggiatoa/isolation & purification , Beggiatoa/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Gulf of Mexico , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA
4.
Appl Environ Microbiol ; 80(2): 629-36, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24212585

ABSTRACT

Zero-valent sulfur is a key intermediate in the microbial oxidation of sulfide to sulfate. Many sulfide-oxidizing bacteria produce and store large amounts of sulfur intra- or extracellularly. It is still not understood how the stored sulfur is metabolized, as the most stable form of S(0) under standard biological conditions, orthorhombic α-sulfur, is most likely inaccessible to bacterial enzymes. Here we analyzed the speciation of sulfur in single cells of living sulfide-oxidizing bacteria via Raman spectroscopy. Our results showed that under various ecological and physiological conditions, all three investigated Beggiatoa strains stored sulfur as a combination of cyclooctasulfur (S8) and inorganic polysulfides (Sn(2-)). Linear sulfur chains were detected during both the oxidation and reduction of stored sulfur, suggesting that Sn(2-) species represent a universal pool of bioavailable sulfur. Formation of polysulfides due to the cleavage of sulfur rings could occur biologically by thiol-containing enzymes or chemically by the strong nucleophile HS(-) as Beggiatoa migrates vertically between oxic and sulfidic zones in the environment. Most Beggiatoa spp. thus far studied can oxidize sulfur further to sulfate. Our results suggest that the ratio of produced sulfur and sulfate varies depending on the sulfide flux. Almost all of the sulfide was oxidized directly to sulfate under low-sulfide-flux conditions, whereas only 50% was oxidized to sulfate under high-sulfide-flux conditions leading to S(0) deposition. With Raman spectroscopy we could show that sulfate accumulated in Beggiatoa filaments, reaching intracellular concentrations of 0.72 to 1.73 M.


Subject(s)
Beggiatoa/metabolism , Sulfates/metabolism , Sulfides/metabolism , Fresh Water/microbiology , Oxidation-Reduction , Spectrum Analysis, Raman , Sulfates/chemistry , Sulfides/chemistry , Sulfur/metabolism
5.
Appl Environ Microbiol ; 79(4): 1183-90, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23220958

ABSTRACT

Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (µLC-MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated.


Subject(s)
Beggiatoa/enzymology , Beggiatoa/metabolism , Cytochromes/metabolism , Pigments, Biological/metabolism , Chromatography, High Pressure Liquid , Cytochromes/isolation & purification , Geologic Sediments/microbiology , Mexico , Nitrite Reductases/isolation & purification , Nitrite Reductases/metabolism , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Sequence Homology, Amino Acid , Tandem Mass Spectrometry
6.
Antonie Van Leeuwenhoek ; 101(2): 347-57, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21909788

ABSTRACT

Sulfide-oxidizing bacteria of the genus Beggiatoa are known to accumulate phosphate intracellularly as polyphosphate but little is known about the structure and properties of these inclusions. Application of different staining techniques revealed the presence of unusually large polyphosphate inclusions in the marine Beggiatoa strain 35Flor. The inclusions showed a co-occurrence of polyphosphate, calcium and magnesium when analyzed by scanning electron microscopy and energy dispersive X-ray analysis. Similar to polyphosphate-enriched acidocalcisomes of prokaryotes and eukaryotes, the polyphosphate inclusions in Beggiatoa strain 35Flor are enclosed by a lipid layer and store cations. However, they are not notably acidic. 16S rRNA gene sequence-based phylogenetic reconstruction showed an affiliation of Beggiatoa strain 35Flor to a monophyletic branch, comprising other narrow vacuolated and non-vacuolated Beggiatoa species. The polyphosphate inclusions represent a new type of membrane surrounded storage compartment within the genus Beggiatoa, distinct from the mostly nitrate-storing vacuoles known from other marine sulfide-oxidizing bacteria of the family Beggiatoaceae.


Subject(s)
Beggiatoa/isolation & purification , Beggiatoa/metabolism , Inclusion Bodies/metabolism , Polyphosphates/metabolism , Seawater/microbiology , Beggiatoa/classification , Beggiatoa/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics
7.
ISME J ; 5(12): 1946-56, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21697963

ABSTRACT

The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures. Sequences of 16S rRNA genes and core lipids characteristic for ANME as well as hints of in situ AOM activity were indeed reported for geothermally heated marine environments, yet no direct evidence for thermophilic growth of marine ANME consortia was obtained to date. To study possible thermophilic AOM, we investigated hydrothermally influenced sediment from the Guaymas Basin. In vitro incubations showed activity of sulfate-dependent methane oxidation between 5 and 70 °C with an apparent optimum between 45 and 60 °C. AOM was absent at temperatures ≥75 °C. Long-term enrichment of AOM was fastest at 50 °C, yielding a 13-fold increase of methane-dependent sulfate reduction within 250 days, equivalent to an apparent doubling time of 68 days. The enrichments were dominated by novel ANME-1 consortia, mostly associated with bacterial partners of the deltaproteobacterial HotSeep-1 cluster, a deeply branching phylogenetic group previously found in a butane-amended 60 °C-enrichment culture of Guaymas sediments. The closest relatives (Desulfurella spp.; Hippea maritima) are moderately thermophilic sulfur reducers. Results indicate that AOM and ANME archaea could be of biogeochemical relevance not only in cold to moderate but also in hot marine habitats.


Subject(s)
Geologic Sediments/microbiology , Methane/metabolism , Microbial Consortia , Seawater/microbiology , Anaerobiosis , Archaea/classification , Archaea/genetics , Archaea/growth & development , Beggiatoa/genetics , Beggiatoa/isolation & purification , Beggiatoa/metabolism , Deltaproteobacteria/classification , Deltaproteobacteria/genetics , Deltaproteobacteria/metabolism , Ecosystem , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfates/metabolism , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/growth & development
8.
Geobiology ; 9(4): 330-48, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21535364

ABSTRACT

Sulfidic muds of cold seeps on the Nile Deep Sea Fan (NDSF) are populated by different types of mat-forming sulfide-oxidizing bacteria. The predominant sulfide oxidizers of three different mats were identified by microscopic and phylogenetic analyses as (i) Arcobacter species producing cotton-ball-like sulfur precipitates, (ii) large filamentous sulfur bacteria including Beggiatoa species, and (iii) single, spherical Thiomargarita species. High resolution in situ microprofiles revealed different geochemical settings selecting for the different mat types. Arcobacter mats occurred where oxygen and sulfide overlapped above the seafloor in the bottom water interface. Filamentous sulfide oxidizers were associated with steep gradients of oxygen and sulfide in the sediment. A dense population of Thiomargarita was favored by temporarily changing supplies of oxygen and sulfide in the bottom water. These results indicate that the decisive factors in selecting for different mat-forming bacteria within one deep-sea province are spatial or temporal variations in energy supply. Furthermore, the occurrence of Arcobacter spp.-related 16S rRNA genes in the sediments below all three types of mats, as well as on top of brine lakes of the NDSF, indicates that this group of sulfide oxidizers can switch between different life modes depending on the geobiochemical habitat setting.


Subject(s)
Arcobacter/metabolism , Beggiatoa/metabolism , Ecosystem , Sulfides/metabolism , Water Microbiology , Cold Temperature , Mediterranean Sea , Nitrates/metabolism , Oxidation-Reduction
9.
ISME J ; 5(3): 497-506, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20827290

ABSTRACT

Sulfur bacteria such as Beggiatoa or Thiomargarita have a particularly high capacity for storage because of their large size. In addition to sulfur and nitrate, these bacteria also store phosphorus in the form of polyphosphate. Thiomargarita namibiensis has been shown to release phosphate from internally stored polyphosphate in pulses creating steep peaks of phosphate in the sediment and thereby inducing the precipitation of phosphorus-rich minerals. Large sulfur bacteria populate sediments at the sites of recent phosphorite formation and are found as fossils in ancient phosphorite deposits. Therefore, it can be assumed that this physiology contributes to the removal of bioavailable phosphorus from the marine system and thus is important for the global phosphorus cycle. We investigated under defined laboratory conditions which parameters stimulate the decomposition of polyphosphate and the release of phosphate in a marine Beggiatoa strain. Initially, we tested phosphate release in response to anoxia and high concentrations of acetate, because acetate is described as the relevant stimulus for phosphate release in activated sludge. To our surprise, the Beggiatoa strain did not release phosphate in response to this treatment. Instead, we could clearly show that increasing sulfide concentrations and anoxia resulted in a decomposition of polyphosphate. This physiological reaction is a yet unknown mode of bacterial polyphosphate usage and provides a new explanation for high phosphate concentrations in sulfidic marine sediments.


Subject(s)
Beggiatoa/metabolism , Geologic Sediments/microbiology , Phosphates/metabolism , Polyphosphates/metabolism , Sulfides/pharmacology , Beggiatoa/drug effects , Beggiatoa/growth & development , Fatty Acids/pharmacology , Sulfur/metabolism
10.
ISME J ; 5(3): 565-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20944683

ABSTRACT

We measured denitrification and nitrate removal rates in cold seep sediments from the Gulf of Mexico. Heterotrophic potential denitrification rates were assayed in time-series incubations. Surficial sediments inhabited by Beggiatoa exhibited higher heterotrophic potential denitrification rates (32 µM N reduced day(-1)) than did deeper sediments (11 µM N reduced day(-1)). Nitrate removal rates were high in both sediment horizons. These nitrate removal rates translate into rapid turnover times (<1 day) for the nitrate pool, resulting in a faster turnover for the nitrate pool than for the sulfate pool. Together, these data underscore the rigorous nature of internal nitrogen cycling at cold seeps and the requirement for novel mechanisms to provide nitrate to the sediment microbial community.


Subject(s)
Beggiatoa/metabolism , Denitrification , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Nitrates/metabolism , Cold Temperature , Gulf of Mexico , Nitrates/analysis
11.
Appl Environ Microbiol ; 74(17): 5575-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18621874

ABSTRACT

Two freshwater strains of the gammaproteobacterium Beggiatoa alba, B18LD and OH75-2a, are able to use methanol as a sole carbon and energy source under microoxic conditions. Genes encoding a methanol dehydrogenase large-subunit homolog and four enzymes of the tetrahydromethanopterin-dependent C(1) oxidation pathway were identified in B18LD. No evidence of methanotrophy was detected.


Subject(s)
Beggiatoa/genetics , Beggiatoa/metabolism , Methanol/metabolism , Alcohol Oxidoreductases/genetics , Bacterial Proteins/genetics , Beggiatoa/enzymology , Carbon Dioxide/metabolism , Genes, Bacterial , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , Sequence Analysis
12.
Appl Environ Microbiol ; 73(21): 7013-22, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17766448

ABSTRACT

The aim of this study was to investigate the supposed vertical diel migration and the accompanying physiology of Beggiatoa bacteria from hypersaline microbial mats. We combined microsensor, stable-isotope, and molecular techniques to clarify the phylogeny and physiology of the most dominant species inhabiting mats of the natural hypersaline Lake Chiprana, Spain. The most dominant morphotype had a filament diameter of 6 to 8 microm and a length varying from 1 to >10 mm. Phylogenetic analysis by 16S rRNA gene comparison revealed that this type appeared to be most closely related (91% sequence identity) to the narrow (4-microm diameter) nonvacuolated marine strain MS-81-6. Stable-isotope analysis showed that the Lake Chiprana species could store nitrate intracellularly to 40 mM. The presence of large intracellular vacuoles was confirmed by fluorescein isothiocyanate staining and subsequent confocal microscopy. In illuminated mats, their highest abundance was found at a depth of 8 mm, where oxygen and sulfide co-occurred. However, in the dark, the highest Beggiatoa densities occurred at 7 mm, and the whole population was present in the anoxic zone of the mat. Our findings suggest that hypersaline Beggiatoa bacteria oxidize sulfide with oxygen under light conditions and with internally stored nitrate under dark conditions. It was concluded that nitrate storage by Beggiatoa is an optimal strategy to both occupy the suboxic zones in sulfidic sediments and survive the dark periods in phototrophic mats.


Subject(s)
Adaptation, Physiological , Beggiatoa/physiology , Geologic Sediments/microbiology , Nitrates/metabolism , Oxygen/metabolism , Phototrophic Processes , Beggiatoa/genetics , Beggiatoa/metabolism , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , RNA, Ribosomal, 16S/genetics , Spain
SELECTION OF CITATIONS
SEARCH DETAIL