ABSTRACT
The diversity of Geminiviridae and Alphasatellitidae species in tomatoes was assessed via high-throughput sequencing of 154 symptomatic foliar samples collected from 2002 to 2017 across seven Brazilian biomes. The first pool (BP1) comprised 73 samples from the North (13), Northeast (36), and South (24) regions. Sixteen begomoviruses and one Topilevirus were detected in BP1. Four begomovirus-like contigs were identified as putative novel species (NS). NS#1 was reported in the semi-arid (Northeast) region and NS#2 and NS#4 in mild subtropical climates (South region), whereas NS#3 was detected in the warm and humid (North) region. The second pool (BP2) comprised 81 samples from Southeast (39) and Central-West (42) regions. Fourteen viruses and subviral agents were detected in BP2, including two topileviruses, a putative novel begomovirus (NS#5), and two alphasatellites occurring in continental highland areas. The five putative novel begomoviruses displayed strict endemic distributions. Conversely, tomato mottle leaf curl virus (a monopartite species) displayed the most widespread distribution occurring across the seven sampled biomes. The overall diversity and frequency of mixed infections were higher in susceptible (16 viruses + alphasatellites) in comparison to tolerant (carrying the Ty-1 or Ty-3 introgressions) samples, which displayed 9 viruses. This complex panorama reinforces the notion that the tomato-associated Geminiviridae diversity is yet underestimated in Neotropical regions.
Subject(s)
Geminiviridae , Metagenomics , Phylogeny , Plant Diseases , Solanum lycopersicum , Solanum lycopersicum/virology , Brazil , Plant Diseases/virology , Geminiviridae/genetics , Geminiviridae/classification , Geminiviridae/isolation & purification , Animals , Genetic Variation , Genome, Viral , Begomovirus/genetics , Begomovirus/classification , High-Throughput Nucleotide SequencingABSTRACT
Begomoviruses are members of the family Geminiviridae, a large and diverse group of plant viruses characterized by a small circular single-stranded DNA genome encapsidated in twinned quasi-icosahedral virions. Cultivated tomato (Solanum lycopersicum L.) is particularly susceptible and is infected by >100 bipartite and monopartite begomoviruses worldwide. In Brazil, 25 tomato-infecting begomoviruses have been described, most of which are bipartite. Tomato mottle leaf curl virus (ToMoLCV) is one of the most important of these and was first described in the late 1990s but has not been fully characterized. Here, we show that ToMoLCV is a monopartite begomovirus with a genomic DNA similar in size and genome organization to those of DNA-A components of New World (NW) begomoviruses. Tomato plants agroinoculated with the cloned ToMoLCV genomic DNA developed typical tomato mottle leaf curl disease symptoms, thereby fulfilling Koch's postulates and confirming the monopartite nature of the ToMoLCV genome. We further show that ToMoLCV is transmitted by whiteflies, but not mechanically. Phylogenetic analyses placed ToMoLCV in a distinct and strongly supported clade with other begomoviruses from northeastern Brazil, designated the ToMoLCV lineage. Genetic analyses of the complete sequences of 87 ToMoLCV isolates revealed substantial genetic diversity, including five strain groups and seven subpopulations, consistent with a long evolutionary history. Phylogeographic models generated with partial or complete sequences predicted that the ToMoLCV emerged in northeastern Brazil >700 years ago, diversifying locally and then spreading widely in the country. Thus, ToMoLCV emerged well before the introduction of MEAM1 whiteflies, suggesting that the evolution of NW monopartite begomoviruses was facilitated by local whitefly populations and the highly susceptible tomato host. IMPORTANCE Worldwide, diseases of tomato caused by whitefly-transmitted geminiviruses (begomoviruses) cause substantial economic losses and a reliance on insecticides for management. Here, we describe the molecular and biological properties of tomato mottle leaf curl virus (ToMoLCV) from Brazil and establish that it is a NW monopartite begomovirus indigenous to northeastern Brazil. This answered a long-standing question regarding the genome of this virus, and it is part of an emerging group of these viruses in Latin America. This appears to be driven by widespread planting of the highly susceptible tomato and by local and exotic whiteflies. Our extensive phylogenetic studies placed ToMoLCV in a distinct strongly supported clade with other begomoviruses from northeastern Brazil and revealed new insights into the origin of Brazilian begomoviruses. The novel phylogeographic analysis indicated that ToMoLCV has had a long evolutionary history, emerging in northeastern Brazil >700 years ago. Finally, the tools used here (agroinoculation system and ToMoLCV-specific PCR test) and information on the biology of the virus (host range and whitefly transmission) will be useful in developing and implementing integrated pest management (IPM) programs targeting ToMoLCV.
Subject(s)
Begomovirus , Plant Diseases , Solanum lycopersicum , Animals , Begomovirus/classification , Begomovirus/physiology , Brazil , DNA, Single-Stranded , DNA, Viral/genetics , Genetic Variation , Genome, Viral/genetics , Hemiptera/virology , Solanum lycopersicum/virology , Phylogeny , Plant Diseases/virologyABSTRACT
A novel bipartite begomovirus infecting Cnidoscolus urens (Euphorbiaceae) from Pernambuco State, Brazil, has been characterized. The complete DNA-A (2657 nt) and DNA-B (2622 nt) components of the viral isolates show the typical genome organization of New World bipartite begomoviruses. DNA-A of the isolates had the highest percentage of nucleotide sequence identity (88.6-88.9%) to cnidoscolus mosaic leaf deformation virus. Based on the current classification criteria for the genus Begomovirus, the virus infecting C. urens should be considered a new member of the genus, and the name "cnidoscolus mild mosaic virus" is proposed for the virus, and the name "Begomovirus caboniensis" is proposed for its species.
Subject(s)
Begomovirus , Euphorbiaceae , Mosaic Viruses , Plant Diseases/virology , Begomovirus/classification , Brazil , DNA, Viral/genetics , Euphorbiaceae/virology , Genome, Viral , Mosaic Viruses/classification , Phylogeny , Sequence Analysis, DNAABSTRACT
Geminiviruses have genomes composed of single-stranded DNA molecules and encode a rolling-circle replication (RCR) initiation protein ("Rep"), which has multiple functions. Rep binds to specific repeated DNA motifs ("iterons"), which are major determinants of virus-specific replication. The particular amino acid (aa) residues that determine the preference of a geminivirus Rep for specific iterons (i.e., the trans-acting replication "specificity determinants", or SPDs) are largely unknown, but diverse lines of evidence indicate that most of them are closely associated with the so-called RCR motif I (FLTYP), located in the first 12-19 aa residues of the protein. In this work, we characterized two strains of a novel begomovirus, rhynchosia golden mosaic Sinaloa virus (RhGMSV), that were incompatible in replication in pseudorecombination experiments. Systematic comparisons of the Rep proteins of both RhGMSV strains in the DNA-binding domain allowed the aa residues at positions 71 and 74 to be identified as the residues most likely to be responsible for differences in replication specificity. Residue 71 is part of the ß-5 strand structural element, which was predicted in previous studies to contain Rep SPDs. Since the Rep proteins encoded by both RhGMSV strains are identical in their first 24 aa residues, where other studies have mapped potential SPDs, this is the first study lending direct support to the notion that geminivirus Rep proteins contain separate SPDs in their N-terminal domain.
Subject(s)
Begomovirus/classification , Begomovirus/metabolism , Viral Proteins/metabolism , Virus Replication/physiology , Amino Acid Sequence , Begomovirus/genetics , Cloning, Molecular , Fabaceae/virology , Genome, Viral , Phylogeny , Plant Leaves/virology , Protein Conformation , Reassortant Viruses , Nicotiana/virology , Viral Proteins/genetics , Virus Replication/geneticsABSTRACT
Common bean plants (Phaseolus vulgaris L.) showing different virus-like symptoms were collected in northwestern Argentina. Dot-blot hybridization tests showed that the begomoviruses bean golden mosaic virus and tomato yellow vein streak virus were the most prevalent, but they also revealed the presence of unknown begomoviruses. The complete genome sequence of one of these unknown begomoviruses was determined. Sequence analysis showed that the virus is a typical New World begomovirus, for which the name "bean bushy stunt virus" (BBSV) is proposed. Biological assays based on biolistic inoculations showed that BBSV induced leaf roll and stunting symptoms similar to those observed in the field-collected common bean sample.
Subject(s)
Begomovirus/physiology , Phaseolus/virology , Plant Diseases/virology , Argentina , Base Sequence , Begomovirus/classification , Begomovirus/genetics , Begomovirus/pathogenicity , DNA, Viral/genetics , Genome, Viral/genetics , Host Specificity , Open Reading Frames , Phaseolus/growth & development , Phylogeny , Plant Leaves/growth & development , Plant Leaves/virology , Glycine max/growth & development , Glycine max/virologyABSTRACT
Tomato yellow vein streak virus (ToYVSV) and tomato golden vein virus (TGVV) are begomoviruses reported infecting tomatoes and other hosts across South America. However, their close phylogenetic relationship has generated uncertainties about their taxonomic status and nomenclature. In fact, genomic DNA-A identity levels of isolates reported with an identical virus name may range from 89-100%. In view of the potential inaccuracy regarding the classification status of these viruses (strains vs. distinct species), we carried out a comprehensive set of analyses employing all 45 available isolates with complete DNA-A sequences with either ToYVSV or TGVV designation. Two clear-cut clusters were identified and they were consistent with the current criteria for Begomovirus species demarcation. Moreover, our reappraisal confirmed a large array of misnamed isolates and recognized a distinctive set of virus species-specific genomic, biological, and ecological features. Hence, the present work gives support to the notion that these viruses are closely-related, but they are distinct and valid Begomovirus species. From the breeding standpoint, this information will be useful in guiding germplasm screening strategies searching for sources of large-spectrum resistance to isolates of both viruses.
Subject(s)
Begomovirus , Plant Diseases/virology , Solanum lycopersicum/virology , Begomovirus/classification , Begomovirus/isolation & purification , DNA, Viral , Genetic Variation , Genome, Viral , Phylogeny , South AmericaABSTRACT
Yield losses induced by a complex of begomoviruses are observed across all major tomato-producing areas in Brazil. Tomato severe rugose virus (ToSRV) is the most widespread begomovirus in the country. Conversely, tomato common mosaic virus (ToCmMV) displays a more restricted geographical distribution to areas associated with the Atlantic Rain Forest (ARF) biome, encompassing the States of Espírito Santo-ES, Minas Gerais-MG, and Rio de Janeiro-RJ. Here, we characterized 277 tomato-infecting isolates collected in fields located within the ARF biome from 2006 to 2018. ToSRV displayed the highest prevalence (n = 157), followed by ToCmMV (n = 95) and tomato interveinal chlorosis virus (n = 14). Four other begomoviruses were also detected, but with very low incidences. ToCmMV was the predominant begomovirus in the ARF biome up to 2014-2015 with very low ToSRV incidence. Subsequently, ToSRV became the most prevalent species in ES and RJ, but ToCmMV was still predominating in the "Zona da Mata" meso-region in MG. Due to the remarkable endemic distribution of ToCmMV, we carried out phylogeographical studies of this virus using information from all 28 available isolates with complete DNA-A sequences. The closest common ancestor of ToCmMV was more likely originated around Coimbra-MG area ≈ 25 years before the formal report of this viral species. So far, all surveys indicated tomatoes as the only natural hosts of ToCmMV with outbreaks occurring mainly (but not exclusively) in highland areas. ToSRV shows a more widespread incidence across both highland and lowland areas of the ARF biome.
Subject(s)
Begomovirus , Plant Diseases/virology , Solanum lycopersicum/virology , Begomovirus/classification , Begomovirus/genetics , Begomovirus/isolation & purification , Biodiversity , Brazil , DNA, Viral , Phylogeography , RainforestABSTRACT
A complex of begomoviruses (Geminiviridae) can cause severe tomato yield losses in the neotropics. Here, next-generation sequencing was employed for large-scale assessment of single-stranded (ss)DNA virus diversity in tomatoes either harboring or lacking the large-spectrum begomovirus tolerance Ty-1 gene. Individual leaf samples exhibiting begomovirus-like symptoms (n = 107) were field-collected, circular DNA-enriched, subdivided into pools (with and without Ty-1), and Illumina-sequenced. Virus-specific PCR and Sanger dideoxy sequencing validations confirmed 15 distinct ssDNA virus/subviral agents (occurring mainly in mixed infections), which highlight the potential drawbacks of employing virus-specific resistance in tomato breeding. More viruses (14 versus 6 species) were observed in tomatoes without the Ty-1 gene. A gemycircularvirus (Genomoviridae), a new alpha-satellite, and two novel Begomovirus species were identified exclusively in samples without the Ty-1 gene. A novel begomovirus was found only in the Ty-1 pool, being the only species associated with severe symptoms in Ty-1 plants in our survey. Our work is the first step towards the elucidation of the potential begomovirus adaptation to Ty-1 and its specific filtering effects on a subset of ssDNA viral/subviral agents.
Subject(s)
Begomovirus/classification , Genes, Plant , Metagenomics , Plant Diseases/virology , Solanum lycopersicum/virology , Begomovirus/isolation & purification , DNA, Single-Stranded , High-Throughput Nucleotide Sequencing , Solanum lycopersicum/genetics , Plant Leaves/virology , Tropical ClimateABSTRACT
In northwestern Argentina (NWA), pepper crops are threatened by the emergence of begomoviruses due to the spread of its vector, Bemisia tabaci (Gennadius). The genus Begomovirus includes pathogens that can have a monopartite or bipartite genome and are occasionally associated with sub-viral particles called satellites. This study characterized the diversity of begomovirus and alphasatellite species infecting pepper in NWA using a metagenomic approach. Using RCA-NGS (rolling circle amplification-next generation sequencing), 19 full-length begomovirus genomes (DNA-A and DNA-B) and one alphasatellite were assembled. This ecogenomic approach revealed six begomoviruses in single infections: soybean blistering mosaic virus (SbBMV), tomato yellow spot virus (ToYSV), tomato yellow vein streak virus (ToYVSV), tomato dwarf leaf virus (ToDfLV), sida golden mosaic Brazil virus (SiGMBRV), and a new proposed species, named pepper blistering leaf virus (PepBLV). SbBMV was the most frequently detected species, followed by ToYSV. Moreover, a new alphasatellite associated with ToYSV, named tomato yellow spot alphasatellite 2 (ToYSA-2), was reported for the first time in Argentina. For the Americas, this was the first report of an alphasatellite found in a crop (pepper) and in a weed (Leonurus japonicus). We also detected intra-species and inter-species recombination.
Subject(s)
Begomovirus/genetics , Capsicum/virology , Genome, Viral , Metagenomics/methods , Phylogeny , Satellite Viruses/genetics , Begomovirus/classification , DNA, Viral/genetics , Genetic Variation , High-Throughput Nucleotide Sequencing , Leonurus/virology , Plant Diseases/virology , Recombination, Genetic , Sequence Analysis, DNAABSTRACT
In Brazil, non-cultivated plants, especially weeds, are infected with a diversity of begomoviruses and often show striking golden mosaic symptoms. In the present study, leaves showing these symptoms were collected from Sida sp. plants in Guadalupe, Piaui State, Northeastern Brazil, in 2015 and 2016. PCR tests with degenerate primers revealed the presence of begomovirus DNA-A and DNA-B components. Restriction enzyme digestion of rolling circle-amplified DNA revealed fragments totaling ~5.2 kb, indicating infection by a bipartite begomovirus. The DNA-A and DNA-B components have a genome organization typical of New World (NW) bipartite begomoviruses and a common region of 220 nucleotides (nt) with 96% identity, indicating these are cognate components. Comparisons performed with the DNA-A sequence revealed the highest nt sequence identity (84%) with that of sida angular mosaic virus (SiAMV), whereas those performed with the DNA-B sequence revealed highest identity (77%) with that of sida chlorotic vein virus (SiCVV). In phylogenetic analyses, the DNA-A sequence was placed in a strongly supported clade with SiAMV and SiCVV from Piaui, whereas the DNA-B sequence was placed in a clade with SiCVV and corchorus mottle virus. Based on the current ICTV criteria for the demarcation of begomovirus species (<91% nt sequence identity for the DNA-A component), this is a member of a new species for which the name "Sida yellow golden mosaic virus" is proposed.
Subject(s)
Begomovirus/genetics , Sida Plant/virology , Whole Genome Sequencing/methods , Begomovirus/classification , Brazil , Genome, Viral , Guadeloupe , PhylogenyABSTRACT
A novel bipartite begomovirus infecting begomovirus-resistant tomato plants was detected via Illumina sequencing analysis, and its genome sequence was confirmed by Sanger sequencing. The DNA-A (2627 nt) and DNA-B (2587 nt) have a genome organization that is typical of New World bipartite begomoviruses, sharing 82.5% identity with tomato golden leaf distortion virus and 75.1% identity with sida chlorotic vein virus. Based on the current classification criteria for begomoviruses, this isolate should be considered a member of a new species, and the name "tomato interveinal chlorosis virus-2" (ToICV2) is proposed for this virus.
Subject(s)
Begomovirus/classification , Begomovirus/genetics , Genome, Viral/genetics , Solanum lycopersicum/virology , Base Sequence , Begomovirus/isolation & purification , Brazil , DNA, Viral/genetics , Plant Diseases/virology , Sequence Analysis, DNA , Whole Genome SequencingABSTRACT
Plant DNA viruses of the genus Begomovirus have been documented as the most genetically diverse in the family Geminiviridae and present a serious threat for global horticultural production, especially considering climate change. It is important to characterize naturally existing begomoviruses, since viral genetic diversity in non-cultivated plants could lead to future disease epidemics in crops. In this study, high-throughput sequencing (HTS) was employed to determine viral diversity of samples collected in a survey performed during 2012-2016 in seven states of Northern-Pacific Mexico, areas of diverse climatic conditions where different vegetable crops are subject to intensive farming. In total, 132 plant species, belonging to 34 families, were identified and sampled in the natural ecosystems surrounding cultivated areas (agro-ecological interface). HTS analysis and subsequent de novo assembly revealed a number of geminivirus-related DNA signatures with 80 to 100% DNA similarity with begomoviral sequences present in the genome databank. The analysis revealed DNA signatures corresponding to 52 crop-infecting and 35 non-cultivated-infecting geminiviruses that, interestingly, were present in different plant species. Such an analysis deepens our knowledge of geminiviral diversity and could help detecting emerging viruses affecting crops in different agro-climatic regions.
Subject(s)
Begomovirus/isolation & purification , Biodiversity , Crops, Agricultural/virology , Plant Diseases/virology , Plant Viruses/isolation & purification , Begomovirus/classification , Begomovirus/genetics , Crops, Agricultural/growth & development , High-Throughput Nucleotide Sequencing , Mexico , Phylogeny , Plant Viruses/classification , Plant Viruses/geneticsABSTRACT
Begomoviruses are one of the major groups of plant viruses with an important economic impact on crop production in tropical and subtropical regions. The global spread of its polyphagous vector, the whitefly Bemisia tabaci, has contributed to the emergence and diversification of species within this genus. In this study, we found a putative novel begomovirus infecting tomato plants in Venezuela without a cognate DNA-B component. This begomovirus was genetically characterized and compared with related species. Furthermore, its infectivity was demonstrated by agroinoculation of infectious clones in tomato (Solanum lycopersicum) and Nicotiana benthamiana plants. The name Tomato twisted leaf virus (ToTLV) is proposed. ToTLV showed the typical genome organization of the DNA-A component of New World bipartite begomoviruses. However, the single DNA component of ToTLV was able to develop systemic infection in tomato and N. benthamiana plants, suggesting a monopartite nature of its genome. Interestingly, an additional open reading frame ORF was observed in ToTLV encompassing the intergenic region and the coat protein gene, which is not present in other closely related begomoviruses. A putative transcript from this region was amplified by strand-specific reverse transcription-PCR. Along with recent studies, our results showed that the diversity of monopartite begomoviruses from the New World is greater than previously thought.
Subject(s)
Begomovirus/classification , Plant Diseases/virology , Solanum lycopersicum/virology , Begomovirus/genetics , Begomovirus/pathogenicity , DNA, Intergenic , DNA, Viral , Genome, Viral , Open Reading Frames , Phylogeny , Plant Leaves/virology , Sequence Analysis, DNA , Nicotiana/virology , VenezuelaABSTRACT
A new bipartite begomovirus (family Geminiviridae) was detected on cowpea (Vigna unguiculata) plants exhibiting bright golden mosaic symptoms on leaves under field conditions in Brazil. Complete consensus sequences of DNA-A and DNA-B components of an isolate of the virus (PE-088) were obtained by nanopore sequencing and confirmed by Sanger sequencing. The genome components presented the typical genomic organization of New World (NW) begomoviruses. Pairwise sequence comparisons revealed low levels of identity with other begomovirus species previously reported infecting cowpea around the world. Phylogenetic analysis using complete sequences of DNA-A components revealed that the closest relatives of PE-088 (85-87% nucleotide sequence identities) were three legume-infecting begomoviruses from Brazil: bean golden mosaic virus, macroptilium common mosaic virus and macroptilium yellow vein virus. According to the current classification criteria, PE-088 represents a new species in the genus Begomovirus, tentatively named as cowpea bright yellow mosaic virus (CoBYMV).
Subject(s)
Begomovirus/classification , Begomovirus/genetics , Genome, Viral/genetics , Plant Diseases/virology , Plant Leaves/virology , Vigna/virology , Base Sequence , Begomovirus/isolation & purification , DNA, Viral/genetics , Phylogeny , Sequence Analysis, DNAABSTRACT
Two begomoviruses were isolated in the northern Brazilian state of Pará, infecting non-cultivated Hibiscus sp. and cultivated tomato (Solanum lycopersicum). The complete genomes (DNA-A and DNA-B) of the two viruses showed the typical organization of New World bipartite begomoviruses. Based on the species assignment criteria in the genus Begomovirus, each virus is a member of a new species. The virus from Hibiscus is most closely related to sida yellow mosaic Yucatan virus, while the tomato virus is most closely related to abutilon mosaic Brazil virus and corchorus mottle virus. Recombination events were detected in the DNA-A of the tomato virus, but not in the Hibiscus virus genome. We propose the names "hibiscus golden mosaic virus" (HGMV) and "tomato chlorotic leaf curl virus" (ToCLCV) for the viruses reported in this study.
Subject(s)
Begomovirus/classification , Begomovirus/genetics , Hibiscus/virology , Plant Diseases/virology , Solanum lycopersicum/virology , Begomovirus/isolation & purification , Brazil , DNA, Viral/genetics , Genome, Viral/genetics , Sequence Homology, Nucleic AcidABSTRACT
A new begomovirus infecting Croton hirtus (Euphorbiaceae) from Colombia has been characterized. The complete DNA-A and DNA-B components were determined to be 2613 and 2551 nt in length, respectively, showing the typical genome organization of bipartite New World begomoviruses. DNA-A showed the highest nucleotide sequence identity (81.2%) to sida yellow mottle virus (JN411687), a begomovirus isolated from Sida rhombifolia in Cuba. Based on the current ICTV species demarcation criterion for the genus Begomovirus, we report a new member of this genus infecting C. hirtus. We propose that it be named Croton golden mosaic virus (CroGMV), based on the symptoms observed in the weed. Phylogenetic analysis revealed that CroGMV segregates into a single clade and has some relationship with viruses from Central America and the Caribbean. CroGMV is the first Croton-infecting bipartite begomovirus reported in the world.
Subject(s)
Begomovirus/isolation & purification , Croton/virology , Plant Diseases/virology , Base Sequence , Begomovirus/classification , Begomovirus/genetics , Colombia , Cuba , Genome, Viral , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNAABSTRACT
Brazil is one of the major passion fruit producers worldwide. Viral diseases are among the most important constraints for passion fruit production. Here we identify and characterize a new passion fruit infecting-virus belonging to the family Geminiviridae: passion fruit chlorotic mottle virus (PCMoV). PCMoV is a divergent geminivirus unlike previously characterized passion fruit-infecting geminiviruses that belonged to the genus Begomovirus. Among the presently known geminiviruses, it is most closely related to, and shares ~62% genome-wide identity with citrus chlorotic dwarf associated virus (CCDaV) and camelia chlorotic dwarf associated virus (CaCDaV). The 3743 nt PCMoV genome encodes a capsid protein (CP) and replication-associated protein (Rep) that respectively share 56 and 60% amino acid identity with those encoded by CaCDaV. The CPs of PCMoV, CCDaV, and CaCDaV cluster with those of begomovirus whereas their Reps with those of becurtoviruses. Hence, these viruses likely represent a lineage of recombinant begomo-like and becurto-like ancestral viruses. Furthermore, PCMoV, CCDaV, and CaCDaV genomes are ~12-30% larger than monopartite geminiviruses and this is primarily due to the encoded movement protein (MP; 891-921 nt) and this MP is most closely related to that encoded by the DNA-B component of bipartite begomoviruses. Hence, PCMoV, CCDaV, and CaCDaV lineage of viruses may represent molecules in an intermediary step in the evolution of bipartite begomoviruses (~5.3 kb) from monopartite geminiviruses (~2.7-3 kb). An infectious clone of PCMoV systemically infected Nicotiana benthamina, Arabidopsis thaliana, and Passiflora edulis.
Subject(s)
Begomovirus/classification , Begomovirus/genetics , Passiflora/virology , Brazil , Computational Biology/methods , Geminiviridae/classification , Geminiviridae/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , Open Reading Frames , Phylogeny , Plant Diseases/virology , Sequence Analysis, DNAABSTRACT
A new begomovirus species was identified from tomato plants with upward leaf curling and purple vein symptoms, which was first identified in the Piaui state of Northeast (NE) Brazil in 2014. Tomato leaf samples were collected in 2014 and 2016, and PCR with degenerate primers revealed begomovirus infection. Rolling circle amplification and restriction enzyme digestion indicated a single genomic DNA of ~ 2.6 kb. Cloning and sequencing revealed a genome organization similar to DNA-A components of New World (NW) bipartite begomoviruses, with no DNA-B. The complete nucleotide sequence had the highest identity (80%) with the DNA-A of Macroptilium yellow spot virus (MacYSV), and phylogenetic analyses showed it is a NW begomovirus that clusters with MacYSV and Blainvillea yellow spot virus, also from NE Brazil. Tomato plants agroinoculated with a dimeric clone of this genomic DNA developed upward leaf curling and purple vein symptoms, indistinguishable from those observed in the field. Based on agroinoculation, this virus has a narrow host range, mainly within the family Solanaceae. Co-inoculation experiments with tomato severe rugose virus and tomato mottle leaf curl virus, the two predominant begomoviruses infecting tomato in Brazil, revealed a synergistic interaction among these begomoviruses. The name Tomato leaf curl purple vein virus (ToLCPVV) is proposed for this new begomovirus.
Subject(s)
Begomovirus/genetics , DNA, Viral/genetics , Genome, Viral , Phylogeny , Plant Leaves/virology , Solanum lycopersicum/virology , Begomovirus/classification , Begomovirus/isolation & purification , Brazil , High-Throughput Nucleotide Sequencing , Host Specificity , Plant Diseases/virology , Sequence Analysis, DNAABSTRACT
At least six begomovirus species have been reported infecting tomato in Venezuela. In this study the complete genomes of two tomato-infecting begomovirus isolates (referred to as Trujillo-427 and Zulia-1084) were cloned and sequenced. Both isolates showed the typical genome organization of New World bipartite begomoviruses, with DNA-A genomic components displaying 88.8% and 90.3% similarity with established begomoviruses, for isolates Trujillo-427 and Zulia-1084, respectively. In accordance to the guidelines for begomovirus species demarcation, the Trujillo-427 isolate represents a putative new species and the name "Tomato wrinkled mosaic virus" is proposed. Meanwhile, Zulia-1084 represents a putative new strain classifiable within species Tomato chlorotic leaf distortion virus, for which a recombinant origin is suggested.
Subject(s)
Begomovirus/genetics , Begomovirus/isolation & purification , Genome, Viral , Plant Diseases/virology , Recombination, Genetic , Solanum lycopersicum/virology , Base Sequence , Begomovirus/classification , Molecular Sequence Data , Phylogeny , VenezuelaABSTRACT
The emergence of begomoviruses (whitefly-transmitted viruses classified in the genus Begomovirus, family Geminiviridae) in Brazil probably occurred by horizontal transfer from non-cultivated plants after the introduction of Bemisia tabaci MEAM1. The centre of diversity of Euphorbia heterophylla (Euphorbiaceae) is located in Brazil and Paraguay, where it is an invasive species in soybean and other crops. Reports of possible begomovirus infection of E. heterophylla in Brazil date back to the 1950s. In 2011, Euphorbia yellow mosaic virus (EuYMV) was described in symptomatic plants collected in the Brazilian state of Goiás. Here we assess the genetic variability and population structure of begomoviruses infecting E. heterophylla in samples collected throughout nine Brazilian states from 2009 to 2014. A total of 158 and 57 haplotypes were compared in DNA-A and DNA-B datasets, respectively. Analysis comparing population structure in a large sampled area enabled us to differentiate two subpopulations. Further, the application of discriminant analysis of principal components allowed the differentiation of six subpopulations according to sampling locations and in agreement with phylogenetic analysis. In general, negative selection was predominant in all six subpopulations. Interestingly, we were able to reconstruct the phylogeny based on the information from the 23 sites that contributed most to the geographical structure proposed, demonstrating that these polymorphisms hold supporting information to discriminate between subpopulations. These sites were mapped in the genome and compared at the level of amino acid changes, providing insights into how genetic drift and selection contribute to maintain the patterns of begomovirus population variability from a geographical structuring point of view.