Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
BMC Genomics ; 25(1): 436, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698332

ABSTRACT

BACKGROUND: Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS: Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS: This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.


Subject(s)
Begomovirus , Gene Expression Profiling , Manihot , Plant Diseases , Manihot/genetics , Manihot/virology , Plant Diseases/virology , Plant Diseases/genetics , Begomovirus/physiology , Gene Expression Regulation, Plant , Transcriptome , Disease Resistance/genetics
2.
Viruses ; 16(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675929

ABSTRACT

Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby inducing plant defenses that could affect plant-virus-vector interactions. For example, plant defenses induced by omnivorous insects can modulate insect behavior. This study focused on tomato yellow leaf curl virus (TYLCV), a plant virus of the family Geminiviridae and genus Begomovirus. It is transmitted in a persistent circulative manner by the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), posing a global threat to tomato production. Mirids (Hemiptera: Miridae) are effective biological control agents of B. tabaci, but there is a possibility that their omnivorous nature could also interfere with the process of virus transmission. To test this hypothesis, this study first addressed to what extent the mirid bug Dicyphus hesperus Knight induces plant defenses in tomato. Subsequently, the impact of this plant-omnivore interaction on the transmission of TYLCV was evaluated. Controlled cage experiments were performed in a greenhouse setting to evaluate the impact of mirids on virus transmission and vector acquisition by B. tabaci. While we observed a reduced number of whiteflies settling on plants exposed to D. hesperus, the plant defenses induced by the mirid bug did not affect TYLCV transmission and accumulation. Additionally, whiteflies were able to acquire comparable amounts of TYLCV on mirid-exposed plants and control plants. Overall, the induction of plant defenses by D. hesperus did not influence TYLCV transmission by whiteflies on tomato.


Subject(s)
Begomovirus , Hemiptera , Insect Vectors , Plant Diseases , Solanum lycopersicum , Begomovirus/physiology , Solanum lycopersicum/virology , Animals , Plant Diseases/virology , Hemiptera/virology , Hemiptera/physiology , Insect Vectors/virology , Heteroptera/virology , Heteroptera/physiology , Plant Defense Against Herbivory
3.
Pest Manag Sci ; 80(4): 1821-1830, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38029362

ABSTRACT

BACKGROUND: Tomato (Solanum lycopersicum L.) is an economically important vegetable crop around the globe. Tomato yellow leaf curling (TYLC) is the most devastating viral disease posing a serious threat to tomato production throughout the tropical and subtropical world. Induction of microbe-mediated systemic resistance in plants has been of great interest in recent years as a novel microbiological tool in disease and insect pest management. This in-vitro study aimed to determine the effectiveness of different strains (BB252, BB72 and ARSEF-2860) of a hypocreal fungus Beauveria bassiana against TYLCV disease and aphid Myzus persicae. Potted tomato plants exogenously treated with conidial and filtrate suspensions of B. bassiana strains and of their partially purified or purified proteins were exposed to TYLCV inoculum and aphid M. persicae. RESULTS: Results showed a significant suppression of TYLCV disease severity index by the exogenous application of conidial, filtrate and protein treatments of all B. bassiana strains and this response was directly proportional to the treatment concentration. Similarly, mean fecundity rate of M. persicae was also significantly reduced by the highest concentration of ARSEF-2860-derived elicitor protein PeBb1, followed by the highest concentrations of BB252- and BB72-derived partially purified proteins. Moreover, these B. bassiana-derived proteins also caused a significant upregulation of most of the plant immune marker genes associated with plant defense. CONCLUSION: Overall, the study findings suggest that these B. bassiana strains and their partially purified or purified elicitor proteins could be effective biological tools for the management of TYLCV and aphid infestation on tomato plants. © 2023 Society of Chemical Industry.


Subject(s)
Aphids , Beauveria , Begomovirus , Solanum lycopersicum , Animals , Plant Diseases/prevention & control , Begomovirus/physiology
4.
Plant Sci ; 339: 111955, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097048

ABSTRACT

Tomato yellow leaf curl disease (TYLCD), caused by Tomato yellow leaf curl virus (TYLCV), is one of the most destructive diseases in tomato cultivation. By comparing the phenotypic characteristics and virus quantities in the susceptible variety 'Cooperation 909 Red Tomatoes' and the resistant variety 'Huamei 204' after inoculation with TYLCV infectious clones, our study discovered that the root, stem and leaf growth of the susceptible variety 'Cooperation 909 Red Tomatoes' were severely hindered and the resistant variety 'Huamei 204' showed growth inhibition only in roots. TYLCV accumulation in roots were significantly higher than in leaves. Further, we examined the expression of key genes in the SA and JA signalling pathways in leaves, stems and roots and found the up-regulation of SA-signalling genes in all organs of the susceptible variety after inoculation with TYLCV clones. Interestingly, SlJAZ2 in roots of the resistant variety was significantly down-regulated upon TYLCV infection. Further, we silenced the SlNPR1 and SlCOI1 genes individually using virus induced gene silencing system in tomato plants. We found that viruses accumulated to a higher level in SlNPR1 silenced plants than wild type plants, and the virus quantity in roots was significantly increased in SlCOI1 silenced plants. These results provide new insights for advancing research in understanding tomato-TYLCV interaction.


Subject(s)
Begomovirus , Solanum lycopersicum , Solanum lycopersicum/genetics , RNA Interference , Begomovirus/physiology , Signal Transduction/genetics , Phenotype , Plant Diseases/genetics
5.
BMC Plant Biol ; 23(1): 651, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110861

ABSTRACT

BACKGROUND: Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, generating new insights into the molecular mechanisms underlying plant-virus interactions. However, an integrative study of the changes in the host transcriptome, small RNA profile and methylome during a geminivirus infection has not been performed yet. Using a time-scale approach, we aim to decipher the gene regulation in tomato in response to the infection with the geminivirus, tomato yellow leaf curl virus (TYLCV). RESULTS: We showed that tomato undergoes substantial transcriptional and post-transcriptional changes upon TYLCV infection and identified the main altered regulatory pathways. Interestingly, although the principal plant defense-related processes, gene silencing and the immune response were induced, this cannot prevent the establishment of the infection. Moreover, we identified extra- and intracellular immune receptors as targets for the deregulated microRNAs (miRNAs) and established a network for those that also produced phased secondary small interfering RNAs (phasiRNAs). On the other hand, there were no significant genome-wide changes in tomato methylome at 14 days post infection, the time point at which the symptoms were general, and the amount of viral DNA had reached its maximum level, but we were able to identify differentially methylated regions that could be involved in the transcriptional regulation of some of the differentially expressed genes. CONCLUSION: We have conducted a comprehensive and reliable study on the changes at transcriptional, post-transcriptional and epigenetic levels in tomato throughout TYLCV infection. The generated genomic information is substantial for understanding the genetic, molecular and physiological changes caused by TYLCV infection in tomato.


Subject(s)
Begomovirus , Geminiviridae , Solanum lycopersicum , Solanum lycopersicum/genetics , Begomovirus/physiology , Gene Silencing , Geminiviridae/genetics , Plant Diseases
6.
J Virol ; 97(11): e0106723, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37855618

ABSTRACT

IMPORTANCE: Many plant viruses are transmitted by insect vectors in a circulative manner. For efficient transmission, the entry of the virus from vector hemolymph into the primary salivary gland (PSG) is a step of paramount importance. Yet, vector components mediating virus entry into PSG remain barely characterized. Here, we demonstrate the role of clathrin-mediated endocytosis and early endosomes in begomovirus entry into whitefly PSG. Our findings unravel the key components involved in begomovirus transport within the whitefly body and transmission by their whitefly vectors and provide novel clues for blocking begomovirus transmission.


Subject(s)
Begomovirus , Endocytosis , Hemiptera , Animals , Begomovirus/physiology , Clathrin/metabolism , Endosomes , Hemiptera/metabolism , Hemiptera/virology , Plant Diseases , Salivary Glands/metabolism , Salivary Glands/virology
7.
Viruses ; 15(4)2023 04 05.
Article in English | MEDLINE | ID: mdl-37112899

ABSTRACT

RNA-dependent RNA polymerases (RDRs) are key players in the antiviral defence mediated by RNA silencing in plants. RDR6 is one of the major components of the process, regulating the infection of certain RNA viruses. To better clarify its function against DNA viruses, we analyzed the effect of RDR6 inactivation (RDR6i) in N. benthamiana plants on two phloem-limited begomoviruses, the bipartite Abutilon mosaic virus (AbMV) and the monopartite tomato yellow leaf curl Sardinia virus (TYLCSV). We observed exacerbated symptoms and DNA accumulation for the New World virus AbMV in RDR6i plants, varying with the plant growth temperature (ranging from 16 °C to 33 °C). However, for the TYLCSV of Old World origin, RDR6 depletion only affected symptom expression at elevated temperatures and to a minor extent; it did not affect the viral titre. The accumulation of viral siRNA differed between the two begomoviruses, being increased in RDR6i plants infected by AbMV but decreased in those infected by TYLCSV compared to wild-type plants. In situ hybridization revealed a 6.5-fold increase in the number of AbMV-infected nuclei in RDR6i plants but without egress from the phloem tissues. These results support the concept that begomoviruses adopt different strategies to counteract plant defences and that TYLCSV evades the functions exerted by RDR6 in this host.


Subject(s)
Begomovirus , Nicotiana , Begomovirus/physiology , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Plants , RNA Interference , Plant Diseases
8.
BMC Plant Biol ; 23(1): 146, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36927306

ABSTRACT

BACKGROUND: Tomato yellow leaf curl virus (TYLCV) is a major monopartite virus in the family Geminiviridae and has caused severe yield losses in tomato and tobacco planting areas worldwide. Wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) are a subfamily of the receptor-like kinase family implicated in cell wall signaling and transmitting extracellular signals to the cytoplasm, thereby regulating plant growth and development and resistance to abiotic and biotic stresses. Recently, many studies on WAK/WAKL family genes have been performed in various plants under different stresses; however, identification and functional survey of the WAK/WAKL gene family of Nicotiana benthamiana have not yet been performed, even though its genome has been sequenced for several years. Therefore, in this study, we aimed to identify the WAK/WAKL gene family in N. benthamiana and explore their possible functions in response to TYLCV infection. RESULTS: Thirty-eight putative WAK/WAKL genes were identified and named according to their locations in N. benthamiana. Phylogenetic analysis showed that NbWAK/WAKLs are clustered into five groups. The protein motifs and gene structure compositions of NbWAK/WAKLs appear to be highly conserved among the phylogenetic groups. Numerous cis-acting elements involved in phytohormone and/or stress responses were detected in the promoter regions of NbWAK/WAKLs. Moreover, gene expression analysis revealed that most of the NbWAK/WAKLs are expressed in at least one of the examined tissues, suggesting their possible roles in regulating the growth and development of plants. Virus-induced gene silencing and quantitative PCR analyses demonstrated that NbWAK/WAKLs are implicated in regulating the response of N. benthamiana to TYLCV, ten of which were dramatically upregulated in locally or systemically infected leaves of N. benthamiana following TYLCV infection. CONCLUSIONS: Our study lays an essential base for the further exploration of the potential functions of NbWAK/WAKLs in plant growth and development and response to viral infections in N. benthamiana.


Subject(s)
Begomovirus , Geminiviridae , Nicotiana/genetics , Phylogeny , Begomovirus/physiology , Geminiviridae/genetics , Plant Diseases/genetics
9.
Pest Manag Sci ; 79(5): 1750-1759, 2023 May.
Article in English | MEDLINE | ID: mdl-36617695

ABSTRACT

BACKGROUND: The whitefly, Bemisia tabaci (Gennadius) is one of the most economically important pests that cause serious damage to agricultural production by transmitting plant pathogenic viruses. Approximately 90% of the virus species transmitted by the whitefly are members of the genus begomovirus. Ramie mosaic virus (RaMoV) is a new bipartite begomovirus that causes severe damage to ramie and several other economic crops in China. In previous studies, we have demonstrated that RaMoV had no obvious direct or indirect effects on B. tabaci. However, whether B. tabaci affects RaMoV infection and the molecular mechanisms of their interaction remain unclear. RESULTS: Here, we identified a zinc finger protein 330 (ZNF330) in B. tabaci MED interacted with the coat protein (CP) of RaMoV by the yeast two-hybrid assay. Then the interaction between ZNF330 and RaMoV CP was further verified by glutathione S-transferase (GST) pull-down assay. The expression of ZNF330 gene was continuously induced after RaMoV infection. ZNF330 negatively regulated RaMoV replication in the B. tabaci MED. Furthermore, the longevity and fecundity of RaMoV-infected female adults were significantly decreased after silencing of ZNF330. CONCLUSIONS: Our results indicated that the ZNF330 protein was involved in the negative regulation of RaMoV replication in the B. tabaci MED. High viral accumulation caused by ZNF330 silencing is detrimental to fecundity and longevity of the B. tabaci MED. These findings provided a new insight into identifying the binding partners in whitefly with viral CP and fully understanding the complex interactions between begomoviruses and their whitefly vector. © 2023 Society of Chemical Industry.


Subject(s)
Begomovirus , Boehmeria , Hemiptera , Mosaic Viruses , Virus Diseases , Animals , Hemiptera/physiology , Plant Diseases , Begomovirus/physiology , Capsid Proteins , Zinc Fingers
10.
J Virol ; 96(18): e0072522, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36043875

ABSTRACT

Begomoviruses are members of the family Geminiviridae, a large and diverse group of plant viruses characterized by a small circular single-stranded DNA genome encapsidated in twinned quasi-icosahedral virions. Cultivated tomato (Solanum lycopersicum L.) is particularly susceptible and is infected by >100 bipartite and monopartite begomoviruses worldwide. In Brazil, 25 tomato-infecting begomoviruses have been described, most of which are bipartite. Tomato mottle leaf curl virus (ToMoLCV) is one of the most important of these and was first described in the late 1990s but has not been fully characterized. Here, we show that ToMoLCV is a monopartite begomovirus with a genomic DNA similar in size and genome organization to those of DNA-A components of New World (NW) begomoviruses. Tomato plants agroinoculated with the cloned ToMoLCV genomic DNA developed typical tomato mottle leaf curl disease symptoms, thereby fulfilling Koch's postulates and confirming the monopartite nature of the ToMoLCV genome. We further show that ToMoLCV is transmitted by whiteflies, but not mechanically. Phylogenetic analyses placed ToMoLCV in a distinct and strongly supported clade with other begomoviruses from northeastern Brazil, designated the ToMoLCV lineage. Genetic analyses of the complete sequences of 87 ToMoLCV isolates revealed substantial genetic diversity, including five strain groups and seven subpopulations, consistent with a long evolutionary history. Phylogeographic models generated with partial or complete sequences predicted that the ToMoLCV emerged in northeastern Brazil >700 years ago, diversifying locally and then spreading widely in the country. Thus, ToMoLCV emerged well before the introduction of MEAM1 whiteflies, suggesting that the evolution of NW monopartite begomoviruses was facilitated by local whitefly populations and the highly susceptible tomato host. IMPORTANCE Worldwide, diseases of tomato caused by whitefly-transmitted geminiviruses (begomoviruses) cause substantial economic losses and a reliance on insecticides for management. Here, we describe the molecular and biological properties of tomato mottle leaf curl virus (ToMoLCV) from Brazil and establish that it is a NW monopartite begomovirus indigenous to northeastern Brazil. This answered a long-standing question regarding the genome of this virus, and it is part of an emerging group of these viruses in Latin America. This appears to be driven by widespread planting of the highly susceptible tomato and by local and exotic whiteflies. Our extensive phylogenetic studies placed ToMoLCV in a distinct strongly supported clade with other begomoviruses from northeastern Brazil and revealed new insights into the origin of Brazilian begomoviruses. The novel phylogeographic analysis indicated that ToMoLCV has had a long evolutionary history, emerging in northeastern Brazil >700 years ago. Finally, the tools used here (agroinoculation system and ToMoLCV-specific PCR test) and information on the biology of the virus (host range and whitefly transmission) will be useful in developing and implementing integrated pest management (IPM) programs targeting ToMoLCV.


Subject(s)
Begomovirus , Plant Diseases , Solanum lycopersicum , Animals , Begomovirus/classification , Begomovirus/physiology , Brazil , DNA, Single-Stranded , DNA, Viral/genetics , Genetic Variation , Genome, Viral/genetics , Hemiptera/virology , Solanum lycopersicum/virology , Phylogeny , Plant Diseases/virology
11.
PLoS One ; 17(5): e0257936, 2022.
Article in English | MEDLINE | ID: mdl-35551312

ABSTRACT

Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus in the family Geminiviridae, is efficiently transmitted by the whitefly, Bemisia tabaci, and causes serious economic losses to tomato crops around the world. TYLCV-infected tomato plants develop distinctive symptoms of yellowing and leaf upward cupping. In recent years, excellent progress has been made in the characterization of TYLCV C4 protein function as a pathogenicity determinant in experimental plants, including Nicotiana benthamiana and Arabidopsis thaliana. However, the molecular mechanism leading to disease symptom development in the natural host plant, tomato, has yet to be characterized. The aim of the current study was to generate transgenic tomato plants expressing the TYLCV C4 gene and evaluate differential gene expression through comparative transcriptome analysis between the transgenic C4 plants and the transgenic green fluorescent protein (Gfp) gene control plants. Transgenic tomato plants expressing TYLCV C4 developed phenotypes, including leaf upward cupping and yellowing, that are similar to the disease symptoms expressed on tomato plants infected with TYLCV. In a total of 241 differentially expressed genes identified in the transcriptome analysis, a series of plant development-related genes, including transcription factors, glutaredoxins, protein kinases, R-genes and microRNA target genes, were significantly altered. These results provide further evidence to support the important function of the C4 protein in begomovirus pathogenicity. These transgenic tomato plants could serve as basic genetic materials for further characterization of plant receptors that are interacting with the TYLCV C4.


Subject(s)
Begomovirus , Hemiptera , Solanum lycopersicum , Animals , Begomovirus/physiology , Genes, Developmental , Hemiptera/genetics , Solanum lycopersicum/genetics , Phenotype , Plant Diseases/genetics , Plants, Genetically Modified/genetics
12.
Cells ; 11(5)2022 02 28.
Article in English | MEDLINE | ID: mdl-35269455

ABSTRACT

Chilli leaf curl virus (ChiLCV; genus: Begomovirus), transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in a persistent-circulative manner, is a major constraint in chilli production. The present study demonstrates for the first time that a topical spray of naked double-stranded RNA (dsRNA) on chilli plants causes mortality and inability to acquire and transmit ChiLCV in B. tabaci. dsRNA targeting heat shock protein 70 (hsp70) and fasciclin 2 (fas2) of B. tabaci Asia II 1 was first assessed under controlled conditions through oral delivery. Hsp70 and fas2 dsRNA resulted in up to 82.22% and 72% mortality of B. tabaci and around 12.4- and 8.5-fold decreases in mRNA levels, respectively, 24 h post-ingestion. ChiLCV copies in hsp70 dsRNA-fed B. tabaci steadily decreased with an increase in dsRNA concentration and were undetectable at a higher concentration of dsRNA. However, ChiLCV copies significantly increased in fas2 dsRNA-fed B. tabaci. Transmission of ChiLCV by B. tabaci was completely inhibited post-24 h feeding on hsp70 dsRNA at 3 µg/mL. Naked hsp70 dsRNA was topically sprayed on ChiLCV-infected chilli plants like an insecticide. 67.77% mortality of B. tabaci, 4.6-fold downregulation of hsp70 mRNA, and 1.34 × 1015-fold decreased ChiLCV copies in B. tabaci were recorded when adults were exposed to the dsRNA-treated plants under semi-field conditions. Foliar application of naked dsRNA reduced the ChiLCV transmission by 75% without any visible symptoms in the inoculated plants. A total of 2 consecutive sprays of dsRNA provided significant protection to B. tabaci for up to 20 days under semi-field conditions.


Subject(s)
Begomovirus , Hemiptera , Animals , Asia , Begomovirus/physiology , HSP70 Heat-Shock Proteins/genetics , RNA, Double-Stranded/pharmacology , RNA, Messenger
13.
PLoS One ; 17(2): e0264026, 2022.
Article in English | MEDLINE | ID: mdl-35176091

ABSTRACT

Disease caused by Pepper yellow leaf curl virus (PepYLCV) is one of the greatest threats to pepper (Capsicum spp.) cultivation in the tropics and subtropics. Resistance to PepYLCV was previously identified in a few Capsicum accessions, but no resistance QTLs have been mapped. This study aimed to elucidate the genetics of PepYLCV resistance in C. annuum L. Augmented inoculation by the viruliferous whitefly Bemisia tabaci was used to evaluate parental lines and an F2 segregating population derived from a cross between resistant C. annuum line LP97 and susceptible C. annuum line ECW30R. Final evaluation was performed six weeks after inoculation using a standardized 5-point scale (0 = no symptoms to 4 = very severe symptoms). A high-density linkage map was constructed using genotyping-by-sequencing (GBS) to identify single-nucleotide polymorphism (SNP) markers associated with PepYLCV resistance in the F2 population. QTL analysis revealed three QTLs, peplcv-1, peplcv-7, and peplcv-12, on chromosomes P1, P7, and P12, respectively. Candidate genes associated with PepYLCV resistance in the QTL regions were inferred. In addition, single markers Chr7-LCV-7 and Chr12-LCV-12 derived from the QTLs were developed and validated in another F2 population and in commercial varieties. This work thus provides not only information for mapping PepYLCV resistance loci in pepper but also forms the basis for future molecular analysis of genes involved in PepYLCV resistance.


Subject(s)
Begomovirus/physiology , Capsicum/genetics , Chromosomes, Plant/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Capsicum/immunology , Capsicum/virology , Chromosome Mapping , Disease Resistance/immunology , Genotype , Plant Diseases/immunology , Plant Diseases/virology
14.
Theor Appl Genet ; 135(1): 233-242, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34636959

ABSTRACT

KEY MESSAGE: The role of miRNAs during viral pathogenesis is poorly understood in plants. Here, we demonstrate a miRNA/target module that acts as a susceptibility factor during ToLCNDV infection. Tomato leaf curl New Delhi virus (ToLCNDV) is a devastating pathogen that causes huge crop loss. It is spreading to new geographical locations at a very rapid rate-raising serious concerns. Evolution of insecticidal resistance in Bemisia tabaci which acts as the carrier for ToLCNDV has made insect control very difficult in the recent years. Thus, it is important that the host molecular mechanisms associated with ToLCNDV resistance/susceptibility are investigated to develop management strategies. In our study, we have identified that sly-miR166/SlyHB module acts as a susceptibility factor to ToLCNDV in Solanum lycopersicum. Sly-miR166 is differentially regulated upon ToLCNDV infection in two contrasting tomato cultivars; H-88-78-1 (tolerant to ToLCNDV) and Punjab Chhuhara (susceptible to ToLCNDV). Expression analysis of predicted sly-miR166 targets revealed that the expression of SlyHB is negatively correlated with its corresponding miRNA. Virus-induced gene silencing of SlyHB in the susceptible tomato cultivar resulted in the decrease in disease severity suggesting that SlyHB is a negative regulator of plant defence. In summary, our study highlights a miRNA/target module that acts as a susceptibility factor during ToLCNDV infection. To the best of our knowledge, this is the first report that highlights the role of sly-miR166/SlyHB module in ToLCNDV pathogenesis.


Subject(s)
Begomovirus/physiology , Genes, Homeobox , MicroRNAs/physiology , Plant Diseases/virology , RNA, Plant/physiology , Solanum lycopersicum/virology , Begomovirus/immunology , Genetic Predisposition to Disease , Solanum lycopersicum/immunology , Plant Diseases/immunology
15.
Mol Plant Pathol ; 23(4): 475-488, 2022 04.
Article in English | MEDLINE | ID: mdl-34970822

ABSTRACT

With climate warming, drought becomes a vital challenge for agriculture. Extended drought periods affect plant-pathogen interactions. We demonstrate an interplay in tomato between drought and infection with tomato yellow leaf curl virus (TYLCV). Infected plants became more tolerant to drought, showing plant readiness to water scarcity by reducing metabolic activity in leaves and increasing it in roots. Reallocation of osmolytes, such as carbohydrates and amino acids, from shoots to roots suggested a role of roots in protecting infected tomatoes against drought. To avoid an acute response possibly lethal for the host organism, TYLCV down-regulated the drought-induced activation of stress response proteins and metabolites. Simultaneously, TYLCV promoted the stabilization of osmoprotectants' patterns and water balance parameters, resulting in the development of buffering conditions in infected plants subjected to prolonged stress. Drought-dependent decline of TYLCV amounts was correlated with HSFA1-controlled activation of autophagy, mostly in the roots. The tomato response to combined drought and TYLCV infection points to a mutual interaction between the plant host and its viral pathogen.


Subject(s)
Begomovirus , Solanum lycopersicum , Begomovirus/physiology , Droughts , Heat-Shock Proteins , Plant Diseases
16.
Arch Insect Biochem Physiol ; 110(1): e21857, 2022 May.
Article in English | MEDLINE | ID: mdl-34859483

ABSTRACT

Tomato yellow leaf curl virus (TYLCV), a plant DNA virus of the genus Begomovirus, is transmitted by whiteflies of the Bemisia tabaci species complex in a persistent manner. Our previous study indicated that activation of the apoptosis pathway in whiteflies could facilitate TYLCV accumulation and transmission. Considering that temperature change can influence the spread of insect-borne plant viruses, we focused on plant virus induced-apoptosis to investigate the underlying mechanism of temperature regulation on plant virus transmission via an insect vector. We found that heat stress (40°C) on whiteflies could facilitate TYLCV accumulation and increase transmission to tomato plants. Despite upregulation of caspase-1 and caspase-3 gene expression, heat stress failed to induce an increase in the activation of cleaved caspase-3 and DNA fragmentation in TYLCV-infected whiteflies. However, our data failed to determine the role of heat stress in apoptosis modulation of insect-plant virus interplay while still providing clues to understand insect vectors and their transmitted plant viruses.


Subject(s)
Begomovirus , Hemiptera , Animals , Apoptosis , Begomovirus/physiology , Caspase 3 , Heat-Shock Response , Hemiptera/genetics
17.
PLoS One ; 16(11): e0259374, 2021.
Article in English | MEDLINE | ID: mdl-34843507

ABSTRACT

Whitefly, Bemisia tabaci (Gennadius) is an important pest of cotton causing direct damage as sap feeder and vector of Cotton leaf curl virus (CLCuV). Previous few studies suggest that female whiteflies are more efficient vector of begomovirusthan males, however the sex-biased transmission efficiency is still not clearly understood. Present studies with B. tabaci AsiaII-1 haplotype showed higher virus transmission efficiency of females compared to males. This variable begomovirus transmission efficiency has been related to previously identifiedkey factors associated with B. tabaci. The higher density of endosymbiont Arsenophonus and variable expression of some midgut proteins genes i.e. Cyclophilin, Knottin, Hsp40, Hsp70 may be possibly imparting higher vector competency to the females compared to males. The present studies suggest low abundance of Arsenophonus spp. as well as lower expressionof Cyclophilin genein males as compared to females. This is further supplemented by overexpression of Knottin, Hsp40, and Hsp70 genes in males compared to females and thus collectively all these factors might be playing a key role in low virus transmission efficiency of males. The relative density of Arsenophonus spp. and expression of midgut proteins genes in male and female whitefly first time enriches our understanding about sex-biased transmission efficiency of begomovirus.


Subject(s)
Begomovirus/physiology , Digestive System/metabolism , Gammaproteobacteria/growth & development , Hemiptera/virology , Insect Proteins/metabolism , Animals , Begomovirus/growth & development , Cyclophilins/antagonists & inhibitors , Cyclophilins/genetics , Cyclophilins/metabolism , Female , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/physiology , Gene Expression Regulation , Gene Silencing , HSP40 Heat-Shock Proteins/antagonists & inhibitors , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Haplotypes , Insect Proteins/antagonists & inhibitors , Insect Proteins/genetics , Insect Vectors/virology , Male , Plant Diseases/virology , RNA, Double-Stranded/metabolism , Sex Factors , Symbiosis , Viral Load
18.
Cells ; 10(11)2021 10 25.
Article in English | MEDLINE | ID: mdl-34831098

ABSTRACT

A growing body of research points to a positive interplay between viruses and plants. Tomato yellow curl virus (TYLCV) is able to protect tomato host plants against extreme drought. To envisage the use of virus protective capacity in agriculture, TYLCV-resistant tomato lines have to be infected first with the virus before planting. Such virus-resistant tomato plants contain virus amounts that do not cause disease symptoms, growth inhibition, or yield loss, but are sufficient to modify the metabolism of the plant, resulting in improved tolerance to drought. This phenomenon is based on the TYLCV-dependent stabilization of amounts of key osmoprotectants induced by drought (soluble sugars, amino acids, and proteins). Although in infected TYLCV-susceptible tomatoes, stress markers also show an enhanced stability, in infected TYLCV-resistant plants, water balance and osmolyte homeostasis reach particularly high levels. These tomato plants survive long periods of time during water withholding. However, after recovery to normal irrigation, they produce fruits which are not exposed to drought, similarly to the control plants. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.


Subject(s)
Adaptation, Physiological , Begomovirus/physiology , Droughts , Solanum lycopersicum/physiology , Solanum lycopersicum/virology , Biomass , Fruit/growth & development , Heat-Shock Proteins/metabolism , Solanum lycopersicum/growth & development , Plant Diseases/virology , Plant Proteins/metabolism , Plant Stomata/physiology , Plant Transpiration/physiology , Protein Stability
19.
Plant Physiol ; 187(1): 158-173, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34618135

ABSTRACT

Because of limited free diffusion in the cytoplasm, viruses must use active transport mechanisms to move intracellularly. Nevertheless, how the plant single-stranded DNA begomoviruses hijack the host intracytoplasmic transport machinery to move from the nucleus to the plasmodesmata remains enigmatic. Here, we identified nuclear shuttle protein (NSP)-interacting proteins from Arabidopsis (Arabidopsis thaliana) by probing a protein microarray and demonstrated that the cabbage leaf curl virus NSP, a facilitator of the nucleocytoplasmic trafficking of viral (v)DNA, interacts in planta with an endosomal vesicle-localized, plant-specific syntaxin-6 protein, designated NSP-interacting syntaxin domain-containing protein (NISP). NISP displays a proviral function, unlike the syntaxin-6 paralog AT2G18860 that failed to interact with NSP. Consistent with these findings, nisp-1 mutant plants were less susceptible to begomovirus infection, a phenotype reversed by NISP complementation. NISP-overexpressing lines accumulated higher levels of vDNA than wild-type. Furthermore, NISP interacted with an NSP-interacting GTPase (NIG) involved in NSP-vDNA nucleocytoplasmic translocation. The NISP-NIG interaction was enhanced by NSP. We also showed that endosomal NISP associates with vDNA. NISP may function as a docking site for recruiting NIG and NSP into endosomes, providing a mechanism for the intracytoplasmic translocation of the NSP-vDNA complex toward and from the cell periphery.


Subject(s)
Arabidopsis , Begomovirus , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/virology , Begomovirus/physiology , Cell Nucleus/metabolism
20.
Cells ; 10(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-34359870

ABSTRACT

Begomoviruses cause substantial losses to agricultural production, especially in tropical and subtropical regions, and are exclusively transmitted by members of the whitefly Bemisia tabaci species complex. However, the molecular mechanisms underlying the transmission of begomoviruses by their whitefly vector are not clear. In this study, we found that B. tabaci vesicle-associated membrane protein 2 (BtVAMP2) interacts with the coat protein (CP) of tomato yellow leaf curl virus (TYLCV), an emergent begomovirus that seriously impacts tomato production globally. After infection with TYLCV, the transcription of BtVAMP2 was increased. When the BtVAMP2 protein was blocked by feeding with a specific BtVAMP2 antibody, the quantity of TYLCV in B. tabaci whole body was significantly reduced. BtVAMP2 was found to be conserved among the B. tabaci species complex and also interacts with the CP of Sri Lankan cassava mosaic virus (SLCMV). When feeding with BtVAMP2 antibody, the acquisition quantity of SLCMV in whitefly whole body was also decreased significantly. Overall, our results demonstrate that BtVAMP2 interacts with the CP of begomoviruses and promotes their acquisition by whitefly.


Subject(s)
Begomovirus/physiology , Hemiptera/metabolism , Hemiptera/virology , Insect Proteins/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Amino Acid Sequence , Animals , Antibodies, Viral/metabolism , Capsid Proteins/metabolism , Insect Proteins/chemistry , Protein Binding , Transcription, Genetic , Vesicle-Associated Membrane Protein 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...