Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.973
Filter
1.
Bioresour Technol ; 402: 130775, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701984

ABSTRACT

Acidification recovery in anaerobic digestion of food waste is challenging. This study explored its in-situ recovery using a co-substrate of food waste and waste activated sludge. Fe3O4 and bentonite were used as conductor and carrier, respectively, to enhance AD performance under severe acidification. The application of Fe3O4-bentonite resulted in a 152% increase in cumulative methane in the Fe3O4-bentonite 10 digester, demonstrating its effectiveness in restoring the acidified AD system. In acidified systems, bentonite enhanced the diversity and richness of microbial communities due to its buffering capacity. The excessive non-conductive polysaccharides excreted by bacteria in extracellular polymeric substances reduced the possibility of electron transfer by Fe3O4. However, in the synergistic application of Fe3O4 and bentonite, this resistance was alleviated, increasing the possibility of direct interspecies electron transfer, and accelerating the consumption of volatile fatty acids. This approach of integrating carrier and conductive materials is significant for in-situ restoration of acidified systems.


Subject(s)
Bentonite , Methane , Sewage , Bentonite/chemistry , Anaerobiosis , Methane/metabolism , Hydrogen-Ion Concentration , Food , Fatty Acids, Volatile , Bioreactors , Acids/chemistry , Waste Products , Ferric Compounds/chemistry , Food Loss and Waste
2.
J Phys Chem Lett ; 15(19): 5295-5305, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38722703

ABSTRACT

Coacervate microdroplets, a protocell model in exploring the origin of life, have gained significant attention. Clay minerals, catalysts during the origin of life, are crucial in the chemical evolution of small molecules into biopolymers. However, our understanding of the relationship between clay minerals and the formation and evolution of protocells on early Earth remains limited. In this work, the nanoclay montmorillonite nanosheet (MMT-Na) was employed to investigate its interaction with coacervate microdroplets formed by oligolysine (K10) and adenine nucleoside triphosphate (ATP). As an anionic component, MMT-Na was noted to promote the formation of coacervate microdroplets. Furthermore, the efficiency of ssDNA enrichment and the degree of ssDNA hybridization within these microdroplets were significantly improved. By combining inorganic nanoclay with organic biopolymers, our work provides an efficient way to enrich genetic biomolecules in the primitive Earth environment and builds a nanoclay-based coacervate microdroplets, shedding new light on life's origin and protocell evolution.


Subject(s)
Artificial Cells , Bentonite , Artificial Cells/chemistry , Bentonite/chemistry , DNA, Single-Stranded/chemistry , Clay/chemistry , Adenosine Triphosphate/chemistry , Nanostructures/chemistry , Origin of Life , Nucleic Acid Hybridization
3.
Chemosphere ; 358: 142221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701861

ABSTRACT

Lanthanum modified bentonite (LMB) is typical P-inactivating agent that has been applied in over 200 lakes. Dissolved organic carbon (DOC) and high pH restrict the phosphorus (P) immobilization performance of LMB. However, the P immobilization/release behaviors of LMB-amended sediment when suspended to overlying water with high pH and DOC have not yet been studied. In the present work, batch adsorption and long-term incubation experiments were performed to study the combined effects of pH and DOC on the P control by LMB. The results showed that the coexistence of low concentration of DOC or preloading with some DOC had a negligible effect on P binding by LMB. In the presence of DOC, the P adsorption was more pronounced at pH 7.5 and was measurably less at pH 9.5. Additionally, the pH value was the key factor that decided the P removal at low DOC concentration. The increase in pH and DOC could significantly promote the release of sediment P with a higher EPC0. Under such condition, a higher LMB dosage was needed to effectively control the P releasing from sediment. In sediment/water system with intermittent resuspension, the alkaline conditions greatly facilitated the release of sediment P and DOC, which increased from 0.087 to 0.581 mg/L, and from 11.05 to 26.56 mg/L, respectively. Under the dual effect of pH and DOC, the P-immobilization performance of LMB was weakened, and a tailor-made scheme became essential for determining the optimum dosage. The desorption experiments verified that the previously loaded phosphorus on LMB was hard to be released even under high pH and DOC conditions, with an accumulative desorption rate of less than 2%. Accordingly, to achieve the best P controlling efficiency, the application strategies depending on LMB should avoid the high DOC loading period such as the rainy season and algal blooms.


Subject(s)
Bentonite , Carbon , Geologic Sediments , Lanthanum , Phosphorus , Water Pollutants, Chemical , Bentonite/chemistry , Lanthanum/chemistry , Phosphorus/chemistry , Hydrogen-Ion Concentration , Geologic Sediments/chemistry , Carbon/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Lakes/chemistry
4.
Chemosphere ; 359: 142262, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714252

ABSTRACT

Industrialization has caused a significant global issue with cadmium (Cd) pollution. In this study, Biochar (Bc), generated through initial pyrolysis of rice straw, underwent thorough mixing with magnetized bentonite clay, followed by activation with KOH and subsequent pyrolysis. Consequently, a magnetized bentonite modified rice straw biochar (Fe3O4@B-Bc) was successfully synthesized for effective treatment and remediation of this problem. Fe3O4@B-Bc not only overcomes the challenges associated with the difficult separation of individual bentonite or biochar from water, but also exhibited a maximum adsorption capacity of Cd(II) up to 241.52 mg g-1. The characterization of Fe3O4@B-Bc revealed that its surface was rich in C, O and Fe functional groups, which enable efficient adsorption. The quantitative calculation of the contribution to the adsorption mechanism indicates that cation exchange and physical adsorption accounted for 65.87% of the total adsorption capacity. In conclusion, Fe3O4@B-Bc can be considered a low-cost and recyclable green adsorbent, with broad potential for treating cadmium-polluted water.


Subject(s)
Bentonite , Cadmium , Charcoal , Oryza , Water Pollutants, Chemical , Cadmium/chemistry , Cadmium/analysis , Oryza/chemistry , Charcoal/chemistry , Adsorption , Bentonite/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods
5.
Environ Sci Technol ; 58(22): 9669-9678, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771965

ABSTRACT

In subsurface environments, Fe(II)-bearing clay minerals can serve as crucial electron sources for O2 activation, leading to the sequential production of O2•-, H2O2, and •OH. However, the observed •OH yields are notably low, and the underlying mechanism remains unclear. In this study, we investigated the production of oxidants from oxygenation of reduced Fe-rich nontronite NAu-2 and Fe-poor montmorillonite SWy-3. Our results indicated that the •OH yields are dependent on mineral Fe(II) species, with edge-surface Fe(II) exhibiting significantly lower •OH yields compared to those of interior Fe(II). Evidence from in situ Raman and Mössbauer spectra and chemical probe experiments substantiated the formation of structural Fe(IV). Modeling results elucidate that the pathways of Fe(IV) and •OH formation respectively consume 85.9-97.0 and 14.1-3.0% of electrons for H2O2 decomposition during oxygenation, with the Fe(II)edge/Fe(II)total ratio varying from 10 to 90%. Consequently, these findings provide novel insights into the low •OH yields of different Fe(II)-bearing clay minerals. Since Fe(IV) can selectively degrade contaminants (e.g., phenol), the generation of mineral Fe(IV) and •OH should be taken into consideration carefully when assessing the natural attenuation of contaminants in redox-fluctuating environments.


Subject(s)
Hydroxyl Radical , Minerals , Hydroxyl Radical/chemistry , Minerals/chemistry , Iron/chemistry , Clay/chemistry , Oxygen/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Aluminum Silicates/chemistry , Bentonite/chemistry
6.
Chemosphere ; 359: 142285, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723684

ABSTRACT

This study critically appraises employing chitosan as a composite with bentonite, biochar, or both materials as an alternative to conventional barrier materials. A comprehensive literature review was conducted to identify the studies reporting chitosan-bentonite composite (CBC), chitosan amended biochar (CAB), and chitosan-bentonite-biochar composite (CBBC) for effective removal of various contaminants. The study aims to review the synthesis of these composites, identify fundamental properties affecting their adsorption capacities, and examine how these properties affect or enhance the removal abilities of other materials within the composite. Notably, CBC composites have the advantage of adsorbing both cationic and anionic species, such as heavy metals and dyes, due to the cationic nature of chitosan and the anionic nature of montmorillonite, along with the increased accessible surface area due to the clay. CAB composites have the unique advantage of being low-cost sorbents with high specific surface area, affinity for a wide range of contaminants owing to the high surface area and microporosity of biochar, and abundant available functional groups from the chitosan. Limited studies have reported the utilization of CBBC composites to remove various contaminants. These composites can be prepared by combining the steps employed in preparing CBC and CAB composites. They can benefit from the favorable adsorption properties of all three materials while also satisfying the mechanical requirements of a barrier material. This study serves as a knowledge base for future research to develop novel composite barrier materials by incorporating chitosan and biochar as amendments to bentonite.


Subject(s)
Bentonite , Charcoal , Chitosan , Chitosan/chemistry , Charcoal/chemistry , Bentonite/chemistry , Adsorption , Environmental Restoration and Remediation/methods , Metals, Heavy/chemistry , Environmental Pollutants/chemistry
7.
J Environ Radioact ; 275: 107430, 2024 May.
Article in English | MEDLINE | ID: mdl-38615506

ABSTRACT

Clay colloids in the subsurface environment have a strong adsorption capacity for radionuclides, and the mobile colloids will carry the nuclides for migration, which would promote the movability of radionuclides in the groundwater environment and pose a threat to the ecosphere. The investigations of the adsorption/desorption behaviors of radionuclides in colloids and porous media are significant for the evaluation of the geological disposal of radioactive wastes. To illustrate the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand systems at different pH (5, 7 and 9), ionic strengths (0, 0.1 and 5 mM), colloid concentrations (300 and 900 mg/L), nuclide concentrations (500, 800, 1100 and 1400 Bq/mL) and grain sizes (40 and 60 mesh), a series of batch sorption-desorption experiments were conducted. Combining the analysis of the physical and chemical properties of Na-montmorillonite with the Freundlich model, the influencing mechanism of different controlling factors is discussed. The experimental results show that the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand strongly are influenced by the pH value and ionic strength of a solution, the colloid concentration as well as quartz sand grain size. The adsorption and desorption isotherms within all the experimental conditions could be well-fitted by the Freundlich model and the correlation coefficients (R2) are bigger than 0.9. With the increase in pH, the adsorption partition coefficient (Kd) at 241Am(Ⅲ)-Na-montmorillonite colloid two-phase system and 241Am(Ⅲ)-Na-montmorillonite colloid-quartz sand three-phase system presents a trend which increases firstly followed by decreasing, due to the changes in the morphology of Am with pH. The Kd of 241Am(Ⅲ) adsorption on montmorillonite colloid and quartz sand decreases with increasing in ionic strength, which is mainly attributed to the competitive adsorption, surface complexation and the reduction of surface zeta potential. Additionally, the Kd increases with increasing colloid concentrations because of the increase in adsorption sites. When the mean grain diameter changes from 0.45 to 0.3 mm, the adsorption variation trends of 241Am(Ⅲ) remain basically unchanged. The research results obtained in this work are meaningful and helpful in understanding the migration behaviors of radionuclides in the underground environment.


Subject(s)
Americium , Bentonite , Colloids , Quartz , Bentonite/chemistry , Osmolar Concentration , Adsorption , Hydrogen-Ion Concentration , Colloids/chemistry , Quartz/chemistry , Americium/chemistry , Americium/analysis , Water Pollutants, Radioactive/chemistry , Water Pollutants, Radioactive/analysis , Soil Pollutants, Radioactive/analysis , Soil Pollutants, Radioactive/chemistry , Models, Chemical , Particle Size , Sand/chemistry
8.
Food Res Int ; 185: 114292, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658072

ABSTRACT

The synthetic, non-renewable nature and harmful effects of plastic packaging have led to the synthesis of eco-friendly renewable bio-nanocomposite film. The present work was aimed at the formulation and characterization of bio-nanocomposite film using soybean meal protein, montmorillonite (MMT), and debittered kinnow peel powder. The composition of film includes protein isolate (5% w/v), glycerol (50% w/w), peel powder (20% w/w), and MMT (0.5-2.5% w/w). Incorporation of MMT in soybean meal protein-based film loaded with kinnow peel powder showed lesser solubility (16.76-26.32%), and swelling ability (142.77-184.21%) than the film prepared without MMT (29.41%, & 229.41%, respectively). The mechanical properties like tensile strength of nanocomposite film improved from 9.41 to 38.69% with the increasing concentration of MMT. The water vapor transmission rate of the nanocomposite film was decreased by 3.45-17.85% when the MMT concentration increased. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed no considerable change in the structural properties of the film after the addition of MMT. Differential scanning colorimeter analysis revealed the increment in melting temperature (85.33-92.67 °C) of the film with a higher concentration of MMT. Scanning electron microscopy analysis indicated an increased distributed area of MMT throughout the film at higher concentrations. The antimicrobial activity of the film was remarkably increased by 4.96-17.18% with the addition of MMT. The results obtained in the current work confirmed that MMT incorporation in soybean meal protein-based film can augment its properties and can be utilized for enhancing the storage period of food products.


Subject(s)
Bentonite , Food Packaging , Nanocomposites , Powders , Soybean Proteins , Tensile Strength , Bentonite/chemistry , Nanocomposites/chemistry , Soybean Proteins/chemistry , Food Packaging/methods , Glycine max/chemistry , Solubility , Steam
9.
J Environ Manage ; 358: 120894, 2024 May.
Article in English | MEDLINE | ID: mdl-38643621

ABSTRACT

Discharging improperly treated oily-produced water (OPW) into the environment can have significant negative impacts on environmental sustainability. It can lead to pollution of water sources, damage to aquatic ecosystems and potential health hazards for individuals living in the affected areas. Ceramic hollow fiber membrane (CHFM) technology is one of the most effective OPW treatment methods for achieving high oil removal efficiency while maintaining membrane water permeability. In this study, low-cost calcium bentonite hollow fiber membranes (CaB-HFMs) were prepared from high-alumina calcium bentonite clay with various preparation parameters, including calcium bentonite content, sintering temperature, air gap distance and bore fluid rate. The prepared CaB-HFMs were then subjected to characterization using scanning electron microscopy (SEM), a three-point bending test, porosity, average pore size, hydraulic resistance and flux recovery ratio (FRR) analysis. Statistical analysis employing central composite design (CCD) assessed the interaction between the parameters and their effect on CaB-HFM water permeability and oil removal efficiency. Higher ceramic content and sintering temperature led to reduced porosity, smaller pore size and higher mechanical strength. In contrast, increasing the air gap distance and bore fluid rate exhibit different trends, resulting in higher porosity and pore size, along with weaker mechanical strength. Other than that, all of the CaB-HFMs displayed low hydraulic resistance (<0.01 m2 h.bar/L) and high FRR value (up to 95.2%). Based on CCD, optimal conditions for CaB-HFM were determined as follows: a calcium bentonite content of 50 wt.%, a sintering temperature of 1096 °C, an air gap distance of 5 cm and a bore fluid rate of 10 mL/min, with the desirability value of 0.937. Notably, the optimized CaB-HFMs demonstrated high oil removal efficiency of up to 99.7% with exceptional water permeability up to 535.2 L/m2.h.bar. The long-term permeation study also revealed it was capable of achieving a high average water permeation and a stable oil rejection performance of 522.15 L/m2.h.bar and 99.8%, respectively, due to their inherent hydrophilic and antifouling characteristics, making it practical for OPW treatment application.


Subject(s)
Bentonite , Bentonite/chemistry , Salinity , Permeability , Calcium/chemistry , Membranes, Artificial
10.
J Environ Manage ; 358: 120950, 2024 May.
Article in English | MEDLINE | ID: mdl-38657414

ABSTRACT

In this work, waste plastics have been used with bentonite clay to produce silica-containing graphene nanosheets (GNs) for adsorption of nitrate and phosphate from synthetic water. The GNs were obtained by the two steps process, namely (1) pyrolysis at 750 °C and (2) ball milling. Then, GNs were characterized by Raman spectroscopy, FTIR, XRD, FESEM, HRTEM and EDX spectroscopy, which provided the details of material's morphology, surface properties, and composition. From Raman spectroscopy, D and G bands were found at 1342 cm-1 and 1594 cm-1, respectively, which confirmed the presence of nanosheets on the graphene surface. Furthermore, the layers of nanosheets were confirmed by the HRTEM analysis and XRD peaks. In analytical study, the batch experiment was conducted to investigate the influence of operational parameters such as pH (03-12), contact time (05-120 min), adsorbent dosage (0.01-0.06 g), and initial concentrations of adsorbates (10-50 mg/L for nitrate and 03-15 mg/L for phosphate) on adsorption process. The removal percentage of nitrate and phosphate at optimum dosage = 0.05 g, pH = 6.5, contact time = 60 min, nitrate concentration = 30 mg/L, and phosphate concentration = 09 mg/L were found to be 85 and 91, respectively. The highest adsorption capacity of nitrate and phosphate was found to be 53 mg/g and 16.4 mg/g, respectively. The adsorption behaviour of both nitrate and phosphate showed chemisorption as the experimental data were well fitted by the pseudo-2nd-order kinetic and Langmuir isotherm model. Life cycle cost analysis (LCCA) of the synthesis process was conducted to evaluate the cost-benefit analysis for commercial feasibility. The estimated price for the synthesis of GNs using 1 kg of waste plastics and bentonite clay as precursor was $4.21, suggesting commercialization.


Subject(s)
Graphite , Nitrates , Phosphates , Plastics , Graphite/chemistry , Phosphates/chemistry , Nitrates/chemistry , Adsorption , Plastics/chemistry , Water Pollutants, Chemical/chemistry , Bentonite/chemistry , Nanostructures/chemistry
11.
J Environ Manage ; 358: 120866, 2024 May.
Article in English | MEDLINE | ID: mdl-38663085

ABSTRACT

Cu (II) is a toxic heavy metal commonly identified in groundwater contaminants. Bentonite-based cutoff wall is the most used method in isolating and adsorbing contaminants, while the bentonite in it easily to fail due to Cu(II) exchange. This study synthesized a novel material through the modification of calcium bentonite (CaB) utilizing sodium hexametaphosphate (SHMP) and nano zero-valent iron (NZVI). The characteristics, adsorption performance, and mechanism of the NZVI/SHMP-CaB were investigated comprehensively. The results showed that SHMP can disperse CaB and reduce flocculation, while NZVI can be further stabilized without agglomeration. The best adsorption performance of NZVI/SHMP-CaB could be obtained at the dosage of 2% SHMP and 4% NZVI. The NZVI/SHMP-CaB exhibited an outstanding removal efficiency of over 60% and 90% at a high Cu(II) concentration (pH = 6, Cu(II) = 300 mg/L) and acidic conditions (pH = 3-6, Cu(II) = 50 mg/L), respectively. The adsorption of Cu(II) by NZVI/SHMP-CaB followed a pseudo-second-order kinetic model, and fitting results from the Freundlich isothermal model suggested that the adsorption process occurred spontaneously. Besides the rapid surface adsorption on the NZVI/SHMP-CaB and ion exchange with interlayer ions in bentonite, the removal mechanism of Cu(II) also involved the chemical reduction to insoluble forms such as Cu0 and Cu2O. The generated FePO4 covered the surface of the homogenized NZVI particles, enhancing the resistance of NZVI/SHMP-CaB to acidic and oxidative environments. This study indicates that NZVI/SHMP-CaB is a promising alternative material which can be used for heavy metal removal from contaminated soil and water.


Subject(s)
Bentonite , Copper , Iron , Phosphates , Bentonite/chemistry , Adsorption , Iron/chemistry , Copper/chemistry , Phosphates/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
12.
Water Sci Technol ; 89(7): 1846-1859, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619907

ABSTRACT

Geosynthetic clay liners (GCLs) are mostly used as flow barriers in landfills and waste containments due to their low hydraulic conductivity to prevent the leachate from reaching the environment. The self-healing and swell-shrink properties of soft clays (expansive soils) such as bentonite enable them as promising materials for the GCL core layers. However, it is important to modify their physico-chemical properties in order to overcome the functional limitations of GCL under different hydraulic conditions. In the present study, locally available black cotton soil (BCS) is introduced in the presence of an anionic polymer named carboxymethyl cellulose (CMC) as an alternative to bentonite to enhance the hydraulic properties of GCL under different compositions. The modified GCL is prepared by stitching the liner with an optimum percentage of CMC along with various percentages of BCS mixed with bentonite. Hydraulic conductivity tests were performed on the modified GCL using the flexi-wall permeameter. The results suggest that the lowest hydraulic conductivity of 4.58 × 10-10 m/s is obtained when 25% of BCS is blended with bentonite and an optimum 8% CMC and further addition of BCS results in the reduction of the hydraulic conductivity.


Subject(s)
Bentonite , Refuse Disposal , Bentonite/chemistry , Clay , Soil , Methylcellulose , Refuse Disposal/methods , Carboxymethylcellulose Sodium
13.
Colloids Surf B Biointerfaces ; 238: 113925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657556

ABSTRACT

Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 µg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.


Subject(s)
Anti-Bacterial Agents , Bentonite , Bone Cements , Calcium Phosphates , Drug Delivery Systems , Drug Liberation , Escherichia coli , Gentamicins , Staphylococcus aureus , Bentonite/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gentamicins/pharmacology , Gentamicins/chemistry , Gentamicins/administration & dosage , Gentamicins/pharmacokinetics , Calcium Phosphates/chemistry , Bone Cements/chemistry , Bone Cements/pharmacology , Animals , Escherichia coli/drug effects , Mice , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Particle Size
14.
Colloids Surf B Biointerfaces ; 238: 113889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574404

ABSTRACT

A novel core-shell with a tetradecyl dimethyl benzyl ammonium chloride-modified montmorillonite (TDMBA/MMT) interlayer silk fibroin (SF)/poly(lactic acid) (PLLA) nanofibrous membrane was fabricated using a simple conventional electrospinning method. Scanning electron microscopy and pore size analyses revealed that this core-shell with TDMBA/MMT interlayer maintained its nanofibrous morphology and larger pore structure more successfully than SF/PLLA nanofibrous membranes after treatment with 75% ethanol vapor. Transmission electron microscopy and energy-dispersive X-ray spectroscopy analyses testified that the SF/PLLA-TDMBA/MMT nanofibers exhibited a core-shell with an interlayer structure, with SF/PLLA in the core-shell layer and TDMBA/MMT in the interlayer. The formation of a core-shell with interlayer nanofibers was primarily attributed to the uniform dispersion of TDMBA/MMT nanosheets in a solution owing to its exfoliation using hexafluoroisopropanol and then preparing a stable spinning solution similar to an emulsion. Compared to SF/PLLA nanofibrous membranes, the core-shell structure with TDMBA/MMT interlayers of SF/PLLA nanofibrous membranes exhibited enhanced hydrophilicity, thermal stability, mechanical properties as well as improved and long-lasting antimicrobial performance against Escherichia coli and Staphylococcus aureus without cytotoxicity.


Subject(s)
Bentonite , Escherichia coli , Nanofibers , Staphylococcus aureus , Bentonite/chemistry , Bentonite/pharmacology , Nanofibers/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Fibroins/chemistry , Fibroins/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Membranes, Artificial , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Mice , Animals
15.
Chemosphere ; 357: 141943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621492

ABSTRACT

In this study, bentonite supporting phosphorus-doped Fe2MnO4 (BPF) was synthesized and applied for PMS activation to degrade TCE. Morphology and structure characterization results indicated the successfully synthesized of BPF, and the BPF/PMS system not only featured high TCE removal (97.4%) but also high reaction rate constant (kobs = 0.0554 min-1) and PMS utilization (70.4%, kobs = 0.0228 min-1). According to the results of various experiments, massive oxygen vacancies on P-Fe2MnO4 alter its charge balance and facilitate the electron transfer process named adjacent transfer (direct electron capture by adsorbed PMS from adjacent TCE). Mn(III) is the main adsorption site for PMS, and the hydroxyl groups on the catalyst (Fe sites of P-Fe2MnO4, Si and Al sites of bentonite) can also offer binding sites for PMS. The hydrogen-bonded PMS on Fe(III) and Mn(III) sites will subsequently accept the discharged electrons to generate free radicals and high-valent metal species. Meanwhile, electron loss of HSO5- that chemically bonded to hydroxyl groups on bentonite will generate SO5•-, which will further produce 1O2 through self-bonding. the active species on the catalyst surface contribute 65% of TCE degradation in the heterogeneous catalytic oxidation system.


Subject(s)
Bentonite , Manganese Compounds , Peroxides , Trichloroethylene , Bentonite/chemistry , Catalysis , Peroxides/chemistry , Trichloroethylene/chemistry , Manganese Compounds/chemistry , Adsorption , Oxidation-Reduction , Ferric Compounds/chemistry , Environmental Restoration and Remediation/methods , Phosphorus/chemistry , Manganese/chemistry , Water Pollutants, Chemical/chemistry
16.
Toxins (Basel) ; 16(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38668593

ABSTRACT

The aim of this in vivo study was to investigate the effects of a novel mycotoxin detoxifier whose formulation includes clay (bentonite and sepiolite), phytogenic feed additives (curcumin and silymarin) and postbiotics (yeast products) on the health, performance and redox status of weaned piglets under the dietary challenge of fumonisins (FUMs). The study was conducted in duplicate in the course of two independent trials on two different farms. One hundred and fifty (150) weaned piglets per trial farm were allocated into two separate groups: (a) T1 (control group): 75 weaned piglets received FUM-contaminated feed and (b) T2 (experimental group): 75 weaned piglets received FUM-contaminated feed with the mycotoxin-detoxifying agent from the day of weaning (28 days) until 70 days of age. Thiobarbituric acid reactive substances (TBARSs), protein carbonyls (CARBs) and the overall antioxidant capacity (TAC) were assessed in plasma as indicators of redox status at 45 and 70 days of age. Furthermore, mortality and performance parameters were recorded at 28, 45 and 70 days of age, while histopathological examination was performed at the end of the trial period (day 70). The results of the present study reveal the beneficial effects of supplementing a novel mycotoxin detoxifier in the diets of weaners, including improved redox status, potential hepatoprotective properties and enhanced growth performance.


Subject(s)
Animal Feed , Curcumin , Oxidation-Reduction , Weaning , Animals , Curcumin/pharmacology , Animal Feed/analysis , Swine , Fumonisins/toxicity , Antioxidants/pharmacology , Bentonite/pharmacology , Bentonite/chemistry , Aluminum Silicates/chemistry , Aluminum Silicates/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism , Food Contamination/prevention & control , Protein Carbonylation/drug effects , Liver/drug effects , Liver/metabolism , Male , Mycotoxins/toxicity
17.
Toxins (Basel) ; 16(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38668625

ABSTRACT

Okadaic acid (OA) is one of the most potent marine biotoxins, causing diarrheal shellfish poisoning (DSP). The proliferation of microalgae that produce OA and its analogues is frequent, threatening human health and socioeconomic development. Several methods have been tested to remove this biotoxin from aquatic systems, yet none has proven enough efficacy to solve the problem. In this work, we synthesized and characterized low-cost composites and tested their efficacy for OA adsorption in saltwater. For the synthesis of the composites, the following starting materials were considered: chitosan of low and medium molecular weight (CH-LW and CH-MW, respectively), activated carbon (AC), and montmorillonite (MMT). Characterization by vibrational spectroscopy (FTIR), X-ray diffraction (XRD), and microscopy revealed differences in the mode of interaction of CH-LW and CH-MW with AC and MMT, suggesting that the interaction of CH-MW with MMT has mainly occurred on the surface of the clay particles and no sufficient intercalation of CH-MW into the MMT interlayers took place. Among the composites tested (CH-LW/AC, CH-MW/AC, CH-MW/AC/MMT, and CH-MW/MMT), CH-MW/MMT was the one that revealed lower OA adsorption efficiency, given the findings evidenced by the structural characterization. On the contrary, the CH-MW/AC composite revealed the highest average percentage of OA adsorption (53 ± 11%). Although preliminary, the results obtained in this work open up good perspectives for the use of this type of composite material as an adsorbent in the removal of OA from marine environments.


Subject(s)
Bentonite , Chitosan , Okadaic Acid , Adsorption , Chitosan/chemistry , Okadaic Acid/chemistry , Bentonite/chemistry , Charcoal/chemistry , Marine Toxins/chemistry , Shellfish Poisoning/prevention & control
18.
Chemosphere ; 356: 141841, 2024 May.
Article in English | MEDLINE | ID: mdl-38582173

ABSTRACT

The coexistence of metal cations is often accompanied by organic pollution and could affect the environmental fate of organics by mediating the formation of cation bridges. However, the environmental fate and risk of organics in cation co-existing environments are poorly understood due to the lack of accurate identification of cation bridge formation and stability. In this study, the sorption of sulfamethoxazole (SMX) on montmorillonite (MT) with the coexistence of three different valence metal cations (Na+, Ca2+, and Cr3+) was investigated. Ca2+ and Cr3+ can significantly promote the sorption of SMX on MT for about 5∼10 times promotion, respectively, while Na+ bridges displayed little effect on the sorption of SMX. The sorption binding energy of SMX with MT-Ca (-44.01 kcal/mol) and MT-Cr (-64.57 kcal/mol) bridges was significantly lower than that with MT-Na (-38.45 kcal/mol) and MT (-39.39 kcal/mol), indicating that the sorption affinity of SMX on Cr and Ca bridges was much stronger. The higher valence of the cations also resulted in a more stable adsorbed SMX with less desorption fluctuation. In addition, the relatively higher initial concentration of SMX and the valence of cations increased the bonding density of the cation bridges, thus promoting the apparent sorption of SMX on MT to a certain extent. This work reveals the formation and function of cation bridges in the sorption of SMX on MT. It lays a theoretical foundation for further understanding the environmental fate and risk of organics.


Subject(s)
Bentonite , Cations , Sulfamethoxazole , Bentonite/chemistry , Sulfamethoxazole/chemistry , Adsorption , Cations/chemistry
19.
Chemosphere ; 356: 141916, 2024 May.
Article in English | MEDLINE | ID: mdl-38583536

ABSTRACT

This study presents an assessment of inorganic and organic modification of biochar on physicochemical properties, dissolved organic carbon (DOC) release, sorption efficiency towards enrofloxacin (E) and silver nanoparticles (Ag-NPs), as well as an evaluation of addition of prepared materials on hydro-physical properties and adsorption capacity of montmorillonite (M). The biochar was derived from wheat straw at 650 °C. An inorganic modification was performed using ammonia hydroxide, whereas an organic modification, using citric acid. The ammonia hydroxide and citric acid changed the biochar nature and surface chemistry by introducing amino and ester groups. The lowest DOC release was from ammonia-biochar (BCN) and the highest, from citric acid-biochar (BCC). The adsorption data were better described by pseudo-II order equation and Marczewski-Jaroniec isotherm. Results showed that BCN exhibited the highest efficiency in adsorption of E and Ag-NPs. It also improved the adsorptive abilities and saturated hydraulic conductivity of M. This provides the chemically modified biochars have an excellent potential to improve pollution removal from aqueous media and hydro-physical/sorption properties of soil sorption complex. They can be used with advantageous in environmental applications.


Subject(s)
Charcoal , Citric Acid , Metal Nanoparticles , Triticum , Triticum/chemistry , Charcoal/chemistry , Citric Acid/chemistry , Adsorption , Metal Nanoparticles/chemistry , Bentonite/chemistry , Silver/chemistry , Enrofloxacin/chemistry , Hydroxides/chemistry , Ammonia/chemistry
20.
Environ Sci Pollut Res Int ; 31(20): 29719-29729, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584232

ABSTRACT

The application of bentonite (Bt) as an adsorbent for heavy metals has been limited due to its hydrophobicity and insufficient surface area. Herein, we present cellulose nanocrystal (CNC) modified Bt composite (CNC@Bt) with enhanced efficiency for Cr(VI) removal. CNC@Bt exhibited an increased specific surface area and a porous structure, while maintaining the original crystal structure of Bt. This was achieved through a synergistic function of ion exchange, hydrogen bonding, electrostatic interactions, and steric hindrance. The adsorption of Cr(VI) by CNC@Bt followed the pseudo-second-order kinetic and Langmuir isotherm adsorption model. Moreover, the process was endothermic and spontaneous. At an initial Cr(VI) concentration of 20 mg/L and pH = 4.0, 10 g/L CNC@Bt achieved a removal rate of 92.7%, and the adsorption capacity was 1.85 mg/g, significantly higher than bare Bt (37.9% and 0.76 mg/g). The removal efficiency remained consistently above 80% over a wide pH range, indicating the potential practical applicability of CNC@Bt. With its fast adsorption rate, pH adaptability, and stable performance, CNC@Bt presents promising prospects for the rapid treatment of Cr-contaminated wastewater.


Subject(s)
Cellulose , Chromium , Nanoparticles , Water Pollutants, Chemical , Cellulose/chemistry , Nanoparticles/chemistry , Adsorption , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Clay/chemistry , Bentonite/chemistry , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...