Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.687
Filter
1.
Mikrochim Acta ; 191(6): 330, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744738

ABSTRACT

In view of a large number of people infected with Helicobacter pylori (H. pylori) with great harm followed, there is an urgent need to develop a non-invasive, easy-to-operate, and rapid detection method, and to identify effective sterilization strategies. In this study, highly specific nanoprobes with nanozyme activity, Ag@Pt nanoparticles (NPs) with the antibody, were utilized as a novel lateral flow immunoassay (LFIA). The optical label (Ag@Pt NPs) was enhanced by the introduction of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) and compared with a gold nanoparticles (Au NPs) optical label. Under the optimal condition, Ag@Pt-LFIA and TMB-enhanced Ag@Pt-LFIA for H. pylori were successfully established, two of which were over twofold and 100-fold more sensitive than conventional visual Au NP-based LFIA, respectively. Furthermore, Ag@Pt NPs with the antibody irradiated with NIR laser (808 nm) at a power intensity of 550 mW/cm2 for 5 min exhibited a remarkable antibacterial effect. The nanoprobes could close to bacteria through effective interactions between antibodies and bacteria, thereby benefiting photothermal sterilization. Overall, Ag@Pt NPs provide promising applications in pathogen detection and therapeutic applications.


Subject(s)
Alloys , Helicobacter pylori , Metal Nanoparticles , Platinum , Silver , Helicobacter pylori/radiation effects , Helicobacter pylori/drug effects , Silver/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Alloys/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Immunoassay/methods , Benzidines/chemistry , Gold/chemistry , Humans , Sterilization/methods , Limit of Detection
2.
Mikrochim Acta ; 191(6): 319, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727763

ABSTRACT

The high-residual and bioaccumulation property of organophosphorus pesticides (OPs) creates enormous risks towards the ecological environment and human health, promoting the research for smart adsorbents and detection methods. Herein, 2D hemin-bridged MOF nanozyme (2D-ZHM) was fabricated and applied to the efficient removal and ultrasensitive dual-mode aptasensing of OPs. On the one hand, the prepared 2D-ZHM contained Zr-OH groups with high affinity for phosphate groups, endowing it with selective recognition and high adsorption capacity for OPs (285.7 mg g-1 for glyphosate). On the other hand, the enhanced peroxidase-mimicking biocatalytic property of 2D-ZHM allowed rapid H2O2-directed transformation of 3,3',5,5'-tetramethylbenzidine to oxidic product, producing detectable colorimetric or photothermal signals. Using aptamers of specific recognition capacity, the rapid quantification of two typical OPs, glyphosate and omethoate, was realized with remarkable sensitivity and selectivity. The limit of detections (LODs) of glyphosate were 0.004 nM and 0.02 nM for colorimetric and photothermal methods, respectively, and the LODs of omethoate were 0.005 nM and 0.04 nM for colorimetric and photothermal methods, respectively. The constructed dual-mode aptasensing platform exhibited outstanding performance for monitoring OPs in water and fruit samples. This work provides a novel pathway to develop MOF-based artificial peroxidase and integrated platform for pollutant removal and multi-mode aptasensing.


Subject(s)
Glycine , Glyphosate , Hemin , Limit of Detection , Metal-Organic Frameworks , Pesticides , Pesticides/analysis , Pesticides/chemistry , Metal-Organic Frameworks/chemistry , Hemin/chemistry , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/analysis , Colorimetry/methods , Benzidines/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Dimethoate/analysis , Dimethoate/chemistry , Aptamers, Nucleotide/chemistry , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry
3.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731608

ABSTRACT

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Subject(s)
Colorimetry , Copper , Glutathione , Hydrogen Peroxide , Nanostructures , Glutathione/analysis , Glutathione/chemistry , Colorimetry/methods , Copper/chemistry , Nanostructures/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Porosity , Oxidation-Reduction , Phthalic Acids/chemistry , Humans , Benzidines/chemistry , Limit of Detection
4.
Anal Chim Acta ; 1309: 342698, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772661

ABSTRACT

BACKGROUND: The lateral flow immunoassay (LFIA) is widely employed as a point-of-care testing (POCT) technique. However, its limited sensitivity hinders its application in detecting biomarkers with low abundance. Recently, the utilization of nanozymes has been implemented to enhance the sensitivity of LFIA by catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The catalytic performance of nanozymes plays a crucial role in influencing the sensitivity of LFIA. RESULTS: The Cornus officinalis Sieb. et Zucc-Pd@Pt (CO-Pd@Pt) nanozyme with good peroxidase-like activity was synthesized herein through a facile one-pot method employing Cornus officinalis Sieb. et Zucc extract as a reducing agent. The morphology and composition of the CO-Pd@Pt nanozyme were characterized using TEM, SEM, XRD, and XPS. As a proof of concept, the as-synthesized CO-Pd@Pt nanozyme was utilized in LFIA (CO-Pd@Pt-LFIA) for the detection of human chorionic gonadotropin (hCG). Compared to conventional gold nanoparticles-based LFIA (AuNPs-LFIA), CO-Pd@Pt-LFIA demonstrated a significant enhancement in the limit of detection (LOD, 0.08 mIU/mL), which is approximately 160 times lower than that of AuNPs-LFIA. Furthermore, experiments evaluating accuracy, precision, selectivity, interference, and stability have confirmed the practical applicability of CO-Pd@Pt-LFIA for hCG content determination. SIGNIFICANCE: The present study presents a novel approach for the synthesis of bimetallic nanozymes through environmentally friendly methods, utilizing plant extracts as both protective and reducing agents. Additionally, an easily implementable technique is proposed to enhance signal detection in lateral flow immunoassays.


Subject(s)
Palladium , Platinum , Palladium/chemistry , Platinum/chemistry , Immunoassay/methods , Humans , Metal Nanoparticles/chemistry , Limit of Detection , Peroxidase/chemistry , Peroxidase/metabolism , Benzidines/chemistry , Catalysis , Oxidation-Reduction
5.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38717599

ABSTRACT

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Subject(s)
Benzidines , Colorimetry , Copper , Phytosterols , Colorimetry/methods , Phytosterols/analysis , Phytosterols/chemistry , Copper/chemistry , Benzidines/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Catalysis , Nanocomposites/chemistry , Oxidation-Reduction
6.
Anal Chem ; 96(16): 6202-6208, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598750

ABSTRACT

New strategies for accurate and reliable detection of adenosine triphosphate (ATP) with portable devices are significant for biochemical analysis, while most recently reported approaches cannot satisfy the detection accuracy and independent of large instruments simultaneously, which are unsuitable for fast, simple, and on-site ATP monitoring. Herein, a unique, convenient, and label-free point-of-care sensing strategy based on novel copper coordination polymer nanoflowers (CuCPNFs) was fabricated for multimode (UV-vis, photothermal, and RGB values) onsite ATP determination with high selectivity, sensitivity, and accuracy. The resulting CuCPNFs with a 3D hierarchical structure exhibit the ATP-triggered decomposition behavior because the competitive coordination between ATP and the copper ions of CuCPNFs can result in the formation of ATP-Cu, which reveals preeminent peroxidase mimics activity and can accelerate the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) to form oxTMB. During this process, the detection system displayed not only color changes but also a strong NIR laser-driven photothermal effect. Thus, the photothermal and color signal variations are easily monitored by a portable thermometer and a smartphone. This multimode point-of-care platform can meet the requirements of onsite, without bulky equipment, accuracy, and reliability all at once, greatly enhancing its application in practice and paving a new way in ATP analysis.


Subject(s)
Adenosine Triphosphate , Copper , Polymers , Copper/chemistry , Adenosine Triphosphate/analysis , Polymers/chemistry , Point-of-Care Systems , Humans , Nanostructures/chemistry , Limit of Detection , Colorimetry , Benzidines/chemistry , Point-of-Care Testing
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124352, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38678841

ABSTRACT

Mucin 1 is an essential tumor biomarker, and developing cost-effective and portable methods for mucin 1 detection is crucial in resource-limited settings. Herein, the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets were demonstrated, which were integrated into an aptasensor for dual-mode detection of mucin 1. Under acidic conditions, manganese dioxide nanosheets with oxidase mimic activities catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine sulfate, producing visible multicolor signals; while under basic conditions, manganese dioxide nanosheets with catalase mimic activities were used as catalyst for the decomposition of hydrogen peroxide, generating gas pressure signals. The proposed method allows the naked eye detection of mucin 1 through multicolor signal readout and the quantitative detection of mucin 1 with a handheld pressure meter or a UV-vis spectrophotometer. The study demonstrates that manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities can facilitate multidimensional transducing signals. The use of manganese dioxide nanosheets for the transduction of different signals avoids extra labels and simplifies the operation procedures. Besides, the signal readout mode can be selected according to the available detection instruments. Therefore, the use of manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities for dual-signal readout provides a new way for mucin 1 detection.


Subject(s)
Manganese Compounds , Mucin-1 , Nanostructures , Oxides , Manganese Compounds/chemistry , Hydrogen-Ion Concentration , Mucin-1/analysis , Oxides/chemistry , Nanostructures/chemistry , Humans , Colorimetry/methods , Benzidines/chemistry , Pressure , Biosensing Techniques/methods , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Aptamers, Nucleotide/chemistry
8.
Anal Methods ; 16(18): 2948-2958, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38669009

ABSTRACT

Herein, a novel type of phosphorus and iron-doped carbon dot (P,Fe-CD) with outstanding peroxidase activity and excellent fluorescence performance was hydrothermally synthesized to colorimetrically and fluorimetrically detect tannic acid (TA). In the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, the P,Fe-CDs could oxidize colorless TMB to a blue oxidation product (oxTMB) resulting in an increased value of absorbance. Simultaneously, the fluorescence intensity of P,Fe-CDs at 430 nm could be quenched owing to the fluorescence resonance energy transfer (FRET) between P,Fe-CDs and the generated oxTMB. Meanwhile, after adding the TA to the system containing TMB, H2O2 and P,Fe-CDs, the value of absorbance could be decreased and the fluorescence could be recovered because of the reduction reaction between TA and oxTMB. Therefore, fluorescence intensity and value of absorbance could be applied to quantitatively detect TA with good linearities between the concentration of TA and the fluorescence intensity/value of absorbance (0.997 and 0.997 for the colorimetric signal and fluorimetric one, respectively) and low limits of detection (0.093 µmol L-1 and 0.053 µmol L-1 for the colorimetry and the fluorimetry, respectively), which was successfully applied to the detection of TA in red wines. Moreover, we applied a smartphone-assisted method to the point-of-care detection of TA with accurate results, providing a new technique for TA detection and food quality monitoring.


Subject(s)
Carbon , Quantum Dots , Tannins , Wine , Tannins/chemistry , Wine/analysis , Carbon/chemistry , Quantum Dots/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Colorimetry/methods , Peroxidase/chemistry , Peroxidase/metabolism , Limit of Detection , Fluorescence Resonance Energy Transfer/methods , Benzidines/chemistry , Oxidation-Reduction , Polyphenols
9.
Mikrochim Acta ; 191(5): 268, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38627271

ABSTRACT

Hybrid nanozyme graphene quantum dots (GQDs) deposited TiO2 nanotubes (NTs) on titanium foil (Ti/TiO2 NTs-GQDs) were manufactured by bestowing the hybrid with the advantageous porous morphology, surface valence states, high surface area, and copious active sites. The peroxidase-like activity was investigated through the catalytic oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, which can be visualized by the eyes. TiO2 NTs and GQDs comprising oxygen-containing functional groups can oxidize TMB in the presence of H2O2 by mimicking peroxidase enzymes. The peroxidase-mimicking activity of hybrid nanozyme was significantly escalated by introducing light illumination due to the photosensitive features of the hybrid material. The peroxidase-like activity of Ti/TiO2 NTs-GQDs enabled H2O2 determination over the linear range of 7 to 250 µM, with a LOD of 2.1 µM. The satisfying peroxidase activity is possibly due to the unimpeded access of H2O2 to the catalyst's active sites. The porous morphology provides the easy channeling of reactants and products. The periodic structure of the material also gave rise to acceptable reproducibility. Without material functionalization, the Ti/TiO2 NTs-GQDs can be a promising substitute for peroxidases for H2O2 detection.


Subject(s)
Benzidines , Graphite , Nanotubes , Quantum Dots , Graphite/chemistry , Peroxidase/chemistry , Quantum Dots/chemistry , Hydrogen Peroxide/chemistry , Reproducibility of Results , Nanotubes/chemistry
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124269, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38608561

ABSTRACT

A colorimetric immunoassay was built for determination of carcinoembryonic antigen (CEA) based on papain-based colorimetric catalytic sensing system through the use of glucose oxidase (GOx). In the presence of GOx, glucose was catalytically oxidized to produce H2O2. Through the assistance of papain (as a peroxide mimetic enzyme), the signal came from the oxidative color development of 3,3',5,5'-tetramethylbenzidine (TMB, from colorless to blue) catalyzed by the generated H2O2. Herein, a sandwich-type immunoassay was built based on GOx as labels. As the concentration of CEA increased, more GOx-labeled antibodies specifically associate with target, which leaded to more H2O2 generation. Immediately following this, more TMB were oxidized with the addition of papain. Accordingly, the absorbance increased further. As a result, the concentration of CEA is positively correlated with the change in absorbance of the solution. Under optimal conditions, the CEA concentration was linear in the range of 0.05-20.0 ng/mL, and the limit of detection (LOD) reached 37 pg/mL. The papain-based colorimetric immunoassay also exhibited satisfactory repeatability, stability, and selectivity.


Subject(s)
Carcinoembryonic Antigen , Colorimetry , Limit of Detection , Papain , Carcinoembryonic Antigen/analysis , Colorimetry/methods , Papain/metabolism , Immunoassay/methods , Humans , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Hydrogen Peroxide/chemistry , Catalysis , Benzidines/chemistry , Biosensing Techniques/methods , Reproducibility of Results
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124236, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38615415

ABSTRACT

In this work, a colorimetric aptasensor based on magnetic beads (MBs), gold nanoparticles (AuNPs) and Horseradish Peroxidase (HRP) was prepared for the detection of mucin 1 (MUC1). Complementary DNA of the MUC1 aptamer (Apt) immobilized on the MBs was combined with the prepared AuNPs-Apt-HRP complex (AuNPs@Apt-HRP). In the presence of MUC1, it specifically bound to Apt, resulting in the detachment of gold nanoparticles from the MBs. After magnetic separation, AuNPs@Apt-HRP was separated into the supernatant and reacted with 3,3',5,5'-Tetramethylbenzidine (TMB) to produce color reaction from colorless to blue. The linear range of MUC1 was from 75 to 500 µg/mL (R2 = 0.9878), and the detection limit was 41.95 µg/mL. The recovery rate of MUC1 in human serum was 99.18 %∼101.15 %. This method is simple and convenient. Moreover, it does not require complex and expensive equipment for detection of MUC1. It provides value for the development of MUC1 colorimetric sensors and a promising strategy for the determination of MUC1 in clinical diagnosis.


Subject(s)
Aptamers, Nucleotide , Benzidines , Biosensing Techniques , Colorimetry , Gold , Limit of Detection , Metal Nanoparticles , Mucin-1 , Mucin-1/analysis , Mucin-1/blood , Colorimetry/methods , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Humans , Biosensing Techniques/methods , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism
12.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38667178

ABSTRACT

As a potent detection method for cancer biomarkers in physiological fluid, a colorimetric and electrochemical dual-mode sensing platform for breast cancer biomarker thioredoxin 1 (TRX1) was developed based on the excellent peroxidase-mimicking and electrocatalytic property of Prussian blue nanoparticles (PBNPs). PBNPs were hydrothermally synthesized using K3[Fe(CN)6] as a precursor and polyvinylpyrrolidone (PVP) as a capping agent. The synthesized spherical PBNPs showed a significant peroxidase-like activity, having approximately 20 and 60% lower Km values for 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, respectively, compared to those of horseradish peroxidase (HRP). The PBNPs also enhanced the electron transfer on the electrode surface. Based on the beneficial features, PBNPs were used to detect target TRX1 via sandwich-type immunoassay procedures. Using the strategies, TRX1 was selectively and sensitively detected, yielding limit of detection (LOD) values as low as 9.0 and 6.5 ng mL-1 via colorimetric and electrochemical approaches, respectively, with a linear range of 10-50 ng mL-1 in both strategies. The PBNP-based TRX1 immunoassays also exhibited a high degree of precision when applied to real human serum samples, demonstrating significant potentials to replace conventional HRP-based immunoassay systems into rapid, robust, reliable, and convenient dual-mode assay systems which can be widely utilized for the identification of important target molecules including cancer biomarkers.


Subject(s)
Benzidines , Biosensing Techniques , Colorimetry , Electrochemical Techniques , Ferrocyanides , Nanoparticles , Thioredoxins , Ferrocyanides/chemistry , Humans , Nanoparticles/chemistry , Limit of Detection , Hydrogen Peroxide , Catalysis , Peroxidase/chemistry , Immunoassay
13.
Talanta ; 274: 126034, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604040

ABSTRACT

As an important prognostic indicator in breast cancer, human epithelial growth factor receptor-2 (HER-2) is of importance for assessing prognosis of breast cancer patients, whose accurate and facile analysis are imperative in clinical diagnosis and treatment. Herein, photoactive Z-scheme UiO-66/CdIn2S4 heterojunction was constructed by a hydrothermal method, whose optical property and photoactivity were critically investigated by a range of techniques, combined by elucidating the interfacial charge transfer mechanism. Meanwhile, PtPdCu nanoflowers (NFs) were fabricated by a simple aqueous wet-chemical method, whose peroxidase (POD)-mimicking catalytic activity was scrutinized by representative tetramethylbenzidine (TMB) oxidation in H2O2 system. Taken together, the UiO-66/CdIn2S4 based photoelectrochemical (PEC) aptasensor was established for quantitative analysis of HER-2, where the detection signals were further magnified through catalytic precipitation reaction towards 4-chloro-1-naphthol (4-CN) oxidation (assisted by the PtPdCu NFs nanozyme). The PEC aptasensor presented a broader linear range within 0.1 pg mL-1-0.1 µg mL-1 and a lower limit of detection of 0.07 pg mL-1. This work developed a new PEC aptasensor for ultrasensitive determination of HER-2, holding substantial promise for clinical diagnostics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Copper , Electrochemical Techniques , Platinum , Receptor, ErbB-2 , Receptor, ErbB-2/analysis , Humans , Electrochemical Techniques/methods , Copper/chemistry , Platinum/chemistry , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Limit of Detection , Biomarkers, Tumor/blood , Biomarkers, Tumor/analysis , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Nickel/chemistry , Benzidines/chemistry , Photochemical Processes , Catalysis
14.
Anal Methods ; 16(14): 2044-2050, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38501322

ABSTRACT

The preparation of cobalt-based nanozymes with high oxidase-like activity still needs more efforts. In this paper, we report the synthesis of a CoO/Co-tryptophan-functional graphene quantum dot hybrid (CoO/Co-Try-GQD). Firstly, cobalt ions coordinate with the indole nitrogen on Try-GQD to form a complex, followed by thermal reduction and oxidation. The resulting hybrid presents a three-dimensional network structure, and CoO/Co nanoparticles are uniformly dispersed on the graphene sheet with an average size of 10 ± 0.24 nm. This unique structure improved the oxidase-like activity of the hybrid, enabling it to catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to rapidly produce deep blue ox-TMB with a strong absorbance at 652 nm (A652). A colorimetric method was developed for the highly sensitive determination of L-cysteine (L-cys) based on the inhibition of the hybrid's oxidase-like activity and low A652 caused by the binding of L-cys with Co atoms on CoO/Co via the Co-S bond. The A652 linearly decreased with increasing L-cys concentration in the range of 0.05-2 µM, and the detection limit was 0.032 µM. Further, the established method has been successfully applied to the determination of L-cys in milk.


Subject(s)
Benzidines , Graphite , Quantum Dots , Graphite/chemistry , Cysteine/metabolism , Quantum Dots/chemistry , Colorimetry/methods , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Cobalt/chemistry , Oxidative Stress
15.
Clin Transplant ; 38(3): e15269, 2024 03.
Article in English | MEDLINE | ID: mdl-38445531

ABSTRACT

INTRODUCTION: Thoracoabdominal normothermic regional perfusion (TA-NRP) following cardiac death is an emerging multivisceral organ procurement technique. Recent national studies on outcomes of presumptive TA-NRP-procured organs are limited by potential misclassification since TA-NRP is not differentiated from donation after cardiac death (DCD) in registry data. METHODS: We studied 22 donors whose designees consented to TA-NRP and organ procurement performed at our institution between January 20, 2020 and July 3, 2022. We identified these donors in SRTR to describe organ utilization and recipient outcomes and compared them to recipients of traditional DCD (tDCD) and donation after brain death (DBD) organs during the same timeframe. RESULTS: All 22 donors progressed to cardiac arrest and underwent TA-NRP followed by heart, lung, kidney, and/or liver procurement. Median donor age was 41 years, 55% had anoxic brain injury, 45% were hypertensive, 0% were diabetic, and median kidney donor profile index was 40%. TA-NRP utilization was high across all organ types (88%-100%), with a higher percentage of kidneys procured via TA-NRP compared to tDCD (88% vs. 72%, p = .02). Recipient and graft survival ranged from 89% to 100% and were comparable to tDCD and DBD recipients (p ≥ .2). Delayed graft function was lower for kidneys procured from TA-NRP compared to tDCD donors (27% vs. 44%, p = .045). CONCLUSION: Procurement from TA-NRP donors yielded high organ utilization, with outcomes comparable to tDCD and DBD recipients across organ types. Further large-scale study of TA-NRP donors, facilitated by its capture in the national registry, will be critical to fully understand its impact as an organ procurement technique.


Subject(s)
Benzidines , Heart , Tissue and Organ Procurement , Humans , Adult , Perfusion , Tissue Donors , Brain Death
16.
J Hazard Mater ; 470: 134127, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554521

ABSTRACT

Developing methods for the accurate identification and analysis of sulfur-containing compounds (SCCs) is of great significance because of their essential roles in living organisms and the diagnosis of diseases. Herein, Se-doping improved oxidase-like activity of iron-based carbon material (Fe-Se/NC) was prepared and applied to construct a four-channel colorimetric sensor array for the detection and identification of SCCs (including biothiols and sulfur-containing metal salts). Fe-Se/NC can realize the chromogenic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by activating O2 without relying on H2O2, which can be inhibited by different SCCs to diverse degrees to produce different colorimetric response changes as "fingerprints" on the sensor array. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that nine kinds of SCCs could be well discriminated. The sensor array was also applied for the detection of SCCs with a linear range of 1-50 µM and a limit of detection of 0.07-0.2 µM. Moreover, colorimetric sensor array inspired by the different levels of SCCs in real samples were used to discriminate cancer cells and food samples, demonstrating its potential application in the field of disease diagnosis and food monitoring. ENVIRONMENTAL IMPLICATIONS: In this work, a four-channel colorimetric sensor array for accurate SCCs identification and detection was successfully constructed. The colorimetric sensor array inspired by the different levels of SCCs in real samples were also used to discriminate cancer cells and food samples. Therefore, this Fe-Se/NC based sensor array is expected to be applied in the field of environmental monitoring and environment related disease diagnosis.


Subject(s)
Benzidines , Carbon , Colorimetry , Iron , Carbon/chemistry , Iron/chemistry , Iron/analysis , Colorimetry/methods , Benzidines/chemistry , Humans , Sulfur Compounds/analysis , Sulfur Compounds/chemistry , Principal Component Analysis , Cell Line, Tumor , Limit of Detection , Oxidation-Reduction , Oxidoreductases , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis
17.
Anal Chem ; 96(14): 5633-5639, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38529943

ABSTRACT

Materials exhibiting strong absorption in the NIR-II region are appealing for photothermal conversion-based imaging, diagnosis, and therapy, due to better thermal effect and decreased absorption of water in such a region. 3,3',5,5'-Tetramethylbenzidine (TMB), the typical substrate in ELISA, has been explored in photothermal immunoassay, since its oxidation product (oxTMB) is photothermally active in the NIR region. However, its absorption at 1064 nm (the most often used laser wavelength in photothermal studies) is not appreciable, thus limiting the assay sensitivity. Here, we proposed a derivative of TMB (3,3'-dimethoxy-5,5'-dimethylbenzidine, 2-OCH3) bearing higher NIR-II absorption for 1064 nm-excited photothermal immunoassay. Since electron-donating groups can help decrease the energy gap of molecules (here -CH3 → -OCH3), the oxidation product of 2-OCH3 exhibited substantially red-shifted absorption as compared with oxTMB, leading to a more than twofold higher absorption coefficient at 1064 nm. As a result, 2-OCH3 showed enhanced sensitivity over TMB in a photothermal immunoassay (PTIA), yielding a limit of detection (LOD) of 0.1 ng/mL for prostate-specific antigen (PSA). The feasibility of 2-OCH3-based PTIA for diagnosis was further validated by analyzing PSA in 61 serum samples. Considering its superior photothermal performance, 2-OCH3 can be explored for a broad range of photothermal applications.


Subject(s)
Nanoparticles , Prostate-Specific Antigen , Humans , Male , Prostate-Specific Antigen/analysis , Benzidines/chemistry , Light , Immunoassay/methods , Nanoparticles/chemistry
18.
Anal Chim Acta ; 1297: 342373, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438242

ABSTRACT

In this work, a colorimetric and fluorescent dual-mode probe controlled by NH2-MIL-88 B (Fe, Ni) nanozymes was developed to visually detect tetracycline antibiotics (TCs) residues quantitatively, as well as accurately distinguish the four most widely used tetracycline analogs (tetracycline (TC), chrycline (CTC), oxytetracycline (OTC), and doxycycline (DC)). Colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) may be oxidized to blue oxidized TMB by the Fe Fenton reaction, which was catalyzed by the NH2-MIL-88 B (Fe, Ni) nanozyme with POD-like activity. The colorimetric detection system allows TCs to interact with NH2-MIL-88 B (Fe, Ni). This inhibits the production of ·OH, weakens the oxidation process of TMB, and ultimately lightens the blue color in the system by blocking the electron transfer between NH2-MIL-88 B (Fe, Ni) and H2O2. Furthermore, TCs can interact with NH2-MIL-88 B (Fe, Ni) as a result of the internal filtering effect, which causes the fluorescence intensity to decrease as TCs concentration increases. Additionally, a portable instrument that combines a smartphone sensing platform with colorimetric and fluorescent signals was created for the quick, visual quantitative detection of TCs. The colorimetric and fluorescent dual-mode nano platform enables color change, with detection limits (LODs) of 0.182 µM and 0.0668 µM for the spectrometer and smartphone sensor, respectively, based on the inhibition of fluorescence and enzyme-like activities by TCs. Overall, the colorimetric and fluorescence dual-mode sensor has good stability, high specificity, and an efficient way to eliminate false-positive issues associated with a single detection mode.


Subject(s)
Benzidines , Deep Learning , Heterocyclic Compounds , Colorimetry , Hydrogen Peroxide , Smartphone , Tetracycline , Anti-Bacterial Agents , Fluorescent Dyes
19.
Anal Chim Acta ; 1299: 342453, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38499424

ABSTRACT

BACKGROUND: The development of wearable detection devices that can achieve noninvasive, on-site and real-time monitoring of sweat metabolites is of great demand and practical significance for point-of-care testing and healthcare monitoring. Monitoring uric acid (UA) content in sweat provides a simple and promising way to reduce the risk of gout and hyperuricemia. Traditional bioenzyme based UA assays suffer from high cost, poor stability, inconvenience for storage and easy deactivation of bioenzymes. Wearable microfluidic colorimetric detection device for sweat UA detection has not been reported. The development of novel wearable microfluidic colorimetric detection chip with no requirement of bioenzymes for sweat UA detection is of great importance for health care monitoring. RESULTS: Firstly, Co@MnO2 nanozyme with high oxidase-like activity was synthesized and characterized. Co@MnO2 can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) directly to generate blue-green colored ox-TMB. Green colored 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) radical (ABTS·+) was produced by the oxidation of ABTS by potassium persulfate. UA exhibits distinct quenching effect on Co@MnO2 catalyzed TMB colorimetric reaction system and ABTS·+ based colorimetric system, leading to obvious color fading of the two colorimetric systems. Then, a flexible microfluidic colorimetric detection chip for UA detection was fabricated by assembling Co@MnO2/TMB modified paper chips and ABTS·+ modified paper chips into a polydimethylsiloxane (PDMS) microfluidic chip. The fabricated microfluidic colorimetric detection chip exhibits good linear relationship for sweat UA detection. The linear range is from 20 to 200 µmol/L with detection limit as low as 6.6 µmol/L. Good results were obtained for the detection of UA in actual sweat from three volunteers. SIGNIFICANCE: This work provides two bio-enzyme free colorimetric detection systems for UA detection. Furthermore, a simple, low-cost and selective flexible wearable microfluidic colorimetric detection chip was fabricated for noninvasive and on-site detection of sweat UA, which holds great application potential for personal health monitoring and point-of-care testing.


Subject(s)
Benzidines , Benzothiazoles , Sulfonic Acids , Sweat , Uric Acid , Humans , Microfluidics , Colorimetry/methods , Manganese Compounds , Oxides , Catalysis
20.
Analyst ; 149(5): 1658-1664, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38323490

ABSTRACT

The distribution of gold nanoparticles (AuNPs) on the surface of a metal-organic framework (MOF) plays a crucial role in the catalytic performance of MOF-AuNP composites. This study describes how the physical adsorption (PH@AuNPs-on-U) and chemical modification of AuNPs on the surface of UiO-66-NH2 (U) affect the composites' catalytic efficiency. After 2-vinyl-4,4-dimethyl-2-oxazolin-5-one (VD) linked to poly(N-2-hydroxypropyl methacrylamide) (PH) with U (UVD-PH), UVD-PH@AuNPs composites were constructed with PH as the capping and reducing reagent. The composites exhibited higher peroxidase (POD)-like activity than PH@AuNPs-on-U for oxidising 3,3'5,5'-tetramethylbenzidine (TMB) with H2O2. The approach demonstrated that the proposed composite-based nanozymes could significantly enhance their catalytic activity and had a highly uniform distribution of PH@AuNPs on the surface of UVD. An assay with the nanozymes for visual detection of homocysteine (Hcy) was developed, displaying a good linear relationship (R2 = 0.998) ranging from 3.34 µM to 30.0 µM and a detection of limit of 0.3 µM. Additionally, the UVD-PH@AuNPs-TMB-H2O2 system successfully monitored serum Hcy after intraperitoneal injection in rats. This study paves a new way for developing MOF-AuNPs with highly uniform surface distribution of polymer@AuNPs to boost its catalytic activity and to detect drugs in real bio-samples.


Subject(s)
Benzidines , Metal Nanoparticles , Metal-Organic Frameworks , Rats , Animals , Gold , Polymers , Hydrogen Peroxide , Antioxidants , Colorimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...