Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 18393, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117743

ABSTRACT

A new series of substituted benzo[h]chromene, benzochromenopyrimidine, and benzochromenotriazolopyrimidine derivatives were synthesized via chemical transformations of iminonitrile, ethoxymethylene amino, and cyanomethylene functionalities. The chemical structures of the synthesized compounds were assured by spectroscopic data and elemental analysis. The larvicidal efficacy of these compounds against Culex pipiens L. larvae was investigated, revealing potent insecticidal activity, particularly for compounds 6, 10, and 16, exceeding that of the standard insecticide chlorpyrifos. The mode of action of these compounds was explored through molecular docking studies, indicating their potential as acetylcholine esterase (AChE) inhibitors and nicotinic acetylcholine receptors (nAChR) blockers. The structure-activity relationship analysis highlighted the influence of substituents and fused heterocyclic rings on larvicidal potency. These findings suggest that the synthesized compounds hold promise as potential candidates for developing novel and effective mosquito control agents.


Subject(s)
Benzopyrans , Culex , Insecticides , Larva , Molecular Docking Simulation , Animals , Culex/drug effects , Larva/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/chemical synthesis , Structure-Activity Relationship , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Models, Molecular , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Receptors, Nicotinic/metabolism , Molecular Structure
2.
Carbohydr Res ; 543: 109222, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111071

ABSTRACT

A series of new 1,2,3-triazole fused chromene based glucose triazole conjugates were synthesized from chromene fused 1,2,3-triazolyl extended alkyne and 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl azide in good to excellent yield by a copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The major advantages include mild reaction conditions, high yield, good substrate scope, and shorter reaction time. The antibacterial efficacy of the compounds were assessed in vitro against human pathogenic Gram-negative E. coli and Gram-positive S. aureus bacteria. Compound 24j was found to be the most potent molecule with zone of inhibition (ZI) of 17 mm and minimum inhibitory concentration (MIC) of 25 µg mL-1 in E. coli and ZI of 16 mm and MIC of 25 µg mL-1 in S. aureus. Also, it significantly inhibited E. coli DNA-gyrase in silico with a binding affinity of -9.4 kcal/mol. Among all the synthesized compounds, 24i, 24d, 24e and 24f showed significant antibacterial activity against both strains and inhibited DNA-gyrase in silico with good binding affinities. Hence, these 1,2,3-triazole fused chromene based glucose triazole conjugates may evolve to be powerful antibacterial agents in recent future, according to structure-activity relationships based on strong antibacterial properties and molecular docking studies.


Subject(s)
Anti-Bacterial Agents , Benzopyrans , Click Chemistry , Escherichia coli , Glucose , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Benzopyrans/chemistry , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Glucose/chemistry , Glucose/analogs & derivatives , Structure-Activity Relationship , Molecular Structure , DNA Gyrase/metabolism , DNA Gyrase/chemistry , Humans
3.
Bioorg Med Chem Lett ; 111: 129912, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39089526

ABSTRACT

Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.


Subject(s)
Alzheimer Disease , Drug Discovery , Animals , Humans , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Benzopyrans/chemistry , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Acridines/chemical synthesis , Acridines/chemistry , Acridines/pharmacology
4.
Chem Biodivers ; 21(8): e202400719, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38958461

ABSTRACT

A versatile and efficient chemo selective synthesis of 4-aryl-3-formyl-2H-chromenes (AFC) was undertaken using Pd-catalyzed cross-coupling conditions. The key oxidative transmetalation was successfully applied to a significant range of substitutions on the chromene moiety and aryl ring in Ar(BOH)3, accommodating both electron-rich and electron-deficient groups. These π-extended scaffolds exhibited green-yellow fluorescence with a large Stokes shift and high quantum yield. Measurement of photophysical properties revealed that the compound with methoxy substitution in the chromene ring, 3t, caused a significant bathochromic shift. The AFCs obtained from this method can be transformed into biologically active 4-aryl-3-iminoantipyrine-2H-chromenes (AAC) through functionalization of the formyl chromenes. The AFCs and AACs with methoxy substitutions (3t and 4e) were docked against AChE inhibition, and compound 4e had the lowest binding energy of -11.20 kcal/mol. DFT calculations performed on representative compounds revealed that compound 4e is more reactive than 3t, which is in accordance with the docking studies.


Subject(s)
Benzopyrans , Cholinesterase Inhibitors , Density Functional Theory , Palladium , Palladium/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Catalysis , Acetylcholinesterase/metabolism , Molecular Structure , Molecular Docking Simulation , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , Structure-Activity Relationship
5.
Comput Biol Chem ; 111: 108097, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772048

ABSTRACT

A new series of 2H-chromene-based sulfonamide derivatives 3-12 has been synthesized and characterized using different spectroscopic techniques. The synthesized 2H-chromenes were synthesized by reacting activated methylene with 5-(piperidin-1-ylsulfonyl)salicylaldehyde through one-step condensation followed by intramolecular cyclization. Virtual screening of the designed molecules on α-glucosidase enzymes (PDB: 3W37 and 3A4A) exhibited good binding affinity suggesting that these derivatives may be potential α-glucosidase inhibitors. In-vitro α-glucosidase activity was conducted firstly at 100 µg/mL, and the results demonstrated good inhibitory potency with values ranging from 90.6% to 96.3% compared to IP = 95.8% for Acarbose. Furthermore, the IC50 values were determined, and the designed derivatives exhibited inhibitory potency less than 11 µg/mL. Surprisingly, two chromene derivatives 6 and 10 showed the highest potency with IC50 values of 0.975 ± 0.04 and 0.584 ± 0.02 µg/mL, respectively, compared to Acarbose (IC50 = 0.805 ± 0.03 µg/mL). Moreover, our work was extended to evaluate the in-vitro α-amylase and PPAR-γ activity as additional targets for diabetic activity. The results exhibited moderate activity on α-amylase and potency as PPAR-γ agonist making it a multiplet antidiabetic target. The most active 2H-chromenes 6 and 10 exhibited significant activity to PPAR-γ with IC50 values of 3.453 ± 0.14 and 4.653 ± 0.04 µg/mL compared to Pioglitazone (IC50 = 4.884±0.29 µg/mL) indicating that these derivatives improve insulin sensitivity by stimulating the production of small insulin-sensitive adipocytes. In-silico ADME profile analysis indicated compliance with Lipinski's and Veber's rules with excellent oral bioavailability properties. Finally, the docking simulation was conducted to explain the expected binding mode and binding affinity.


Subject(s)
Benzopyrans , Diabetes Mellitus, Type 2 , Drug Design , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , PPAR gamma , alpha-Amylases , alpha-Glucosidases , PPAR gamma/metabolism , PPAR gamma/antagonists & inhibitors , Benzopyrans/chemistry , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , alpha-Glucosidases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Humans , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Drug Evaluation, Preclinical , Drug Discovery , Dose-Response Relationship, Drug
6.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792180

ABSTRACT

The goal of this study was directed to synthesize a novel class of annulated compounds containing difuro[3,2-c:3',2'-g]chromene. Friedländer condensation of o-aminoacetyl derivative 3 was performed with some active methylene ketones, namely, 1,3-cyclohexanediones, pyrazolones, 1,3-thiazolidinones and barbituric acids, furnished furochromenofuroquinolines (4,5), furochromenofuropyrazolopyridines (6-8), furochromenofurothiazolopyridines (9,10) and furochromenofuropyridopyrimidines (11, 12), respectively. Also, condensation of substrate 3 with 5-amine-3-methyl-1H-pyrazole and 6-amino-1,3-dimethyluracil, as cyclic enamines, resulted in polyfused systems 13 and 14, respectively. In vitro antimicrobial efficiency of the prepared heterocycles against microbial strains exhibited variable inhibition action, where compound 3 was the most effective against all kinds of microorganisms. A significant cytotoxic activity was seen upon the annulation of the starting compound with thiazolopyridine (9 and 10) as well as pyridopyrimidine moieties (11, 12 and 14). The spectroscopic and analytical results were used to infer the structures of the novel synthesized compounds.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Benzopyrans , Microbial Sensitivity Tests , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Cell Line, Tumor , Molecular Structure , Structure-Activity Relationship , Bacteria/drug effects
7.
Chem Pharm Bull (Tokyo) ; 72(5): 498-506, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38735699

ABSTRACT

Using (S)-decursinol isolated from root of Angelica gigas Nakai (AGN), we semi-synthesized and evaluated a series of both enantiomerically pure decursin derivatives for their antiproliferative activities against A549 human lung cancer cells. All synthesized compounds showed a broad spectrum of inhibitory activities against the growth of A549 cells. Especially, compound (S)-2d with (E)-(furan-3-yl)acryloyl group showed the most potent activity (IC50: 14.03 µM) against A549 cancer cells as compared with the reference compound, decursin (IC50: 43.55 µM) and its enantiomer, (R)-2d (IC50: 151.59 µM). Western blotting assays indicated that (S)-2d more strongly inhibited Janus kinase 1 (JAK1) and signal transducer and activator of transcription activation 3 (STAT3) phosphorylation than decursin in a dose-dependent manner, while having no effect on CXCR7 overexpression and total STAT3 level. In addition, (S)-2d induced cell cycle arrest at G1 phase and subsequent apoptotic cell death in A549 cancer cells. Our combined analysis of molecular docking studies and biological data suggests that the inhibition of JAK1 with (S)-2d resulted in loss of STAT3 phosphorylation and inhibition of cell growth in A549 cancer cells. These overall results strongly suggest that (S)-2d (MRC-D-004) as a novel JAK1 inhibitor may have therapeutic potential in the treatment of A549 human lung cancers by targeting the JAK1/STAT3 signaling pathway.


Subject(s)
Apoptosis , Benzopyrans , Butyrates , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Docking Simulation , STAT3 Transcription Factor , Humans , Cell Proliferation/drug effects , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Butyrates/pharmacology , Butyrates/chemistry , Butyrates/chemical synthesis , Apoptosis/drug effects , A549 Cells , Stereoisomerism , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Molecular Structure , Angelica/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry
8.
Bioorg Chem ; 147: 107419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703440

ABSTRACT

We formerly reported that EZH2 inhibitors sensitized HIF-1 inhibitor-resistant cells and inhibited HIF-1α to promote SUZ12 transcription, leading to enhanced EZH2 enzyme activity and elevated H3K27me3 levels, and conversely, inhibition of EZH2 promoted HIF-1α transcription. HIF-1α and EZH2 interacted to form a negative feedback loop that reinforced each other's activity. In this paper, a series of 2,2- dimethylbenzopyran derivatives containing pyridone structural fragments were designed and synthesized with DYB-03, a HIF-1α inhibitor previously reported by our group, and Tazemetostat, an EZH2 inhibitor approved by FDA, as lead compounds. Among these compounds, D-01 had significant inhibitory activities on HIF-1α and EZH2. In vitro experiments showed that D-01 significantly inhibited the migration of A549 cells, clone, invasion and angiogenesis. Moreover, D-01 had good pharmacokinetic profiles. All the results about compound D-01 could lay a foundation for the research and development of HIF-1α and EZH2 dual-targeting compounds.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Enhancer of Zeste Homolog 2 Protein , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Pyridones , Humans , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Animals , Benzopyrans/chemistry , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Cell Movement/drug effects
9.
Carbohydr Res ; 541: 109164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815342

ABSTRACT

Stereoselective synthesis is essential for propelling mainstream academia toward a relentless pursuit of novel and cutting-edge strategies for constructing molecules with unparalleled precision. Naturally derived benzopyrans, benzopyrones, and flavonoids are an essentially prominent group of oxa-heterocycles, highly significant targets in medicinal chemistry owing to their extensive abundance in biologically active natural products and pharmaceuticals. The molecular complexity and stereoselectivity induced by heterocycles embedded with C-glycosides have attracted considerable interest and emerged as a fascinating area of research for synthetic organic chemists. This present article emphasizes the existing growths in the strategies involving the diastereoselective synthesis of C-glycosylated benzopyrans, benzopyrones, and flavonoids using naturally acquired glycones as chiral synthons.


Subject(s)
Benzopyrans , Biological Products , Flavonoids , Glycosides , Flavonoids/chemistry , Flavonoids/chemical synthesis , Stereoisomerism , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Biological Products/chemical synthesis , Biological Products/chemistry , Glycosides/chemistry , Glycosides/chemical synthesis , Pyrones/chemistry , Pyrones/chemical synthesis , Glycosylation , Molecular Structure
10.
Talanta ; 276: 126227, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38733935

ABSTRACT

Fatty liver disease affects at least 25 percent of the population worldwide and is a severe metabolic syndrome. Viscosity is closely related to fatty liver disease, so it is urgent to develop an effective tool for monitoring viscosity. Herein, a NIR fluorescent probe called MBC-V is developed for imaging viscosity, consisting of dimethylaniline and malonitrile-benzopyran. MBC-V is non-fluorescent in low viscosity solutions due to intramolecular rotation. In high viscosity solution, the intramolecular rotation of MBC-V is suppressed and the fluorescence is triggered. MBC-V has long emission wavelength at 720 nm and large Stokes shift about 160 nm. Moreover, MBC-V can detect changes in cell viscosity in fatty liver cells, and can image the therapeutic effects of drug in fatty liver cells. By taking advantage of NIR emission, MBC-V can be used as an imaging tool for fatty liver disease and a way to evaluate the therapeutic effect of drug for fatty liver disease.


Subject(s)
Aniline Compounds , Fatty Liver , Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Viscosity , Mice , Fatty Liver/diagnostic imaging , Fatty Liver/drug therapy , Aniline Compounds/chemistry , Optical Imaging , Humans , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Nitriles/chemistry
11.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38677560

ABSTRACT

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Subject(s)
Metabolic Syndrome , Quinolines , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Structure-Activity Relationship , Humans , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Dose-Response Relationship, Drug , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL