Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Int J Environ Health Res ; 31(2): 202-214, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31296039

ABSTRACT

Age-specific differences in the pharmacokinetics of benzo(a)pyrene (BaP) and its metabolite 3-hydroxybenzo(a)pyrene (3-OHBaP) potentially affect time courses of tissue concentration; however, the quantitative impact of these differences is not well characterized. Our objective was to quantify the effect of age-specific differences in physiological and biochemical parameters on the pharmacokinetics of BaP and 3-OHBaP from newborn at birth to adulthood following inhalation exposure. The time courses of BaP and 3-OHBaP were simulated by using a physiologically based pharmacokinetic model with Advanced Continuous Simulation Language (ACSLX). The concentrations of BaP increased with age in the liver but decreased with age in most tissues, urine, and blood. The concentrations of 3-OHBaP were the highest in the newborns. Our results also showed that the concentration of BaP has almost reached a steady state in the kidney, liver, lung, rapidly perfused tissues, slowly perfused tissues, and skin except for adipose tissues. However, the concentration of 3-OHBaP has reached a steady state in all tissues. This study suggests that age-specific parameters have an effect on the pharmacokinetics of BaP and 3-OHBaP. In particular, tissue concentration in the newborns is higher than other age groups, which indicates that the newborns are susceptible to environmental BaP exposure.


Subject(s)
Aging/metabolism , Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/pharmacokinetics , Liver/metabolism , Models, Biological , Age Factors , Drug Elimination Routes , Humans , Inhalation Exposure/adverse effects , Liver/drug effects , Organ Specificity
2.
Chem Res Toxicol ; 29(10): 1641-1650, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27494294

ABSTRACT

Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in nonsmokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a microdose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel "moving wire" interface between ultraperformance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself (Cmax = 18.5 ±15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ±1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax = 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax = 29.4 ± 11.6 pg/pool, Tmax = 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first data set to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.


Subject(s)
Benzopyrenes/metabolism , Benzopyrenes/pharmacokinetics , Adult , Aged , Benzopyrenes/analysis , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Female , Healthy Volunteers , Humans , Male , Mass Spectrometry , Middle Aged , Molecular Structure , Young Adult
3.
Environ Res ; 147: 469-79, 2016 May.
Article in English | MEDLINE | ID: mdl-26970901

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous carcinogenic pollutants emitted in complex mixtures in the ambient air and contribute to the incidence of human cancers. Taking into account all absorption routes, biomonitoring is more relevant than atmospheric measurements to health risk assessment, but knowledge about how to use biomarkers is essential. In this work, urinary elimination kinetic of 1-hydroxypyrene (1-OHP) and 3-hydroxybenzo(a)pyrene (3-OHBaP) were studied in six electrometallurgy workers after PAHs exposure. Spot samples were collected on pre- and post-shift of the last workday then the whole urinations were separately sampled during the weekend. Non-linear mixed effects models were built to study inter- and intra-individual variability of both urinary metabolites toxicokinetic and investigate diuresis correction ways. Comparison of models confirmed the diuresis correction requirement to perform urinary biomonitoring of pyrene and BaP exposure. Urinary creatinine was found as a better way than specific gravity to normalize urinary concentrations of 1-OHP and as a good compromise for 3-OHBaP. Maximum observed levels were 1.0 µmol/mol creatinine and 0.8nmol/mol creatinine for 1-OHP and 3-OHBaP, respectively. Urinary 1-OHP concentrations on post-shift were higher than pre-shift for each subject, while 3-OHBaP levels were steady or decreased, and maximum urinary excretion rates of 3-OHBaP was delayed compared to 1-OHP. These results were consistent with the sampling time previously proposed for 3-OHBaP analysis, the next morning after exposure. Apparent urinary half-life of 1-OHP and 3-OHBaP ranged from 12.0h to 18.2h and from 4.8h to 49.5h, respectively. Finally, inter-individual variability of 1-OHP half-life seemed linked with the cutaneous absorption extent during exposure, while calculation of 3-OHBaP half-life required the awareness of individual urinary background level. The toxicokinetic modeling described here is an efficient tool which could be used to describe elimination kinetic and determine diuresis correction way for any other urinary biomarkers of chemicals or metals exposure.


Subject(s)
Benzopyrenes/pharmacokinetics , Environmental Monitoring/methods , Occupational Exposure/analysis , Pyrenes/pharmacokinetics , Adult , Benzopyrenes/metabolism , Biomarkers/urine , Diuresis , Healthy Volunteers , Humans , Male , Metallurgy , Middle Aged , Pyrenes/urine
4.
Biomed Chromatogr ; 30(3): 474-83, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26230188

ABSTRACT

The aim of this study was to develop an analytical method for the determination the levels of metabolites of benzo[a]pyrene (B[a]P), 3-hydroxybenzo(a)pyrene (3-OHB[a]P) and (+)-anti-benzo(a)pyrene diol-epoxide [(+)-anti-BPDE, combined with DNA to form adducts], in rat blood and tissues exposed to B[a]P exposure by high-performance liquid chromatography with fluorescence detection (HPLC/FD), and to investigate the usefulness of 3-OHB[a]P and (+)-anti-BPDE as markers of intragastrical exposure to B[a]P in rats. The levels of 3-OH-B[a]P and B[a]P-tetrol I-1 released after acid hydrolysis of (+)-anti-BPDE in the samples were measured by HPLC/FD. The calibration curves were linear (r(2) > 0.9904), and the lower limit of quantification ranged from 0.34 to 0.45 ng/mL for 3-OHB[a]P and from 0.43 to 0.58 ng/mL for (+)-anti-BPDE. The intra- and inter-day stability assay data suggested that the method is accurate and precise. The recoveries of 3-OHB[a]P and (+)-anti-BPDE were in the ranges of 73.6 ± 5.0 to 116.5 ± 6.3% and 73.3 ± 8.5 to 141.2 ± 13.8%, respectively. A positive correlation was found between the concentration of intragastrical B[a]P and the concentrations of 3-OH-B[a]P and (+)-anti-BPDE in the blood and in most of the tissues studied, except for the brain and kidney, which showed no correlation between B[a]P and 3-OHB[a]P and between B[a]P and (+)-anti-BPDE, respectively. A sensitive, reliable and rapid HPLC/FD was developed and validated for analysis of 3-OHB[a]P and (+)-anti-BPDE in rat blood and tissues. There was a positive correlation between the concentration of 3-OHB[a]P or (+)-anti-BPDE in the blood and the concentration of 3-OHB[a]P or (+)-anti-BPDE in the most other tissues examined. The concentration of 3-OHB[a]P or (+)-anti-BPDE in the blood could be used as an indicator of the concentration of 3-OHB[a]P or (+)-anti-BPDE in the other tissues in response to B[a]P exposure. These results demonstrate that 3-OHB[a]P and (+)-anti-BPDE are potential biomarkers of B[a]P exposure, which would also be useful to assess the carcinogenic risks from B[a]P exposure.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analysis , Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/analysis , Biomarkers/analysis , Environmental Exposure/analysis , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacokinetics , Administration, Oral , Animals , Benzo(a)pyrene/administration & dosage , Benzo(a)pyrene/toxicity , Benzopyrenes/chemistry , Benzopyrenes/pharmacokinetics , Biomarkers/chemistry , Chromatography, High Pressure Liquid , Limit of Detection , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Tissue Distribution
5.
Chem Res Toxicol ; 28(1): 126-34, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25418912

ABSTRACT

Dibenzo(def,p)chrysene (DBC), (also known as dibenzo[a,l]pyrene), is a high molecular weight polycyclic aromatic hydrocarbon (PAH) found in the environment, including food, produced by the incomplete combustion of hydrocarbons. DBC, classified by IARC as a 2A probable human carcinogen, has a relative potency factor (RPF) in animal cancer models 30-fold higher than benzo[a]pyrene. No data are available describing the disposition of high molecular weight (>4 rings) PAHs in humans to compare to animal studies. Pharmacokinetics of DBC was determined in 3 female and 6 male human volunteers following oral microdosing (29 ng, 5 nCi) of [(14)C]-DBC. This study was made possible with highly sensitive accelerator mass spectrometry (AMS), capable of detecting [(14)C]-DBC equivalents in plasma and urine following a dose considered of de minimus risk to human health. Plasma and urine were collected over 72 h. The plasma Cmax was 68.8 ± 44.3 fg·mL(-1) with a Tmax of 2.25 ± 1.04 h. Elimination occurred in two distinct phases: a rapid (α)-phase, with a T1/2 of 5.8 ± 3.4 h and an apparent elimination rate constant (Kel) of 0.17 ± 0.12 fg·h(-1), followed by a slower (ß)-phase, with a T1/2 of 41.3 ± 29.8 h and an apparent Kel of 0.03 ± 0.02 fg·h(-1). In spite of the high degree of hydrophobicity (log Kow of 7.4), DBC was eliminated rapidly in humans, as are most PAHs in animals, compared to other hydrophobic persistent organic pollutants such as, DDT, PCBs and TCDD. Preliminary examination utilizing a new UHPLC-AMS interface, suggests the presence of polar metabolites in plasma as early as 45 min following dosing. This is the first in vivo data set describing pharmacokinetics in humans of a high molecular weight PAH and should be a valuable addition to risk assessment paradigms.


Subject(s)
Benzopyrenes/pharmacokinetics , Carcinogens/pharmacokinetics , Administration, Oral , Adult , Aged , Benzopyrenes/administration & dosage , Carcinogens/administration & dosage , Female , Humans , Male , Mass Spectrometry , Middle Aged , Young Adult
6.
PLoS One ; 9(7): e102570, 2014.
Article in English | MEDLINE | ID: mdl-25032692

ABSTRACT

Biomathematical modeling has become an important tool to assess xenobiotic exposure in humans. In the present study, we have used a human physiologically-based pharmacokinetic (PBPK) model and an simple compartmental toxicokinetic model of benzo(a)pyrene (BaP) kinetics and its 3-hydroxybenzo(a)pyrene (3-OHBaP) metabolite to reproduce the time-course of this biomarker of exposure in the urine of industrially exposed workers and in turn predict the most plausible exposure scenarios. The models were constructed from in vivo experimental data in rats and then extrapolated from animals to humans after assessing and adjusting the most sensitive model parameters as well as species specific physiological parameters. Repeated urinary voids from workers exposed to polycyclic aromatic hydrocarbons (PAHs) have been collected over the course of a typical workweek and during subsequent days off work; urinary concentrations of 3-OHBaP were then determined. Based on the information obtained for each worker (BaP air concentration, daily shift hours, tasks, protective equipment), the time courses of 3-OHBaP in the urine of the different workers have been simulated using the PBPK and toxicokinetic models, considering the various possible exposure routes, oral, dermal and inhalation. Both models were equally able to closely reproduce the observed time course of 3-OHBaP in the urine of workers and predicted similar exposure scenarios. Simulations of various scenarios suggest that the workers under study were exposed mainly by the dermal route. Comparison of measured air concentration levels of BaP with simulated values needed to obtain a good approximation of observed time course further pointed out that inhalation was not the main route of exposure for most of the studied workers. Both kinetic models appear as a useful tool to interpret biomonitoring data of PAH exposure on the basis of 3-OHBaP levels.


Subject(s)
Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/pharmacokinetics , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Polycyclic Aromatic Hydrocarbons/urine , Animals , Benzo(a)pyrene/adverse effects , Benzopyrenes/adverse effects , Environmental Monitoring , Humans , Models, Theoretical , Polycyclic Aromatic Hydrocarbons/adverse effects , Rats
7.
Toxicol Lett ; 228(1): 48-55, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24769260

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a]pyrene (B[a]P) is the prototypical carcinogenic PAH, and dibenzo[def,p]chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isoforms of the cytochrome P450 enzyme superfamily to form reactive carcinogenic and cytotoxic metabolites. Metabolism of B[a]P and DBC was studied in hepatic microsomes of male Sprague-Dawley rats, naïve and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis-Menten saturation kinetic parameters including maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein), affinity constants (KM, µM), and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were calculated from substrate depletion data. CLINT was also estimated from substrate depletion data using the alternative in vitro half-life method. VMAX and CLINT were higher for B[a]P than DBC, regardless of species. Clearance for both B[a]P and DBC was highest in naïve female mice and lowest in female humans. Clearance rates of B[a]P and DBC in male rat were more similar to female human than to female mice. Clearance of DBC in liver microsomes from pregnant mice was reduced compared to naïve mice, consistent with reduced active P450 protein levels and elevated tissue concentrations and residence times for DBC observed in previous in vivo pharmacokinetic studies. These findings suggest that rats are a more appropriate model organism for human PAH metabolism, and that pregnancy's effects on metabolism should be further explored.


Subject(s)
Benzo(a)pyrene/metabolism , Benzopyrenes/metabolism , Carcinogens/metabolism , Microsomes, Liver/metabolism , Algorithms , Animals , Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/pharmacokinetics , Body Weight/drug effects , Carcinogens/pharmacokinetics , Data Interpretation, Statistical , Female , Half-Life , Humans , Kinetics , Male , Mice , Organ Size/drug effects , Polycyclic Aromatic Hydrocarbons/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley
8.
J Pharmacokinet Pharmacodyn ; 40(6): 669-82, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24166060

ABSTRACT

3-hydroxybenzo(a)pyrene (3-OHBaP) in urine has been proposed as a biomarker of occupational exposure to polycyclic aromatic hydrocarbons. However, to reconstruct exposure doses in workers from biomarker measurements, a thorough knowledge of the kinetics of the benzo(a)pyrene (BaP) and 3-OHBaP given different routes of exposure is needed. A rat physiologically-based pharmacokinetic model of BaP and 3-OHBaP was built. Organs (tissues) represented as compartments were based on in vivo experimental data in rats. Tissue: blood partition coefficients, permeability coefficients, metabolism rates, excretion parameters, and absorption fractions and rates for different routes-of-entry were obtained directly from published in vivo time courses of BaP and 3-OHBaP in blood, various tissues and excreta of rats. The latter parameter values were best-fitted by least square procedures and Monte Carlo simulations. Sensitivity analyses were then carried out to ensure the stability of the model and the key parameters driving the overall modeled kinetics. This modeling pointed out critical determinants of the kinetics: (1) hepatic metabolism of BaP and 3-OHBaP elimination rate as the most sensitive parameters; (2) the strong partition of BaP in lungs compared to other tissues, followed by adipose tissues and liver; (3) the strong partition of 3-OHBaP in kidneys; (4) diffusion-limited tissue transfers of BaP in lungs and 3-OHBaP in lungs, adipose tissues and kidneys; (5) significant entero-hepatic recycling of 3-OHBaP. Very good fits to various sets of experimental data in rats from four different routes-of-entry (intravenous, oral, dermal and inhalation) were obtained with the model.


Subject(s)
Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/pharmacokinetics , Computer Simulation , Models, Biological , Occupational Exposure/analysis , Animals , Biomarkers/blood , Biomarkers/urine , Humans , Kinetics , Least-Squares Analysis , Rats , Tissue Distribution
9.
Toxicol Sci ; 135(1): 48-62, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23744095

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated during combustion. Dibenzo[def,p]chrysene (DBC) is a high molecular weight PAH classified as a 2B carcinogen by the International Agency for Research on Cancer. DBC crosses the placenta in exposed mice, causing carcinogenicity in offspring. We present pharmacokinetic data of DBC in pregnant and nonpregnant mice. Pregnant (gestational day 17) and nonpregnant female B6129SF1/J mice were exposed to 15mg/kg DBC by oral gavage. Subgroups of mice were sacrificed up to 48h postdosing, and blood, excreta, and tissues were analyzed for DBC and its major diol and tetrol metabolites. Elevated maximum concentrations and areas under the curve of DBC and its metabolites were observed in blood and tissues of pregnant animals compared with naïve mice. Using a physiologically based pharmacokinetic (PBPK) model, we found observed differences in pharmacokinetics could not be attributed solely to changes in tissue volumes and blood flows that occur during pregnancy. Measurement of enzyme activity in naïve and pregnant mice by activity-based protein profiling indicated a 2- to 10-fold reduction in activities of many of the enzymes relevant to PAH metabolism. Incorporating this reduction into the PBPK model improved model predictions. Concentrations of DBC in fetuses were one to two orders of magnitude below maternal blood concentrations, whereas metabolite concentrations closely resembled those observed in maternal blood.


Subject(s)
Benzopyrenes/pharmacokinetics , Carcinogens/pharmacokinetics , Pregnancy, Animal/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/physiology , Cytochrome P-450 CYP1B1 , Female , Male , Mice , Models, Biological , Pregnancy , Tissue Distribution
10.
J Biol Chem ; 287(35): 29909-20, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22782890

ABSTRACT

Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.


Subject(s)
Arylsulfotransferase/metabolism , Benzopyrenes/pharmacokinetics , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/enzymology , Neoplasm Proteins/biosynthesis , Arylsulfotransferase/genetics , Benzopyrenes/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Proteins/genetics
11.
Cancer Lett ; 317(1): 49-55, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22085489

ABSTRACT

Dibenzo[def,p]chrysene (DBC) is a transplacental carcinogen in mice (15mg/kg; gestation day (GD) 17). To mimic residual exposure throughout pregnancy, dams received four smaller doses of DBC (3.75mg/kg) on GD 5, 9, 13 and 17. This regimen alleviated the previously established carcinogenic responses in the thymus, lung, and liver. However, there was a marked increase in ovarian tumors (females) and hyperplastic testes (males). [(14)C]-DBC (GD 17) dosing revealed transplacental distribution to fetal tissues at 10-fold lower concentrations than in paired maternal tissue and residual [(14)C] 3weeks post-dose. This study highlights the importance of developmental stage in susceptibility to environmental carcinogens.


Subject(s)
Benzopyrenes/toxicity , Carcinogens/toxicity , Maternal Exposure , Maternal-Fetal Exchange , Neoplasms, Experimental/chemically induced , Placental Circulation , Prenatal Exposure Delayed Effects , Animals , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Benzopyrenes/administration & dosage , Benzopyrenes/pharmacokinetics , Carcinogens/administration & dosage , Carcinogens/pharmacokinetics , Cytochrome P-450 CYP1B1 , Female , Fetus/drug effects , Fetus/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gestational Age , Male , Mice , Mice, 129 Strain , Neoplasms, Experimental/pathology , Pregnancy , Time Factors , Tissue Distribution
12.
Toxicol Appl Pharmacol ; 257(3): 365-76, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22001385

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene, and benzo[a]pyrene (B[a]P). The dearth of published models is due in part to the high lipophilicity, low volatility, and myriad metabolic pathways for PAHs, all of which present analytical and experimental challenges. Our research efforts have focused upon experimental approaches and initial development of PBPK models for the prototypic PAH, B[a]P, and the more potent, albeit less studied transplacental carcinogen, dibenzo[def,p]chrysene (DBC). For both compounds, model compartments included arterial and venous blood, flow limited lung, liver, richly perfused and poorly perfused tissues, diffusion limited fat, and a two compartment theoretical gut (for oral exposures). Hepatic and pulmonary metabolism was described for both compounds, as were fractional binding in blood and fecal clearance. Partition coefficients for parent PAH along with their diol and tetraol metabolites were estimated using published algorithms and verified experimentally for the hydroxylated metabolites. The preliminary PBPK models were able to describe many, but not all, of the available data sets, comprising multiple routes of exposure (oral, intravenous) and nominal doses spanning several orders of magnitude.


Subject(s)
Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/pharmacokinetics , Environmental Pollutants/pharmacokinetics , Models, Biological , Administration, Oral , Algorithms , Animals , Benzo(a)pyrene/administration & dosage , Benzo(a)pyrene/chemistry , Benzopyrenes/administration & dosage , Benzopyrenes/chemistry , Environmental Pollutants/administration & dosage , Environmental Pollutants/chemistry , Female , Injections, Intravenous , Mice , Rats , Rats, Sprague-Dawley , Tissue Distribution
13.
Toxicol Sci ; 122(2): 275-87, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21613232

ABSTRACT

Measurements of 3-hydroxybenzo(a)pyrene (3-OHBaP) in urine has been proposed for the biomonitoring of exposure to benzo(a)pyrene (BaP) in workers. To allow a better understanding of the toxicokinetics of BaP and its key biomarker, a multicompartment model was developed based on rat data previously obtained by this group. According to the model, iv injected BaP is rapidly distributed from blood to tissues (t1/2 = 3.65 h), with particular affinity for tissue lipid components and liver and lung proteins. BaP is then rapidly distributed to lungs, where significant tissue uptake occurs, followed by the skin, liver, and adipose tissues. Once in liver, BaP is readily metabolized, and 3-OHBaP is formed with a t1/2 of 3.32 h. Lung metabolism of BaP was also accounted for, but its contribution to the whole kinetics was found to be negligible. Once formed, 3-OHBaP is distributed from blood to the various organs almost as fast as the parent compound (t1/2 = 2.26 h). In kidneys, 3-OHBaP builds up as a result of the smaller rate of 3-OHBaP urinary excretion (t1/2 = 4.52 h) as compared with its transfer rate from blood to kidneys (t1/2 = 27.8 min). However, overall clearance of 3-OHBaP from the body is driven by its biliary transfer from liver to the gastrointestinal tract (t1/2 = 3.81 h). The model provides a great fit to independent sets of published data on 3-OHBaP urinary excretion time course (χ² = 0.019). This model proves useful in establishing the main biological determinants of the overall kinetics of these compounds.


Subject(s)
Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/pharmacokinetics , Animals , Benzo(a)pyrene/toxicity , Benzopyrenes/toxicity , Biomarkers/urine , Computer Simulation , Half-Life , Kinetics , Linear Models , Liver/drug effects , Liver/metabolism , Lung/drug effects , Lung/metabolism , Male , Models, Theoretical , Rats , Rats, Sprague-Dawley , Skin/drug effects , Skin/metabolism
14.
Toxicol Appl Pharmacol ; 233(3): 454-8, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18848954

ABSTRACT

The fetus and neonate cannot be viewed as "little adults"; they are highly sensitive to toxicity from environmental chemicals. This phenomenon contributes to the fetal basis of adult disease. One example is transplacental carcinogenesis. Animal models demonstrate that environmental chemicals, to which pregnant women are daily exposed, can increase susceptibility of the offspring to cancer. It is uncertain to what degree in utero vs. lactational exposure contributes to cancer, especially for hydrophobic chemicals such as polyhalogenated biphenyls, ethers, dioxins, furans, etc., which can partition into breast milk. We developed a pregnant mouse model in which exposure to the polycyclic aromatic hydrocarbon (PAH), dibenzo[a,l]pyrene (DBP), during late gestation, produces an aggressive T-cell lymphoma in offspring between 3 and 6 months of age. Survivors exhibit multiple lung and liver (males) tumors. Here, we adopt a cross-foster design with litters born to dams treated with DBP exchanged with those born to dams treated with vehicle. Exposure to DBP in utero (about 2 days) produced significantly greater mortality than residual DBP exposure only through breast milk (3 weeks of lactation). As previously observed pups in all groups with an ahr(b-1/d) ("responsive") genotype were more susceptible to lymphoma mortality than ahr(d/d) ("non-responsive") siblings. At termination of the study at 10 months, mice exposed in utero also had greater lung tumor multiplicity than mice exposed only during lactation. Our results demonstrate that short exposure to DBP during late gestation presents a greater risk to offspring than exposure to this very hydrophobic PAH following 3 weeks of nursing.


Subject(s)
Benzopyrenes/toxicity , Carcinogens, Environmental/toxicity , Lactation , Lung Neoplasms/chemically induced , Lymphoma, T-Cell/chemically induced , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Animals , Benzopyrenes/pharmacokinetics , Carcinogens, Environmental/pharmacokinetics , Female , Male , Maternal-Fetal Exchange , Mice , Mice, Inbred Strains , Pregnancy
15.
DNA Repair (Amst) ; 7(8): 1202-12, 2008 Aug 02.
Article in English | MEDLINE | ID: mdl-18479980

ABSTRACT

Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Benzopyrenes/toxicity , DNA Repair , DNA Replication , Epoxy Compounds/toxicity , Mutation , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacokinetics , Animals , Benzopyrenes/pharmacokinetics , Cell Line , Chromatography, Thin Layer , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Epoxy Compounds/pharmacokinetics , Half-Life
16.
Food Chem Toxicol ; 46(3): 1014-24, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18069110

ABSTRACT

We recently reported that chlorophyll (Chl) strongly inhibits aflatoxin B(1) preneoplasia biomarkers in rats when administered by co-gavage (Simonich et al., 2007. Natural chlorophyll inhibits aflatoxin B1-induced multi-organ carcinogenesis in the rat. Carcinogenesis 28, 1294-1302.). The present study extends this by examining the effects of dietary Chl on tumor development, using rainbow trout to explore ubiquity of mechanism. Duplicate groups of 140 trout were fed diet containing 224 ppm dibenzo[a,l]pyrene (DBP) alone, or with 1000-6000 ppm Chl, for 4 weeks. DBP induced high tumor incidences in liver (51%) and stomach (56%), whereas Chl co-fed at 2000, 4000 or 6000 ppm reduced incidences in stomach (to 29%, 23% and 19%, resp., P<0.005) and liver (to 21%, 28% and 26%, resp., P<0.0005). Chlorophyllin (CHL) at 2000 ppm gave similar protection. Chl complexed with DBP in vitro (2Chl:DBP, K(d1)=4.44+/-0.46 microM, K(d2)=3.30+/-0.18 microM), as did CHL (K(d1)=1.38+/-0.32 microM, K(d2)=1.17+/-0.05 microM), possibly explaining their ability to inhibit DBP uptake into the liver by 61-63% (P<0.001). This is the first demonstration that dietary Chl can reduce tumorigenesis in any whole animal model, and that it may do so by a simple, species-independent mechanism.


Subject(s)
Chlorophyll/administration & dosage , Diet , Neoplasms, Multiple Primary/chemically induced , Animals , Benzopyrenes/pharmacokinetics , Benzopyrenes/toxicity , Electron Spin Resonance Spectroscopy , Oncorhynchus mykiss , Tissue Distribution
17.
Chem Biol Interact ; 161(1): 37-48, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16581046

ABSTRACT

We were aimed at investigating the activation of the carcinogenic polycyclic aromatic hydrocarbon (PAH) dibenzo[a,l]pyrene (DB[a,l]P) in Chinese hamster V79 cells that express single human, rat or fish cytochrome P450 (CYP) enzymes. DB[a,l]P is detectable in environmental samples and has been characterized as the most potent carcinogenic species among all PAHs as yet tested in rodent bioassays. Metabolite profiles and metabolite-dependent cytotoxic and clastogenic activities were monitored. The total turnover of CYP-mediated transformation of DB[a,l]P was as follows: human CYP1B1>fish CYP1A1 approximately human CYP1A1>>rat CYP1A2>rat CYP1A1. By contrast, enzyme forms that are not classified as being members of family CYP1, such as CYP2A6, 2E1, 2B1, and 3A4, failed to catalyze any detectable conversion of this substrate. All CYP1A1 enzymes tested formed both the K-region trans-8,9- and the trans-11,12-dihydrodiol, whereas human CYP1B1 failed to catalyze K-region activation. In cells expressing human or fish CYP1A1, human CYP1B1, and rat CYP1A2, the (-)-trans-11,12-dihydrodiol was formed enantiospecifically. DB[a,l]P-dependent cytotoxicities (EC(50)) were found in the following order: human CYP1A1 (12 nM)>fish CYP1A1 (30 nM)>human CYP1B1 (45 nM)>>other forms. In addition, an appreciable micronuclei formation was detected in human CYP1A1- and 1B1-expressing cells during exposure to DB[a,l]P. Our study demonstrates that human CYP1A1, 1B1 and fish CYP1A1 are able to transform DB[a,l]P into genotoxic derivatives in appreciable amounts. In contrast, CYP enzymes from rat predominantly target the K-region of DB[a,l]P and thus are serving more a rather protective route of biotransformation. Together our data suggest that humans might be more susceptible to DB[a,l]P-induced carcinogenicity than rats.


Subject(s)
Benzopyrenes/pharmacokinetics , Carcinogens/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Animals , Benzopyrenes/toxicity , Biotransformation , Carcinogens/toxicity , Cell Line , Cell Survival , Cricetinae , Cricetulus , Humans , Micronucleus Tests , Perciformes , Rats , Species Specificity
18.
Environ Geochem Health ; 28(1-2): 153-8, 2006.
Article in English | MEDLINE | ID: mdl-16528582

ABSTRACT

Effects of benzo[a]pyrene (B[a]P) on ryegrass (Lolium perenne L.) growth, plant accumulation and dissipiation of B[a]P in a red sandy soil (Hapli-Udic Argosol) were studied in a pot experiment. The plants were grown for 61 days in soil spiked with B[a]P at 0, 12.5, 25 and 50 mg kg(-1). Control pots without plants were also set up. Soil extractable B[a]P, plant shoot and root biomass, and concentrations of B[a]P in plant shoots and roots were determined. Ryegrass biomass was increased by addition of B[a]P and root B[a]P concentrations were significantly correlated with B[a]P application rate, but no such correlation was found for shoot B[a]P concentrations. This indicates that B[a]P enhanced the growth of the ryegrass. The extractable B[a]P concentration in the planted soil was significantly lower than that in the unplanted control soil at the rate of 50 mg B[a]P kg(-1). This indicates that ryegrass may help to dissipate B[a]P in soil at concentrations over 50 mg kg(-1) soil although the mechanism for this is not understood.


Subject(s)
Benzopyrenes/pharmacokinetics , Lolium/metabolism , Soil Pollutants/pharmacokinetics , Soil/analysis , Acids , Benzopyrenes/toxicity , Biodegradation, Environmental , Biomass , Lolium/growth & development , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Silicon Dioxide , Soil Pollutants/toxicity , Time Factors
19.
Cancer Res ; 66(2): 755-62, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16424006

ABSTRACT

Lymphoma and leukemia are the most common cancers in children and young adults; in utero carcinogen exposure may contribute to the etiology of these cancers. A polycyclic aromatic hydrocarbon (PAH), dibenzo[a,l]pyrene (DBP), was given to pregnant mice (15 mg/kg body weight, gavage) on gestation day 17. Significant mortalities in offspring, beginning at 12 weeks of age, were observed due to an aggressive T-cell lymphoblastic lymphoma. Lymphocytes invaded numerous tissues. All mice surviving 10 months, exposed in utero to DBP, exhibited lung tumors; some mice also had liver tumors. To assess the role of the aryl hydrocarbon receptor (AHR) in DBP transplacental cancer, B6129SF1/J (AHR(b-1/d), responsive) mice were crossed with strain 129S1/SvIm (AHR(d/d), nonresponsive) to determine the effect of maternal and fetal AHR status on carcinogenesis. Offspring born to nonresponsive mothers had greater susceptibility to lymphoma, irrespective of offspring phenotype. However, when the mother was responsive, an AHR-responsive phenotype in offspring increased mortality by 2-fold. In DBP-induced lymphomas, no evidence was found for TP53, beta-catenin, or Ki-ras mutations but lung adenomas of mice surviving to 10 months of age had mutations in Ki-ras codons 12 and 13. Lung adenomas exhibited a 50% decrease and a 35-fold increase in expression of Rb and p19/ARF mRNA, respectively. This is the first demonstration that transplacental exposure to an environmental PAH can induce a highly aggressive lymphoma in mice and raises the possibility that PAH exposures to pregnant women could contribute to similar cancers in children and young adults.


Subject(s)
Benzopyrenes/toxicity , Carcinogens/toxicity , Leukemia, Lymphocytic, Chronic, B-Cell/chemically induced , Prenatal Exposure Delayed Effects , Thymus Neoplasms/chemically induced , Animals , Benzopyrenes/pharmacokinetics , Benzopyrenes/pharmacology , Carcinogens/pharmacokinetics , Carcinogens/pharmacology , DNA Mutational Analysis , Female , Immunohistochemistry , Liver Neoplasms/chemically induced , Lung Neoplasms/chemically induced , Male , Mice , Phenotype , Pregnancy , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/physiology , Survival
20.
J Toxicol Environ Health A ; 68(23-24): 2227-38, 2005 Dec 10.
Article in English | MEDLINE | ID: mdl-16326436

ABSTRACT

This study was conducted to examine the effects of aloe and aloesin on the weight gain and blood chemistry as well as the pharmacokinetics of benzo[a]pyrene (BaP) and 3-OH-BaP in rats. The rats treated with multiple doses of aloe and aloesin (100 mg/kg every 12 h for 14-19 d) did not show any significant changes in the weight gain and blood biochemical parameters. In addition, the effects of oral treatment with aloe, aloesin, and propolis on the absorption and pharmacokinetics of benzo[a]pyrene (BaP) and its metabolite, 3-OH-BaP, were studied in rats. The treatment with a single oral dose (200 mg/kg) of aloe, aloesin, and propolis did not alter the concentration-time profiles of BaP and 3-OH-BaP after iv and oral administration of BaP. At higher oral doses (500 mg/kg), the biliary excretion of BaP and the urinary excretion of 3-OH-BaP were significantly increased, but the urinary excretion of BaP and the fecal excretion of 3-OH-BaP remained unaltered. Whether high doses of aloe increase the overall elimination of BaP deserves further investigation.


Subject(s)
Aloe , Benzo(a)pyrene/pharmacokinetics , Benzopyrenes/pharmacokinetics , Chromones/pharmacology , Glucosides/pharmacology , Propolis/pharmacology , Animals , Benzo(a)pyrene/administration & dosage , Benzopyrenes/metabolism , Bile/chemistry , Body Weight/drug effects , Chromatography, High Pressure Liquid , Feces/chemistry , Male , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Urine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL