Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
Plant Physiol Biochem ; 210: 108636, 2024 May.
Article in English | MEDLINE | ID: mdl-38657547

ABSTRACT

Plants synthesize a plethora of chemical defence compounds, which vary between evolutionary lineages. We hypothesize that plants evolved the ability to utilize defence compounds synthesized and released by neighbouring heterospecific plants. In two experiments, we incubated clover (Trifolium repens L.) seedlings with individual benzoxazinoid (BX) compounds (2,4-dihydroxy-1,4-benzoxazin-3-one, 2-hydroxy-1,4-benzoxazin-3-one, benzoxazolinone, and 6-methoxy- benzoxazolin-2-one), a group of bioactive compounds produced by cereals, to allow clover BX uptake. Subsequently, we transplanted the seedlings into soil and quantified BX root and shoot content and invasion of root-knot nematodes in clover roots up to 8 weeks after transplantation. We show that clover root uptake of BXs substantially enhanced clover's resistance against the root-knot nematode Meloidogyne incognita. This effect lasted up to 6 weeks after the clover roots were exposed to the BXs. BXs were absorbed by clover roots, and then translocated to the shoots. As a result of clover metabolization, we detected the parent BXs and a range of their transformation products in the roots and shoots. Based on these novel findings, we envisage that co-cultivation of crop species with complementary and transferable chemical defence systems can add to plant protection.


Subject(s)
Benzoxazines , Plant Roots , Trifolium , Tylenchoidea , Animals , Benzoxazines/metabolism , Plant Roots/parasitology , Plant Roots/metabolism , Trifolium/metabolism , Trifolium/parasitology , Tylenchoidea/physiology , Plant Diseases/parasitology , Edible Grain/parasitology , Edible Grain/metabolism , Disease Resistance , Plant Shoots/metabolism , Plant Shoots/parasitology
2.
Drug Des Devel Ther ; 18: 819-827, 2024.
Article in English | MEDLINE | ID: mdl-38511202

ABSTRACT

Introduction: Sirtuins (SIRTs) comprise a group of histone deacetylase enzymes crucial for regulating metabolic pathways and contributing significantly to various disease mechanisms. Sirtuin 1 (SIRT1), among the seven known mammalian homologs, is extensively investigated and understood, playing a key role in neurodegenerative disorders and cancer. This study focuses on potential as a therapeutic target for conditions such as Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD). Methods: Utilizing positron emission tomography (PET) as a noninvasive molecular imaging modality, we aimed to expedite the validation of a promising sirtuin 1 inhibitor for clinical trials. However, the absence of a validated sirtuin 1 PET radiotracer impedes clinical translation. We present the development of [11C]1, and 11C-labeled benzoxazine-based derivative, as a lead imaging probe. The radiosynthesis of [11C]1 resulted in a radiochemical yield of 31 ± 4%. Results: Baseline studies demonstrated that [11C]1 exhibited excellent blood-brain barrier (BBB) penetration capability, with uniform accumulation throughout various brain regions. Self-blocking studies revealed that introducing an unlabeled compound 1, effectively blocking sirtuin 1, led to a substantial reduction in whole-brain uptake, emphasizing the in vivo specificity of [11C]1 for sirtuin 1. Discussion: The development of [11C]1 provides a valuable tool for noninvasive imaging investigations in rodent models with aberrant sirtuin 1 expression. This novel radiotracer holds promise for advancing our understanding of sirtuin 1's role in disease mechanisms and may facilitate the validation of sirtuin 1 inhibitors in clinical trials.


Subject(s)
Benzoxazines , Carbon Radioisotopes , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Benzoxazines/metabolism , Positron-Emission Tomography/methods , Neuroimaging/methods , Brain/diagnostic imaging , Brain/metabolism , Mammals/metabolism
3.
Proc Natl Acad Sci U S A ; 121(13): e2314261121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513094

ABSTRACT

By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems.


Subject(s)
Arsenic , Soil Pollutants , Trace Elements , Arsenic/metabolism , Trace Elements/metabolism , Zea mays/genetics , Zea mays/metabolism , Benzoxazines/metabolism , Plants/metabolism , Soil , Soil Pollutants/analysis , Plant Roots/metabolism
4.
Physiol Plant ; 176(2): e14243, 2024.
Article in English | MEDLINE | ID: mdl-38467539

ABSTRACT

Seed priming with beneficial endophytic fungi is an emerging sustainable strategy for enhancing plant resistance against insect pests. This study examined the effects of Beauvaria bassiana Bb20091317 and Metarhizium rileyi MrCDTLJ1 fungal colonization on maize growth, defence signalling, benzoxazinoid levels and gene expression. The colonization did not adversely affect plant growth but reduced larval weights of Spodoptera frugiperda. Maize leaves treated with M. rileyi exhibited higher levels of jasmonic acid, jasmonoyl-Isoleucine, salicylic acid, and indole acetic acid compared to control. B. bassiana and M. rileyi accelerated phytohormone increase upon S. frugiperda herbivory. Gene expression analysis revealed modulation of benzoxazinoid biosynthesis genes. We further elucidated the immune regulatory role of the transcription factor zmWRKY36 using virus-induced gene silencing (VIGS) in maize. zmWRKY36 positively regulates maize immunity against S. frugiperda, likely by interacting with defense-related proteins. Transient overexpression of zmWRKY36 in tobacco-induced cell death, while silencing in maize reduced chitin-triggered reactive oxygen species burst, confirming its immune function. Overall, B. bassiana and M. rileyi successfully colonized maize, impacting larval growth, defense signalling, and zmWRKY36-mediated resistance. This sheds light on maize-endophyte-insect interactions for sustainable plant protection.


Subject(s)
Benzoxazines , Zea mays , Animals , Spodoptera/physiology , Zea mays/genetics , Zea mays/metabolism , Benzoxazines/metabolism , Benzoxazines/pharmacology , Herbivory , Larva/physiology , Fungi
5.
J Agric Food Chem ; 72(7): 3427-3435, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38336361

ABSTRACT

Benzoxazinoids (BXDs) are plant specialized metabolites exerting a pivotal role in plant nutrition, allelopathy, and defenses. Multihexose benzoxazinoids were previously observed in cereal-based food products such as whole-grain bread. However, their production in plants and exact structure have not been fully elucidated. In this study, we showed that drought induced the production of di-, tri-, and even tetrahexose BXDs in maize roots and leaves. We performed an extensive nuclear magnetic resonance study and elucidated the nature and linkage of the sugar units, which were identified as gentiobiose units ß-linked (1″ → 6') for the dihexoses and (1″ → 6')/(1‴ → 6″) for the trihexoses. Drought induced the production of DIMBOA-2Glc, DIMBOA-3Glc, HMBOA-2Glc, HMBOA-3Glc, and HDMBOA-2Glc. The induction was common among several maize lines and the strongest in seven-day-old seedlings. This work provides ground to further characterize the BXD synthetic pathway, its relevance in maize-environment interactions, and its impact on human health.


Subject(s)
Benzoxazines , Zea mays , Humans , Benzoxazines/metabolism , Zea mays/chemistry , Droughts , Seedlings/metabolism , Edible Grain/metabolism
6.
New Phytol ; 241(6): 2575-2588, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087806

ABSTRACT

Plants can suppress the growth of other plants by modifying soil properties. These negative plant-soil feedbacks are often species-specific, suggesting that some plants possess resistance strategies. However, the underlying mechanisms remain largely unknown. Here, we investigated whether benzoxazinoids, a class of dominant secondary metabolites that are exuded into the soil by maize and other cereals, allow maize plants to cope with plant-soil feedbacks. We find that three out of five tested crop species reduce maize (Zea mays L.) performance via negative plant-soil feedbacks relative to the mean across species. This effect is partially alleviated by the capacity of maize plants to produce benzoxazinoids. Soil complementation with purified benzoxazinoids restores the protective effect for benzoxazinoid-deficient mutants. Sterilization and reinoculation experiments suggest that benzoxazinoid-mediated protection acts via changes in soil biota. Substantial variation of the protective effect between experiments and soil types illustrates context dependency. In conclusion, exuded plant secondary metabolites allow plants to cope with plant-soil feedbacks. These findings expand the functional repertoire of plant secondary metabolites and reveal a mechanism by which plants can resist negative effects of soil feedbacks. The uncovered phenomenon may represent a promising avenue to stabilize plant performance in crop rotations.


Subject(s)
Benzoxazines , Soil , Benzoxazines/pharmacology , Benzoxazines/metabolism , Feedback , Plants/metabolism , Zea mays/metabolism
7.
Environ Sci Pollut Res Int ; 30(54): 116004-116017, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37897577

ABSTRACT

Effectively controlling target organisms while reducing the adverse effects of pesticides on non-target organisms is a crucial scientific inquiry and challenge in pesticide ecotoxicology research. Here, we studied the alleviation of herbicide (R)-imazethapyr [(R)-IM] to non-target plant wheat by active regulation between auxin and secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA). We found (R)-IM reduced 32.4% auxin content in wheat leaves and induced 40.7% DIMBOA accumulation compared to the control group, which effortlessly disrupted the balance between wheat growth and defense. Transcriptomic results indicated that restoration of the auxin level in plants promoted the up-regulation of growth-related genes and the accumulation of DIMBOA up-regulated the expression of defense-related genes. Auxin and DIMBOA alleviated herbicide stress primarily through effects in the two directions of wheat growth and defense, respectively. Additionally, as a common precursor of auxin and DIMBOA, indole adopted a combined growth and defense strategy in response to (R)-IM toxicity, i.e., restoring growth development and enhancing the defense system. Future regulation of auxin and DIMBOA levels in plants may be possible through appropriate methods, thus regulating the plant growth-defense balance under herbicide stress. Our insight into the interference mechanism of herbicides to the plant growth-defense system will facilitate the design of improved strategies for herbicide detoxification.


Subject(s)
Benzoxazines , Herbicides , Benzoxazines/metabolism , Benzoxazines/pharmacology , Triticum/metabolism , Indoleacetic Acids/metabolism , Plants/metabolism , Herbicides/metabolism
8.
Proc Natl Acad Sci U S A ; 120(44): e2310134120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37878725

ABSTRACT

Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities.


Subject(s)
Anti-Infective Agents , Arabidopsis , Microbiota , Zea mays/metabolism , Plant Roots/metabolism , Bacteria/metabolism , Plants/metabolism , Rhizosphere , Benzoxazines/pharmacology , Benzoxazines/metabolism , Arabidopsis/metabolism , Anti-Infective Agents/metabolism , Soil Microbiology
9.
Proc Natl Acad Sci U S A ; 120(42): e2307981120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812727

ABSTRACT

Benzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.


Subject(s)
Magnoliopsida , Magnoliopsida/metabolism , Benzoxazines/metabolism , Poaceae/metabolism , Metabolic Networks and Pathways/genetics , Plants/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
10.
Elife ; 122023 08 01.
Article in English | MEDLINE | ID: mdl-37526647

ABSTRACT

Plant secondary metabolites that are released into the rhizosphere alter biotic and abiotic soil properties, which in turn affect the performance of other plants. How this type of plant-soil feedback affects agricultural productivity and food quality in the field in the context of crop rotations is unknown. Here, we assessed the performance, yield and food quality of three winter wheat varieties growing in field plots whose soils had been conditioned by either wild type or benzoxazinoid-deficient bx1 maize mutant plants. Following maize cultivation, we detected benzoxazinoid-dependent chemical and microbial fingerprints in the soil. The benzoxazinoid fingerprint was still visible during wheat growth, but the microbial fingerprint was no longer detected. Wheat emergence, tillering, growth, and biomass increased in wild type conditioned soils compared to bx1 mutant conditioned soils. Weed cover was similar between soil conditioning treatments, but insect herbivore abundance decreased in benzoxazinoid-conditioned soils. Wheat yield was increased by over 4% without a reduction in grain quality in benzoxazinoid-conditioned soils. This improvement was directly associated with increased germination and tillering. Taken together, our experiments provide evidence that soil conditioning by plant secondary metabolite producing plants can increase yield via plant-soil feedbacks under agronomically realistic conditions. If this phenomenon holds true across different soils and environments, optimizing root exudation chemistry could be a powerful, genetically tractable strategy to enhance crop yields without additional inputs.


Subject(s)
Benzoxazines , Soil , Soil/chemistry , Feedback , Benzoxazines/metabolism , Agriculture , Zea mays/metabolism , Edible Grain/metabolism , Triticum
11.
J Agric Food Chem ; 71(5): 2370-2376, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36692976

ABSTRACT

While plant-specialized metabolites can affect mammal health, their fate during the aerobic deterioration of crop silage remains poorly understood. In this study, we investigated the metabolization of benzoxazinoids (BXs) in silages of two maize genotypes (W22 wild type and bx1 mutant line) during aerobic deterioration. In W22 plants, concentrations of the aglucone BXs DIMBOA and HMBOA in silage decreased over time upon air exposure, while concentrations of MBOA and BOA increased. Mutant plants had low levels of BXs, which did not significantly vary over time. Aerobic stability was BX-dependent, as pH and counts of yeasts and molds were higher in W22 compared to that in bx1 silage. The nutrient composition was not affected by BXs. These preliminary results may be used to estimate the amounts of BXs provided to farm animals via silage feeding. However, further research is warranted under different harvest and storage conditions.


Subject(s)
Silage , Zea mays , Animals , Zea mays/chemistry , Silage/analysis , Benzoxazines/metabolism , Fungi/metabolism , Yeasts/metabolism , Fermentation , Aerobiosis , Mammals/metabolism
12.
Molecules ; 28(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677783

ABSTRACT

Pre-harvest sprouting is a frequent problem for wheat culture that can be simulated by laboratory-based germination. Despite reducing baking properties, wheat sprouting has been shown to increase the bioavailability of some nutrients. It was investigated whether wheat cultivars bearing distinct grain texture characteristics (BRS Guaraim, soft vs. BRS Marcante, hard texture) would have different behavior in terms of the changes in phytochemical compounds during germination. Using LC-Q-TOF-MS, higher contents of benzoxazinoids and flavonoids were found in the hard cultivar than in the soft one. Free phytochemicals, mainly benzoxazinoids, increased during germination in both cultivars. Before germination, soft and hard cultivars had a similar profile of matrix-bound phytochemicals, but during germination, these compounds have been shown to decrease only in the hard-texture cultivar, due to decreased levels of phenolic acids (trans-ferulic acid) and flavonoids (apigenin) that were bound to the cell wall through ester-type bonds. These findings confirm the hypothesis that hard and soft wheat cultivars have distinct behavior during germination concerning the changes in phytochemical compounds, namely the matrix-bound compounds. In addition, germination has been shown to remarkably increase the content of benzoxazinoids and the antioxidant capacity, which could bring a health-beneficial appeal for pre-harvested sprouted grains.


Subject(s)
Benzoxazines , Triticum , Triticum/chemistry , Benzoxazines/metabolism , Phenols/analysis , Flavonoids/chemistry , Edible Grain/chemistry , Phytochemicals/metabolism , Germination
13.
J Integr Plant Biol ; 65(4): 1041-1058, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36349965

ABSTRACT

Both herbivory and jasmonic acid (JA) activate the biosynthesis of defensive metabolites in maize, but the mechanism underlying this remains unclear. We generated maize mutants in which ZmMYC2a and ZmMYC2b, two transcription factor genes important in JA signaling, were individually or both knocked out. Genetic and biochemical analyses were used to elucidate the functions of ZmMYC2 proteins in the maize response to simulated herbivory and JA. Compared with the wild-type (WT) maize, the double mutant myc2ab was highly susceptible to insects, and the levels of benzoxazinoids and volatile terpenes, and the levels of their biosynthesis gene transcripts, were much lower in the mutants than in the WT maize after simulated insect feeding or JA treatment. Moreover, ZmMYC2a and ZmMYC2b played a redundant role in maize resistance to insects and JA signaling. Transcriptome and Cleavage Under Targets and Tagmentation-Sequencing (CUT&Tag-Seq) analysis indicated that ZmMYC2s physically targeted 60% of the JA-responsive genes, even though only 33% of these genes were transcriptionally ZmMYC2-dependent. Importantly, CUT&Tag-Seq and dual luciferase assays revealed that ZmMYC2s transactivate the benzoxazinoid and volatile terpene biosynthesis genes IGPS1/3, BX10/11/12/14, and TPS10/2/3/4/5/8 by directly binding to their promoters. Furthermore, several transcription factors physically targeted by ZmMYC2s were identified, and these are likely to function in the regulation of benzoxazinoid biosynthesis. This work reveals the transcriptional regulatory landscapes of both JA signaling and ZmMYC2s in maize and provides comprehensive mechanistic insight into how JA signaling modulates defenses in maize responses to herbivory through ZmMYC2s.


Subject(s)
Adaptation, Physiological , Gene Expression Regulation, Plant , Herbivory , Zea mays , Animals , Benzoxazines/metabolism , Cyclopentanes/metabolism , Insecta/physiology , Oxylipins/metabolism , Zea mays/genetics , Zea mays/metabolism , Adaptation, Physiological/genetics
14.
Plant Cell Environ ; 46(10): 3072-3089, 2023 10.
Article in English | MEDLINE | ID: mdl-36207806

ABSTRACT

Insect herbivory challenges plant survival, and coordination of the interactions between growth, herbivore resistance/tolerance is a key problem faced by plants. Based on field experiments into resistance to the Asian corn borer (ACB, Ostrinia furnacalis), we selected 10 inbred maize lines, of which five were resistant and five were susceptible to ACB. We conducted ACB larval bioassays, analysed defensive chemicals, phytohormones, and relative gene expression using RNA-seq and qPCR as well as agronomic traits, and found resistant lines had weaker inducibility, but were more resistant after ACB attack than susceptible lines. Resistance was related to high levels of major benzoxazinoids, but was not related to induced levels of JA or JA-Ile. Following combination analyses of transcriptome, metabolome and larval performance data, we discovered three benzoxazinoids biosynthesis-related transcription factors, NAC60, WRKY1 and WRKY46. Protoplast transformation analysis suggested that these may regulate maize defence-growth trade-offs by increasing levels of benzoxazinoids, JA and SA but decreasing IAA. Moreover, the resistance/tolerance-growth trade-offs were not observed in the 10 lines, and genotype-specific metabolic and genetic features probably eliminated the trade-offs. This study highlights the possibility of breeding maize varieties simultaneously with improved defences and higher yield under complex field conditions.


Subject(s)
Moths , Zea mays , Animals , Zea mays/genetics , Zea mays/metabolism , Benzoxazines/metabolism , Moths/physiology , Larva , Genotype , Herbivory
15.
J Agric Food Chem ; 70(46): 14633-14640, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36350751

ABSTRACT

Metabolomic studies on root uptake and transformation of bioactive compounds, like cereal benzoxazinoids (BXs) in non-BX producing plants, are very limited. Therefore, a targeted mass-spectrometry-based metabolomics study was performed to elucidate the root uptake of BXs in white clover (Trifolium repens L.) and the impact of absorbed BXs on intrinsic clover secondary metabolites. Clover plants grew in a medium containing 100 µM of individual BXs (five aglycone and one glycoside BXs) for 3 weeks. Subsequently, plant tissues were analyzed by liquid chromatography-tandem mass spectrometry to quantify the BXs and clover secondary metabolite concentrations. All BXs were taken up by clover roots and translocated to the shoots. Upon uptake of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 2-hydroxy-1,4-benzoxazin-3-one (HBOA), and 2-ß-d-glucopyranosyloxy-1,4-benzoxazin-3-one (HBOA-glc), the parent compounds and a range of transformation products were seen in the roots and shoots. The individual BX concentrations ranged from not detected (nd) to 469 µg/g of dry weight (dw) and from nd to 170 µg/g of dw in the roots and shoots, respectively. The root uptake of BXs altered the composition of intrinsic clover secondary metabolites. In particular, the concentration of flavonoids and the hormone abscisic acid increased substantially in comparison to control plants.


Subject(s)
Benzoxazines , Trifolium , Benzoxazines/metabolism , Edible Grain/chemistry , Abscisic Acid/metabolism , Trifolium/metabolism , Medicago/metabolism , Flavonoids/metabolism , Plant Roots/chemistry
16.
J Exp Bot ; 73(16): 5358-5360, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36095661

ABSTRACT

This article comments on: Batyrshina ZS, Shavit R, Yaakov B, Bocobza S, Tzin V. 2022. The transcription factor gene TaMYB31 regulates the benzoxazinoid biosynthetic pathway in wheat. Journal of Experimental Botany73, 5634-5649. Benzoxazinoids (BXDs) are abundant indole-derived specialized metabolites in several monocot crop species, such as wheat, maize, and rye. They function in plant immunity against herbivorous arthropods and fungal pathogens, but also as iron chelators, in metal tolerance, and as allelochemicals. Although BXD biosynthetic pathways have been studied extensively and are well described, information about the transcriptional regulation of BXD biosynthesis is scarce. In the current issue of JXB, Batyrshina et al. (2022) identified the transcription factor gene TaMYB31 in the tetraploid wheat Triticum turgidum and verified its function as a component of BXD metabolism in the hexaploid wheat Triticum aestivum, where it regulates constitutive and stress-inducible BXD biosynthesis.


Subject(s)
Benzoxazines , Triticum , Benzoxazines/metabolism , Gene Expression Regulation, Plant , Tetraploidy , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/physiology
17.
BMC Plant Biol ; 22(1): 402, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35974304

ABSTRACT

BACKGROUND: Plants growing in proximity to other plants are exposed to a variety of metabolites that these neighbors release into the environment. Some species produce allelochemicals to inhibit growth of neighboring plants, which in turn have evolved ways to detoxify these compounds. RESULTS: In order to understand how the allelochemical-receiving target plants respond to chemically diverse compounds, we performed whole-genome transcriptome analysis of Arabidopsis thaliana exposed to either the benzoxazinoid derivative 2-amino- 3H-phenoxazin-3-one (APO) or momilactone B. These two allelochemicals belong to two very different compound classes, benzoxazinoids and diterpenes, respectively, produced by different Poaceae crop species. CONCLUSIONS: Despite their distinct chemical nature, we observed similar molecular responses of A. thaliana to these allelochemicals. In particular, many of the same or closely related genes belonging to the three-phase detoxification pathway were upregulated in both treatments. Further, we observed an overlap between genes upregulated by allelochemicals and those involved in herbicide detoxification. Our findings highlight the overlap in the transcriptional response of a target plant to natural and synthetic phytotoxic compounds and illustrate how herbicide resistance could arise via pathways involved in plant-plant interaction.


Subject(s)
Arabidopsis , Diterpenes , Arabidopsis/genetics , Arabidopsis/metabolism , Benzoxazines/metabolism , Benzoxazines/pharmacology , Diterpenes/metabolism , Diterpenes/pharmacology , Pheromones/analysis , Pheromones/metabolism , Plants/metabolism
18.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35887013

ABSTRACT

Efavirenz (EFV), an FDA-approved anti-HIV drug, has off-target binding to CYP46A1, the CNS enzyme which converts cholesterol to 24-hydroxycholesterol. At small doses, EFV allosterically activates CYP46A1 in mice and humans and mitigates some of the Alzheimer's disease manifestations in 5XFAD mice, an animal model. Notably, in vitro, all phase 1 EFV hydroxymetabolites activate CYP46A1 as well and bind either to the allosteric site for EFV, neurotransmitters or both. Herein, we treated 5XFAD mice with 8,14-dihydroxyEFV, the binder to the neurotransmitter allosteric site, which elicits the highest CYP46A1 activation in vitro. We found that treated animals of both sexes had activation of CYP46A1 and cholesterol turnover in the brain, decreased content of the amyloid beta 42 peptide, increased levels of acetyl-CoA and acetylcholine, and altered expression of the brain marker proteins. In addition, male mice had improved performance in the Barnes Maze test and increased expression of the acetylcholine-related genes. This work expands our knowledge of the beneficial CYP46A1 activation effects and demonstrates that 8,14-dihydroxyEFV crosses the blood-brain barrier and has therapeutic potential as a CYP46A1 activator.


Subject(s)
Acetylcholine , Alzheimer Disease , Brain , Cholesterol 24-Hydroxylase , Acetylcholine/analysis , Acetylcholine/metabolism , Alkynes/metabolism , Alkynes/pharmacology , Alkynes/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Benzoxazines/metabolism , Benzoxazines/pharmacology , Benzoxazines/therapeutic use , Brain/drug effects , Brain/metabolism , Cholesterol/metabolism , Cholesterol 24-Hydroxylase/genetics , Cholesterol 24-Hydroxylase/metabolism , Cholesterol 24-Hydroxylase/pharmacology , Cyclopropanes/metabolism , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Disease Models, Animal , Female , Male , Mice
19.
Sci Rep ; 12(1): 10343, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725775

ABSTRACT

Herbivorous insects often possess the ability to detoxify chemical defenses from their host plants. The fall armyworm (Spodoptera frugiperda), which feeds principally on maize, detoxifies the maize benzoxazinoid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) by stereoselective re-glucosylation using a UDP-glucosyltransferase, SfUGT33F28. SfUGT33F28 activity is induced by feeding on a DIMBOA-containing diet, but how this induction is regulated is unknown. In the present work, we describe the alternative splicing of the SfUGT33F28 transcript. Variant transcripts are differentially expressed in response to DIMBOA, and this transcriptional response is mediated by an insect aryl hydrocarbon receptor. These variants have large deletions leading to the production of truncated proteins that have no intrinsic UGT activity with DIMBOA but interact with the full-length enzyme to raise or lower its activity. Therefore, the formation of SfUGT33F28 splice variants induces DIMBOA-conjugating UGT activity when DIMBOA is present in the insect diet and represses activity in the absence of this plant defense compound.


Subject(s)
Benzoxazines , Glucosyltransferases , Alternative Splicing , Animals , Benzoxazines/metabolism , Biocatalysis , Catalysis , Glucosyltransferases/metabolism , Larva/genetics , Larva/metabolism , Spodoptera/physiology , Uridine Diphosphate/metabolism , Zea mays/genetics , Zea mays/metabolism
20.
J Exp Bot ; 73(16): 5634-5649, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35554544

ABSTRACT

Benzoxazinoids are specialized metabolites that are highly abundant in staple crops, such as maize and wheat. Although their biosynthesis has been studied for several decades, the regulatory mechanisms of the benzoxazinoid pathway remain unknown. Here, we report that the wheat transcription factor MYB31 functions as a regulator of benzoxazinoid biosynthesis genes. A transcriptomic analysis of tetraploid wheat (Triticum turgidum) tissue revealed the up-regulation of two TtMYB31 homoeologous genes upon aphid and caterpillar feeding. TaMYB31 gene silencing in the hexaploid wheat Triticum aestivum significantly reduced benzoxazinoid metabolite levels and led to susceptibility to herbivores. Thus, aphid progeny production, caterpillar body weight gain, and spider mite oviposition significantly increased in TaMYB31-silenced plants. A comprehensive transcriptomic analysis of hexaploid wheat revealed that the TaMYB31 gene is co-expressed with the target benzoxazinoid-encoded Bx genes under several biotic and environmental conditions. Therefore, we analyzed the effect of abiotic stresses on benzoxazinoid levels and discovered a strong accumulation of these compounds in the leaves. The results of a dual fluorescence assay indicated that TaMYB31 binds to the Bx1 and Bx4 gene promoters, thereby activating the transcription of genes involved in the benzoxazinoid pathway. Our finding is the first report of the transcriptional regulation mechanism of the benzoxazinoid pathway in wheat.


Subject(s)
Aphids , Triticum , Animals , Aphids/physiology , Benzoxazines/metabolism , Biosynthetic Pathways , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/genetics , Triticum/metabolism , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...